
Big Data Infrastructure

Week 1: Introduction (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 489/698 Big Data Infrastructure (Winter 2016)

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

January 5, 2016

These slides are available at http://lintool.github.io/bigdata-2016w/

Questions, questions, questions…

Who am I?
What is big data?

Why big data?
What is this course about?

Source: Wikipedia (All Souls College, Oxford)

From the Ivory Tower…

Source: Wikipedia (Factory)

… to building sh*t that works

Source: Wikipedia (All Souls College, Oxford)

… and back.

Source: Wikipedia (Hard disk drive)

Big Data

How much data?

Hadoop: 10K nodes, 150K
cores, 150 PB (4/2014)

Processes 20 PB a day (2008)
Crawls 20B web pages a day (2012)
Search index is 100+ PB (5/2014)
Bigtable serves 2+ EB, 600M QPS (5/2014)

300 PB data in Hive + ���
600 TB/day (4/2014)

400B pages, 10+
PB (2/2014)

LHC: ~15 PB a year���

LSST: 6-10 PB a year ���
(~2020)640K ought to be

enough for anybody.

150 PB on 50k+ servers ���
running 15k apps (6/2011)

S3: 2T objects, 1.1M request/
second (4/2013)

SKA: 0.3 – 1.5 EB ���
per year (~2020)

19 Hadoop clusters: 600
PB, 40k servers (9/2015)

Source: Wikipedia (Everest)

Why big data? Science
Engineering
Commerce
Society

Emergence of the 4th Paradigm

Data-intensive e-Science
Maximilien Brice, © CERN

Science

Engineering
The unreasonable effectiveness of data

Search, recommendation, prediction, …

Source: Wikipedia (Three Gorges Dam)

Commerce

Know thy customers

Data → Insights → Competitive advantages

Source: Wikiedia (Shinjuku, Tokyo)

Source: Guardian

Humans as social sensors

Computational social science

Society

What is this course about?

Execution 
Infrastructure

Analytics
Infrastructure

Data Science
Tools

Th
is	
Co

ur
se
	

“big data stack”

Buzzwords

MapReduce, Spark, noSQL,
Flink, Pig, Hive, Dryad,
Pregel, Giraph, Storm

Execution 
Infrastructure

Analytics
Infrastructure

Data Science
Tools

Th
is	
Co

ur
se
	

Text: frequency estimation,
language models, inverted
indexes

Graphs: graph traversals,
random walks (PageRank)

Relational data: SQL, joins,
column stores

Data mining: hashing, clustering
(k-means), classification,
recommendations

Streams: probabilistic data
structures (Bloom filters,
CMS, HLL counters)

data analytics, business
intelligence, OLAP, ETL, data
warehouses and data lakes

This course focuses on algorithm design and “thinking at scale”

“big data stack”

Source: Google

Tackling Big Data

Divide and Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

worker worker worker

Partition

Combine

Parallelization Challenges
¢  How do we assign work units to workers?

¢  What if we have more work units than workers?

¢  What if workers need to share partial results?

¢  How do we aggregate partial results?

¢  How do we know all the workers have finished?

¢  What if workers die?

What’s the common theme of all of these problems?

Common Theme?
¢  Parallelization problems arise from:

l  Communication between workers (e.g., to exchange state)
l  Access to shared resources (e.g., data)

¢  Thus, we need a synchronization mechanism

Source: Ricardo Guimarães Herrmann

Managing Multiple Workers
¢  Difficult because

l  We don’t know the order in which workers run
l  We don’t know when workers interrupt each other

l  We don’t know when workers need to communicate partial results

l  We don’t know the order in which workers access shared data

¢  Thus, we need:
l  Semaphores (lock, unlock)

l  Conditional variables (wait, notify, broadcast)
l  Barriers

¢  Still, lots of problems:
l  Deadlock, livelock, race conditions...

l  Dining philosophers, sleeping barbers, cigarette smokers...

¢  Moral of the story: be careful!

Current Tools
¢  Programming models

l  Shared memory (pthreads)
l  Message passing (MPI)

¢  Design Patterns
l  Master-slaves

l  Producer-consumer flows

l  Shared work queues

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
em

or
y

master

slaves

producer consumer

producer consumer

work queue

Where the rubber meets the road
¢  Concurrency is difficult to reason about

¢  Concurrency is even more difficult to reason about

l  At the scale of datacenters and across datacenters
l  In the presence of failures

l  In terms of multiple interacting services

¢  Not to mention debugging…

¢  The reality:
l  Lots of one-off solutions, custom code

l  Write you own dedicated library, then program with it

l  Burden on the programmer to explicitly manage everything

Source: Wikipedia (Flat Tire)

Source: MIT Open Courseware

Source: MIT Open Courseware

Source: Google

The datacenter is the computer!

The datacenter is the computer
¢  It’s all about the right level of abstraction

l  Moving beyond the von Neumann architecture
l  What’s the “instruction set” of the datacenter computer?

¢  Hide system-level details from the developers
l  No more race conditions, lock contention, etc.

l  No need to explicitly worry about reliability, fault tolerance, etc.

¢  Separating the what from the how

l  Developer specifies the computation that needs to be performed

l  Execution framework (“runtime”) handles actual execution

MapReduce is the first instantiation of this idea…

Source: Google

MapReduce

Typical Big Data Problem
¢  Iterate over a large number of records

¢  Extract something of interest from each

¢  Shuffle and sort intermediate results

¢  Aggregate intermediate results

¢  Generate final output

Key idea: provide a functional
abstraction for these two operations

Map

Reduce

(Dean and Ghemawat, OSDI 2004)

g g g g g

f f f f f Map

Fold

Roots in Functional Programming

scala> val t = Array(1, 2, 3, 4, 5)
t: Array[Int] = Array(1, 2, 3, 4, 5)

scala> t.map(n => n*n)
res0: Array[Int] = Array(1, 4, 9, 16, 25)

scala> t.map(n => n*n).foldLeft(0)((m, n) => m + n)
res1: Int = 55

Functional programming +
distributed computing!

MapReduce
¢  Programmers specify two functions:

map (k1, v1) → [<k2, v2>]
reduce (k2, [v2]) → [<k3, v3>]
l  All values with the same key are sent to the same reducer

¢  The execution framework handles everything else…

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce
¢  Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
l  All values with the same key are sent to the same reducer

¢  The execution framework handles everything else…

What’s “everything else”?

MapReduce “Runtime”
¢  Handles scheduling

l  Assigns workers to map and reduce tasks

¢  Handles “data distribution”
l  Moves processes to data

¢  Handles synchronization
l  Gathers, sorts, and shuffles intermediate data

¢  Handles errors and faults
l  Detects worker failures and restarts

¢  Everything happens on top of a distributed FS (later)

MapReduce
¢  Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
l  All values with the same key are reduced together

¢  The execution framework handles everything else…

¢  Not quite…usually, programmers also specify:
partition (k’, number of partitions) → partition for k’
l  Often a simple hash of the key, e.g., hash(k’) mod n
l  Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
l  Mini-reducers that run in memory after the map phase
l  Used as an optimization to reduce network traffic

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

Two more details…
¢  Barrier between map and reduce phases

l  But we can begin copying intermediate data earlier

¢  Keys arrive at each reducer in sorted order
l  No enforced ordering across reducers

“Hello World”: Word Count

Map(String docid, String text):
 for each word w in text:
 Emit(w, 1);

Reduce(String term, Iterator<Int> values):
 int sum = 0;
 for each v in values:
 sum += v;
 Emit(term, sum);

MapReduce can refer to…
¢  The programming model

¢  The execution framework (aka “runtime”)

¢  The specific implementation

Usage is usually clear from context!

MapReduce Implementations
¢  Google has a proprietary implementation in C++

l  Bindings in Java, Python

¢  Hadoop provides an open-source implementation in Java
l  Development led by Yahoo, now an Apache project

l  Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, …

l  Large and expanding software ecosystem

l  Potential point of confusion: Hadoop is more than MapReduce today

¢  Lots of custom research implementations

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

We’ll discuss physical execution in detail later…

Course Administrivia

Source: http://www.flickr.com/photos/artmind_etcetera/6336693594/

My Expectations
¢  Your background:

l  Pre-reqs: CS 341, CS 350, (CS 348)
l  Comfortable in Java and Scala

l  Know how to use Git

l  Reasonable “command-line”-fu skills

l  Experience in compiling, patching, and installing open source software
l  Good debugging skills

¢  You are:
l  Genuinely interested in the topic

l  Be prepared to put in the time

l  Comfortable with the uncertainty and unpredictability that comes with
cutting-edge, immature software

Course Design
¢  Course website: https://www.student.cs.uwaterloo.ca/~cs489/���

Redirects to: http://lintool.github.io/bigdata-2016w/

¢  Piazza: https://piazza.com/uwaterloo.ca/winter2016/cs489698/

¢  Bespin: http://bespin.io/

¢  This course focuses on algorithm design and “thinking at scale”
l  Not the “mechanics” (API, command-line invocations, et.)

l  You’re expected to pick up MapReduce/Spark with minimal help

¢  Components of the final grade:

l  Eight individual assignments: mix of MapReduce (Java) and Spark (Scala)
l  Final exam

l  CS 698: additional final project

Assignment Mechanics
¢  We’ll be using private GitHub repos for assignments

l  Complete your assignments, push to GitHub
l  We’ll pull your repos at the deadline and grade

¢  Note late policy (details on course homepage)
l  Late by up to 24 hours: 25% reduction in grade

l  Late 24-48 hours: 50% reduction in grade

l  Late by more the 48 hours: not accepted

l  By assumption, we’ll pull and grade at deadline – if you want us to hold
off, you must let us know

Important: Register for (free) GitHub educational account!
https://education.github.com/discount_requests/new

Course Materials

One (required) textbook +
Two (optional but recommended) books +
Additional readings from research papers as appropriate

(optional but recommended)

Note: 4th Edition

MapReduce/Spark Environments
¢  Linux Student CS Environment

l  Everything is set up for you, just follow instructions
l  We’ll make sure everything works

¢  Local installations
l  Install all software components on your own machine

l  Requires at least 4GB RAM + 10s GB disk for a good experience

l  Works fine on Mac and Linux, YMMV on Windows

l  We’ll provide basic instructions, but not technical support

¢  Altiscale: Hadoop-as-a-Service

l  You’ll be provided an account later

See “Software” page in course homepage for details:
http://lintool.github.io/bigdata-2016w/software.html

Be Prepared…

Source: Wikipedia (The Scream)

“Hadoop Zen”
¢  Parts of the ecosystem are still immature

l  We’ve come a long way since 2007, but still far to go…
l  Bugs, undocumented “features”, inexplicable behavior, etc.

l  Different versions = major pain

¢  Don’t get frustrated (take a deep breath)…
l  Those W$*#T@F! moments

¢  Be patient…
l  We will inevitably encounter “situations” along the way

¢  Be flexible…
l  We will have to be creative in workarounds

¢  Be constructive…
l  Tell me how I can make everyone’s experience better

Source: Wikipedia (Japanese rock garden)

“Hadoop Zen”

Source: Wikipedia (Japanese rock garden)

Questions?

To Do:
1. Bookmark course homepage
2. Get on Piazza
3. Register for GitHub educational account

