Big Data Infrastructure

Session II: Beyond MapReduce — Stream Processing

Jimmy Lin University of Maryland Monday, April 20, 2015

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Today's Agenda

- Basics of stream processing
- Sampling and hashing
- Architectures for stream processing
- Twitter case study

What is a data stream?

• Sequence of items:

- Structured (e.g., tuples)
- Ordered (implicitly or timestamped)
- Arriving continuously at high volumes
- Not possible to store entirely
- Sometimes not possible to even examine all items

What to do with data streams?

- Network traffic monitoring
- Datacenter telemetry monitoring
- Sensor networks monitoring
- Credit card fraud detection
- Stock market analysis
- Online mining of click streams
- Monitoring social media streams

What's the scale? Packet data streams

- Single 2 Gb/sec link; say avg. packet size is 50 bytes
 - Number of packets/sec = 5 million
 - Time per packet = 0.2 microseconds
- If we only capture header information per packet: source/destination IP, time, no. of bytes, etc. – at least 10 bytes
 - 50 MB per second
 - 4+ TB per day
 - Per link!

What if you wanted to do deep-packet inspection?

Common Architecture

• Data stream management system (DSMS) at observation points

- Voluminous streams-in, reduced streams-out
- Database management system (DBMS)
 - Outputs of DSMS can be treated as data feeds to databases

DBMS vs. DSMS

DBMS

- Model: persistent relations
- Relation: tuple set/bag
- Data update: modifications
- Query: transient
- Query answer: exact
- Query evaluation: arbitrary
- Query plan: fixed

DSMS

- Model: (mostly) transient relations
- Relation: tuple sequence
- Data update: appends
- Query: persistent
- Query answer: approximate
- Query evaluation: one pass
- Query plan: adaptive

What makes it hard?

- Intrinsic challenges:
 - Volume
 - Velocity
 - Limited storage
 - Strict latency requirements
 - Out-of-order delivery
- System challenges:
 - Load balancing
 - Unreliable message delivery
 - Fault-tolerance
 - Consistency semantics (lossy, exactly once, at least once, etc.)

What exactly do you do?

- "Standard" relational operations:
 - Select
 - Project
 - Transform (i.e., apply custom UDF)
 - Group by
 - Join
 - Aggregations
- What else do you need to make this "work"?

Issues of Semantics

- Group by... aggregate
 - When do you stop grouping and start aggregating?
- Joining a stream and a static source
 - Simple lookup
- Joining two streams
 - How long do you wait for the join key in the other stream?
- Joining two streams, group by and aggregation
 - When do you stop joining?

What's the solution?

Windows

- Mechanism for extracting finite relations from an infinite stream
- Windows restrict processing scope:
 - Windows based on ordering attributes (e.g., time)
 - Windows based on item (record) counts
 - Windows based on explicit markers (e.g., punctuations)
 - Variants (e.g., some semantic partitioning constraint)

Windows on Ordering Attributes

- Assumes the existence of an attribute that defines the order of stream elements (e.g., time)
- Let T be the window size in units of the ordering attribute

Windows on Counts

• Window of size N elements (sliding, tumbling) over the stream

• Challenges:

- Problematic with non-unique timestamps: non-deterministic output
- Unpredictable window size (and storage requirements)

Windows from "Punctuations"

- Application-inserted "end-of-processing"
 - Example: stream of actions... "end of user session"
- Properties
 - Advantage: application-controlled semantics
 - Disadvantage: unpredictable window size (too large or too small)

Common Techniques

TIM

"Hello World" Stream Processing

• Problem:

- Count the frequency of items in the stream
- Why?
 - Take some action when frequency exceeds a threshold
 - Data mining: raw counts \rightarrow co-occurring counts \rightarrow association rules

The Raw Stream...

Divide Into Windows...

First Window

empty counts

Second Window

Window Counting

- What's the issue?
- What's the solution?

Lessons learned? Solutions are approximate (or lossy)

General Strategies

- Sampling
- Hashing

Reservoir Sampling

- Task: select s elements from a stream of size N with uniform probability
 - N can be very very large
 - We might not even know what N is! (infinite stream)
- Solution: Reservoir sampling
 - Store first s elements
 - For the k-th element thereafter, keep with probability s/k (randomly discard an existing element)
- Example: s = 10
 - Keep first 10 elements
 - 11th element: keep with 10/11
 - 12th element: keep with 10/12

• ...

Reservoir Sampling: How does it work?

• Example: s = 10

- Keep first 10 elements
- 11th element: keep with 10/11

If we decide to keep it: sampled uniformly by definition probability existing item discarded: $10/11 \times 1/10 = 1/11$ probability existing item survives: 10/11

- General case: at the (k + 1)th element
 - Probability of selecting each item up until now is s/k
 - Probability existing element is replaced: $s/(k+1) \times 1/s = 1/(k+1)$
 - Probability existing element is not replaced: k/(k + 1)
 - Probability each element survives to (k + 1)th round: (s/k) × k/(k + 1) = s/(k + 1)

Hashing for Three Common Tasks

0	Cardinality estimation	HashSet	HLL counter
	What's the cardinality of set S?How many unique visitors to this page?		
0	Set membership	HashSet	Bloom Filter
	Is x a member of set S?Has this user seen this ad before?		
0	Frequency estimation	HashMap	CMS
	 How many times have we observed x? How many queries has this user issued? 		

HyperLogLog Counter

- Task: cardinality estimation of set
 - size() \rightarrow number of unique elements in the set
- Observation: hash each item and examine the hash code
 - On expectation, 1/2 of the hash codes will start with 1
 - On expectation, 1/4 of the hash codes will start with 01
 - On expectation, I/8 of the hash codes will start with 001
 - On expectation, 1/16 of the hash codes will start with 0001

• ...

How do we take advantage of this observation?

Bloom Filters

- Task: keep track of set membership
 - $put(x) \rightarrow insert x into the set$
 - contains(x) \rightarrow yes if x is a member of the set
- Components
 - *m*-bit bit vector

• k hash functions: $h_1 \dots h_k$

Bloom Filters: put

Bloom Filters: put

What's going on here?

Bloom Filters

- Error properties: contains(x)
 - False positives possible
 - No false negatives
- Usage:
 - Constraints: capacity, error probability
 - Tunable parameters: size of bit vector *m*, number of hash functions *k*

Count-Min Sketches

- Task: frequency estimation
 - $put(x) \rightarrow increment count of x by one$
 - $get(x) \rightarrow$ returns the frequency of x
- Components
 - k hash functions: $h_1 \dots h_k$
 - *m* by *k* array of counters

0	I	0	0	0	0	0	0	0	0	0	0
0	0	0	0	I	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	I	0
0	0	0	I	0	0	0	0	0	0	0	0

0	2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	2	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	0
0	0	0	2	0	0	0	0	0	0	0	0

0	2	0	0	0	I	0	0	0	0	0	0
0	0	0	0	3	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	2	Ι
0	I	0	2	0	0	0	0	0	0	0	0

Count-Min Sketches

- Error properties:
 - Reasonable estimation of heavy-hitters
 - Frequent over-estimation of tail
- Usage:
 - Constraints: number of distinct events, distribution of events, error bounds
 - Tunable parameters: number of counters *m*, number of hash functions *k*, size of counters

Three Common Tasks

 Cardinality estimation 	HashSet	HLL counter
What's the cardinality of set S?How many unique visitors to this page	?	
Set membership	HashSet	Bloom Filter
 Is x a member of set S? Has this user seen this ad before? 		
 Frequency estimation 	HashMap	CMS
 How many times have we observed x? How many queries has this user issued 	?	

Stream Processing Architectures

Source: Wikipedia (River)

Typical Architecture

Typical Architecture

Source: Carney et al. (VLDB 2002)

Typical Distributed Architecture

Source: Zaharia et al. (SOSP 2013)

What makes it hard?

- Intrinsic challenges:
 - Volume
 - Velocity
 - Limited storage
 - Strict latency requirements
 - Out-of-order delivery
- System challenges:
 - Load balancing
 - Unreliable message delivery
 - Fault-tolerance
 - Consistency semantics (lossy, exactly once, at least once, etc.)

Example Operator Graph

Storm

• Open-source real-time distributed stream processing system

- Started at BackType
- BackType acquired by Twitter in 2011
- Now an Apache project

• Storm aspires to be the Hadoop of real-time processing!

Storm Topologies

- Storm topologies = "job"
 - Once started, runs continuously until killed
- A Storm topology is a computation graph
 - Graph contains nodes and edges
 - Nodes hold processing logic (i.e., transformation over its input)
 - Directed edges indicate communication between nodes

Streams, Spouts, and Bolts

Streams

- The basic collection abstraction: an unbounded sequence of tuples
- Streams are transformed by the processing elements of a topology

Spouts

- Stream generators
- May propagate a single stream to multiple consumers

Bolts

- Subscribe to streams
- Streams transformers
- Process incoming streams and produce new ones

Storm Architecture

Stream Groupings

- Bolts are executed by multiple workers in parallel
- When a bolt emits a tuple, where should it go?
- Stream groupings:
 - Shuffle grouping: round-robin
 - Field grouping: based on data value

Storm: Example

```
// instantiate a new topology
```

```
TopologyBuilder builder = new TopologyBuilder();
```

```
// set up a new spout with five tasks
builder.setSpout("spout", new RandomSentenceSpout(), 5);
```

```
// the sentence splitter bolt with eight tasks
builder.setBolt("split", new SplitSentence(), 8)
    .shuffleGrouping("spout"); // shuffle grouping for the ouput
```

```
// word counter with twelve tasks
builder.setBolt("count", new WordCount(), 12)
    .fieldsGrouping("split", new Fields("word")); // field grouping
```

// new configuration
Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks
// will be allocated round-robin to the three workers, each task
// running as a separate thread
conf.setNumWorkers(3);

// submit the topology to the cluster
StormSubmitter.submitTopology("word-count", conf, builder.createTopology());

Spark Streaming

Discretized stream processing: run a streaming computation as a series of very small, deterministic batch jobs

Spark and Spark Streaming

Today's Agenda

- Basics of stream processing
- Sampling and hashing
- Architectures for stream processing
- Twitter case study

Questions?

Source: Wikipedia (Japanese rock garden)