Big Data Infrastructure

Session | |: Beyond MapReduce — Stream Processing

Jimmy Lin
University of Maryland
Monday, April 20, 2015

‘@ ®®©| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Today’s Agenda

O Basics of stream processing
O Sampling and hashing
O Architectures for stream processing

O Twitter case study

What is a data stream?

O Sequence of items:

e Structured (e.g., tuples)

® Ordered (implicitly or timestamped)
e Arriving continuously at high volumes
e Not possible to store entirely
o

Sometimes not possible to even examine all items

What to do with data streams?

Network traffic monitoring

Datacenter telemetry monitoring

Sensor networks monitoring

Stock market analysis

O

O

O

O Credit card fraud detection
O

O Online mining of click streams
O

Monitoring social media streams

What’s the scale? Packet data streams

O Single 2 Gb/sec link; say avg. packet size is 50 bytes

® Number of packets/sec = 5 million
e Time per packet = 0.2 microseconds

O If we only capture header information per packet:
source/destination IP, time, no. of bytes, etc. — at least |10 bytes

e 50 MB per second
e 4+ TB per day
e Per link!

What if you wanted to do deep-packet inspection?

Source: Minos Garofalakis, Berkeley CS 286

DBMS

What are the top (most frequent) 1000 (source, dest)

Off-line analysis — Data pairs seen by R1 over the last month?
access is slow, expensive

Network Operations
Center (NOC)

How many distinct (source, dest) pairs have
been seen by both R1 and R2 but not R3?

Set-Expression Query

SELECT COUNT (R1.source, R1.dest)

/ FROM R1, R2

Enterprise WHERE R1.source = R2.source

Networks
DSL/Cable Feil

Networks

Source: Minos Garofalakis, Berkeley CS 286

SQL Join Query

Common Architecture

queries
DSMS data feeds
::}} Ditf__:;ll/éy

DBMS
data streams .
queries

O Data stream management system (DSMS) at observation points

® Voluminous streams-in, reduced streams-out

O Database management system (DBMY)

e Outputs of DSMS can be treated as data feeds to databases

Source: Peter Bonz

DBMS vs. DSMS

DBMS

Model: persistent relations
Relation: tuple set/bag
Data update: modifications
Query: transient

Query answer: exact
Query evaluation: arbitrary

Query plan: fixed

Source: Peter Bonz

DSMS

Model: (mostly) transient relations
Relation: tuple sequence

Data update: appends

Query: persistent

Query answer: approximate
Query evaluation: one pass

Query plan: adaptive

What makes it hard?

O Intrinsic challenges:

e Volume

e Velocity

e Limited storage

e Strict latency requirements

e Out-of-order delivery
O System challenges:

® Load balancing

e Unreliable message delivery
e Fault-tolerance
o

Consistency semantics (lossy, exactly once, at least once, etc.)

What exactly do you do?

O “Standard” relational operations:

e Select

® Project

e Transform (i.e., apply custom UDF)
e Group by

® Join

e Aggregations

O What else do you need to make this “work’?

Issues of Semantics

O Group by... aggregate
® When do you stop grouping and start aggregating?
O Joining a stream and a static source

e Simple lookup

O Joining two streams

e How long do you wait for the join key in the other stream?

O Joining two streams, group by and aggregation

e When do you stop joining!?

What’s the solution?

Windows

O Mechanism for extracting finite relations from an infinite stream

O Windows restrict processing scope:

Windows based on ordering attributes (e.g., time)

S
e Windows based on item (record) counts

e Windows based on explicit markers (e.g., punctuations)
L

Variants (e.g., some semantic partitioning constraint)

Windows on Ordering Attributes

O Assumes the existence of an attribute that defines the order of
stream elements (e.g., time)

O Let T be the window size in units of the ordering attribute

ti’_ tl= T
t, t, t; tumbling window
>

t'+1 - t’= T

I

Source: Peter Bonz

Windows on Counts

O Window of size N elements (sliding, tumbling) over the stream

O Challenges:

® Problematic with non-unique timestamps: non-deterministic output
e Unpredictable window size (and storage requirements)

Source: Peter Bonz

Windows from “Punctuations”

O Application-inserted “end-of-processing”
e Example: stream of actions... “end of user session”
O Properties

e Advantage: application-controlled semantics

e Disadvantage: unpredictable window size (too large or too small)

\

W

“Hello World” Stream Processing

O Problem:
e Count the frequency of items in the stream
o Why?

e Take some action when frequency exceeds a threshold

e Data mining: raw counts — co-occurring counts — association rules

The Raw Stream...

OO000O0OEO0OEOO0O0O0O0OO0O0OEEEO0OEOO0O0O00O00048
EENONO0ONNOOOOOOO0ONEEOONNOOOOCOC S -
ONNCOONNO0OOOOOOOO0O0OEEENO0OOO0O0O0O00O =

ClELNONONRONOOOO0000NNCOENONOOOOC N
S| OEEO0ONONONOOO00OO00OEERONONOOO0O0O0 -
ONNEOONONONOOO0OC0OCOSEENEOEO000mCO.
VOoOOOOEOEOOOOOOOOOEEEROEOOOOOOmOO
OROOONO0OONOOOOOOCOCOSEEENO0O0ONOOOCOECO -
ONCONO0ONONNOOOOOO0OSEEEOENOOOCOEC -
EEECONO0NOOOOOO0SEENOMENOOOCO SN =

v

stream

Source: Peter Bonz

window 1

OOO0O0O8OO O
_§) JEIE) pEEmy gy
ONECOCONEOCOO
EONCONCENC] N
Wi} JEIN)ONE))
[I 7 7 I 1 I] I
OdodocOeEOmEOnO
O OO0 8OO0 e
[I 7 1] I
EECIECECC

Source: Peter Bonz

Divide Into Windows...

window 2

OO0O0O00O000 M.
OO0O0O00O000 M.
OO0O0O00O000 M.
OO0O0O00O000 M.
OO0O0O00O000 M.
OO0O0O000O0 NN
OO0O0O000O0 NN
OO0O0O0O00O0 NN
OO0OO0O0O0O00 NN
OO0OO0O0O00 NN

window 3

EOOROOOOONO
EOONROOOON
EEOOOOOOO0OO
ONBECOROOOON
EOROROOOON
EONCOROOOC N
EONCOOOOOC0 M
EOOOROOOC0 M
ONCOEBOCOOC N
EOCOENOCOOC .

First Window

empty counts

Source: Peter Bonz

oo00o00Omo0OmO
(1] uim] Jeiw)) |
m] | |uim] | IsiEis
sEC0e0edoeecoe
m] | sim] =) (=) |
OeefdoeoecOn
O0000OmOmO0O
Oeo0o0Omo0o0o.
m] |u] ujm) =)) |
ER0e0e00On®

first window

frequency counts

Second Window

frequency counts

Source: Peter Bonz

OO0O0O00000N N
OO0O0O00000N N
OO0O0O00000N N
OO0 0800m .
OO0O000O000N N
OO0O00000NE N
OO0O00000NE N
OO0O00O000N NN
OO0O00O000N NN
OO0 00N NN

second window

frequency counts

Window Counting

O What’s the issue?

O What’s the solution?

Lessons learned?
Solutions are approximate (or lossy)

General Strategies

O Sampling

O Hashing

Reservoir Sampling

O Task: select s elements from a stream of size N with uniform
probability
® N can be very very large

e We might not even know what N is! (infinite stream)

O Solution: Reservoir sampling

e Store first s elements

e For the k-th element thereafter, keep with probability s/k
(randomly discard an existing element)

O Example: s =10

e Keep first 10 elements
e | Ith element: keep with 10/1 1
e |2th element: keep with 10/12

Reservoir Sampling: How does it work?

O Example:s =10

o Keep first 10 elements
e | Ith element: keep with 10/1 1

If we decide to keep it: sampled uniformly by definition
probability existing item discarded: 10/ x /10 = 1/11
probability existing item survives: 10/ |

O General case: at the (k + [)th element

® Probability of selecting each item up until now is s/k

e Probability existing element is replaced: s/(k+1) x /s = 1/(k + I)
e Probability existing element is not replaced: k/(k + 1)
o

Probability each element survives to (k + [)th round:
(sik) x ki(k + 1) =sl(k + 1)

Hashing for Three Common Tasks

O Cardinality estimation HashSet HLL counter

® What’s the cardinality of set $?
e How many unique visitors to this page!

O Set membership HashSet Bloom Filter

e Is x a member of set §?

e Has this user seen this ad before!?

o Frequency estimation HashMap CMS

e How many times have we observed x?

® How many queries has this user issued?

HyperLogLog Counter

O Task: cardinality estimation of set
e size() — number of unique elements in the set
O Observation: hash each item and examine the hash code

e On expectation, 1/2 of the hash codes will start with |

e On expectation, 1/4 of the hash codes will start with Ol

e On expectation, |/8 of the hash codes will start with 001

e On expectation, |/16 of the hash codes will start with 000
S

How do we take advantage of this observation!?

Bloom Filters

O Task: keep track of set membership

® put(x) — insert x into the set
e contains(x) — yes if x is a member of the set

o Components

® m-bit bit vector

® k hash functions: h, ... h,

Bloom Filters: put

put (x h,(x) =2
h,(x) =5
hy(x) = 1

Bloom Filters: put

put X

Bloom Filters: contains

contains [x h (x) =2
h,(x) =5
hy(x) = 1

Bloom Filters: contains

contains

X

h (x) =2
h,(x) =5
hy(x) = 11

h(x).
[hy(x)]

= YES

h3(x)]

Bloom Filters: contains

contains y h,(y)
h,(y)

h;(y)

2
6
9

Bloom Filters: contains

contains

4

hily) =2
hy(y) = 6
hs(y) =9
AND <
0 | 0 0 0 0

What'’s going on here!

> > >

h(y)]
hy(y).

» = NO

hs(y).

Bloom Filters

O Error properties: contains(x)

e False positives possible
e No false negatives

O Usage:

e Constraints: capacity, error probability

e Tunable parameters: size of bit vector m, number of hash functions k

Count-Min Sketches

O Task: frequency estimation

® put(x) — increment count of x by one
e get(x) — returns the frequency of x

o Components

® k hash functions: h, ... h,

e m by k array of counters

Count-Min Sketches: put

put [x h;(x) =2
h,(x) =5
hy(x) = 1
h,(x) = 4

Count-Min Sketches: put

put X
0 I 0 0 0 0 0 0
0 0 0 0 I 0 0 0

Count-Min Sketches: put

put [x h;(x) =2
h,(x) =5
hy(x) = 1
h,(x) = 4

Count-Min Sketches: put

put X

Count-Min Sketches: put

put |y h,(y) =6
h,(y) =5
hs(y) = 12
h,(y) = 2

Count-Min Sketches: put

put y

Count-Min Sketches: get

cet (0 i) =2
h,(x) =5
hy(x) = 1
h,(x) = 4

Count-Min Sketches: get

cet (0 i) =2
h,(x) =5
hy(x) = 1
h,(x) = 4

>

Count-Min Sketches: get

get hi(y) = 6
h,(y) =5
hs(y) = 12
h,(y) = 2

Count-Min Sketches: get

get hi(y) = 6
h,(y) =5
hs(y) = 12
h,(y) = 2

Count-Min Sketches

O Error properties:

e Reasonable estimation of heavy-hitters

e Frequent over-estimation of tail

O Usage:
e Constraints: number of distinct events, distribution of events, error
bounds

e Tunable parameters: number of counters m, number of hash functions k,
size of counters

Three Common Tasks

O Cardinality estimation HashSet HLL counter

® What’s the cardinality of set $?
e How many unique visitors to this page!

O Set membership HashSet Bloom Filter

e Is x a member of set §?

e Has this user seen this ad before!?

o Frequency estimation HashMap CMS

e How many times have we observed x?

® How many queries has this user issued?

Source: Wikipedia {River)

Typical Architecture

W
W

Input data /|:>|:: Output to

streams <’ applications

W e »
- A

- o PLlda

. o s k '
H T e . il
H R L
_- et e o
----- s

:

.

Operator boxes Continuous & ad hoc
querics

@@
W

Source: Carney et al. (VLDB 2002)

Typical Architecture

inputs l 4 outputs
Storage
Manager [Router
Q—IlI[.-ITP E
Q,—{11TT.. I+ i
2 : K
- Scheduler :
| Qe
| | Buffer manager

Q—{[Il..TPh

]

Catalogs

Source: Carney et al. (VLDB 2002)

Load

Shedder)

Box Processors

QoS
Monitor

Typical Distributed Architecture

mutable state

primaries

input

replicas

Source: Zaharia et al. (SOSP 2013)

What makes it hard?

O Intrinsic challenges:

e Volume

e Velocity

e Limited storage

e Strict latency requirements

e Out-of-order delivery
O System challenges:

® Load balancing

e Unreliable message delivery
e Fault-tolerance
o

Consistency semantics (lossy, exactly once, at least once, etc.)

Example Operator Graph

Source

Pass trades and Compute moving average Compute VWAP
compute volume*price (for each symbol)

Functor

Join

Functor

Read input
from WFO

Pass quotes

Compute bargain index Drop zero indexes

Source: Gedik et al. (SIGMOD 2008)

Write results
to DB2 DSE

Storm

O Open-source real-time distributed stream processing system

e Started at BackType
e BackType acquired by Twitter in 201 |

e Now an Apache project

O Storm aspires to be the Hadoop of real-time processing!

Storm Topologies

O Storm topologies = “job”

e Once started, runs continuously until killed

O A Storm topology is a computation graph

e Graph contains nodes and edges
e Nodes hold processing logic (i.e., transformation over its input)

® Directed edges indicate communication between nodes

Streams, Spouts, and Bolts

e Streams

— The basic collection abstraction: an
unbounded sequence of tuples

— Streams are transformed by the stream

processing elements of a topology

* Spouts
— Stream generators

— May propagate a single stream to
multiple consumers

* Bolts stream
— Subscribe to streams
— Streams transformers

— Process incoming streams and produce
new ones

Storm Architecture

spout bolt bolt
Storm job topology

distributed
coordination

) Storm cluster
nimbus
master node

Stream Groupings

O Bolts are executed by multiple workers in parallel

O When a bolt emits a tuple, where should it go!?

O Stream groupings:

e Shuffle grouping: round-robin spout spout

e Field grouping: based on data value

bolt

Storm: Example

// instantiate a new topology
TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks
builder.setSpout("“spout”, new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks
builder.setBolt("split", new SplitSentence(), 8)
.shuffleGrouping(“spout”); // shuffle grouping for the ouput

// word counter with twelve tasks
builder.setBolt("count”, new WordCount(), 12)
.fieldsGrouping("split", new Fields("word")); // field grouping

// new configuration
Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks
// will be allocated round-robin to the three workers, each task

// running as a separate thread

conf.setNumWorkers(3);

// submit the topology to the cluster
StormSubmitter.submitTopology("word-count”, conf, builder.createTopology());

Spark Streaming

Discretized stream processing: run a streaming computation as a
series of very small, deterministic batch jobs

mutable state batch operation

t=1: input
immutable -/> %\‘_ immutable

primaries

dataset dataset

D-Stream 1 D-Stream 2

input

replicas

Continuous Operator Model Discretized Streams

Source: Zaharia et al. (SOSP 2013)

Spark and Spark Streaming

Spark Streaming

o streaming
\ divide data :
\> stream into computations
— 1/ batch expressed using
live input alches DStreams
data stream
batches generate
of input
data as RDD
RDDs transfor-
@ mations
Spark S
< [Task Scheduler]< 7 | | Spark batch jobs
[M M] to execute RDD
batches of emory vianager transformations
results

Source: Zaharia et al. (SOSP 2013)

Today’s Agenda

O Basics of stream processing
O Sampling and hashing
O Architectures for stream processing

O Twitter case study

