Big Data Infrastructure

Session 11: Beyond MapReduce — Stream Processing

Jimmy Lin
University of Maryland
Monday, April 20, 2015

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details
Today’s Agenda

- Basics of stream processing
- Sampling and hashing
- Architectures for stream processing
- Twitter case study
What is a data stream?

- Sequence of items:
 - Structured (e.g., tuples)
 - Ordered (implicitly or timestamped)
 - Arriving continuously at high volumes
 - Not possible to store entirely
 - Sometimes not possible to even examine all items
What to do with data streams?

- Network traffic monitoring
- Datacenter telemetry monitoring
- Sensor networks monitoring
- Credit card fraud detection
- Stock market analysis
- Online mining of click streams
- Monitoring social media streams
What’s the scale? Packet data streams

- Single 2 Gb/sec link; say avg. packet size is 50 bytes
 - Number of packets/sec = 5 million
 - Time per packet = 0.2 microseconds

- If we only capture header information per packet:
 - source/destination IP, time, no. of bytes, etc. – at least 10 bytes
 - 50 MB per second
 - 4+ TB per day
 - **Per link!**

What if you wanted to do deep-packet inspection?

Source: Minos Garofalakis, Berkeley CS 286
What are the top (most frequent) 1000 (source, dest) pairs seen by R1 over the last month?

SELECT COUNT (R1.source, R1.dest)
FROM R1, R2
WHERE R1.source = R2.source

How many distinct (source, dest) pairs have been seen by both R1 and R2 but not R3?

Set-Expression Query

SELECT COUNT (R1.source, R1.dest)
FROM R1, R2
WHERE R1.source = R2.source

Off-line analysis – Data access is slow, expensive

Source: Minos Garofalakis, Berkeley CS 286
Common Architecture

- **Data stream management system (DSMS) at observation points**
 - Voluminous streams-in, reduced streams-out

- **Database management system (DBMS)**
 - Outputs of DSMS can be treated as data feeds to databases

Source: Peter Bonz
DBMS vs. DSMS

<table>
<thead>
<tr>
<th>DBMS</th>
<th>DSMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model: persistent relations</td>
<td>Model: (mostly) transient relations</td>
</tr>
<tr>
<td>Relation: tuple set/bag</td>
<td>Relation: tuple sequence</td>
</tr>
<tr>
<td>Data update: modifications</td>
<td>Data update: appends</td>
</tr>
<tr>
<td>Query: transient</td>
<td>Query: persistent</td>
</tr>
<tr>
<td>Query answer: exact</td>
<td>Query answer: approximate</td>
</tr>
<tr>
<td>Query evaluation: arbitrary</td>
<td>Query evaluation: one pass</td>
</tr>
<tr>
<td>Query plan: fixed</td>
<td>Query plan: adaptive</td>
</tr>
</tbody>
</table>

Source: Peter Bonz
What makes it hard?

- **Intrinsic challenges:**
 - Volume
 - Velocity
 - Limited storage
 - Strict latency requirements
 - Out-of-order delivery

- **System challenges:**
 - Load balancing
 - Unreliable message delivery
 - Fault-tolerance
 - Consistency semantics (lossy, exactly once, at least once, etc.)
What exactly do you do?

- “Standard” relational operations:
 - Select
 - Project
 - Transform (i.e., apply custom UDF)
 - Group by
 - Join
 - Aggregations

- What else do you need to make this “work”?
Issues of Semantics

- Group by… aggregate
 - When do you stop grouping and start aggregating?

- Joining a stream and a static source
 - Simple lookup

- Joining two streams
 - How long do you wait for the join key in the other stream?

- Joining two streams, group by and aggregation
 - When do you stop joining?

What’s the solution?
Windows

- Mechanism for extracting finite relations from an infinite stream

- Windows restrict processing scope:
 - Windows based on ordering attributes (e.g., time)
 - Windows based on item (record) counts
 - Windows based on explicit markers (e.g., punctuations)
 - Variants (e.g., some semantic partitioning constraint)
Windows on Ordering Attributes

- Assumes the existence of an attribute that defines the order of stream elements (e.g., time)
- Let T be the window size in units of the ordering attribute

$$t_{i+1} - t_i = T$$

Source: Peter Bonz
Windows on Counts

- Window of size N elements (sliding, tumbling) over the stream

- Challenges:
 - Problematic with non-unique timestamps: non-deterministic output
 - Unpredictable window size (and storage requirements)

Source: Peter Bonz
Windows from “Punctuations”

- Application-inserted “end-of-processing”
 - Example: stream of actions… “end of user session”

- Properties
 - Advantage: application-controlled semantics
 - Disadvantage: unpredictable window size (too large or too small)
Common Techniques

Source: Wikipedia (Forge)
“Hello World” Stream Processing

- **Problem:**
 - Count the frequency of items in the stream

- **Why?**
 - Take some action when frequency exceeds a threshold
 - Data mining: raw counts \rightarrow co-occurring counts \rightarrow association rules
The Raw Stream...
Divide Into Windows...
First Window

empty counts

first window

frequency counts

Source: Peter Bonz
Window Counting

- What’s the issue?
- What’s the solution?

Lessons learned?
Solutions are approximate (or lossy)
General Strategies

- Sampling
- Hashing
Reservoir Sampling

- Task: select \(s \) elements from a stream of size \(N \) with uniform probability
 - \(N \) can be very very large
 - We might not even know what \(N \) is! (infinite stream)

- Solution: Reservoir sampling
 - Store first \(s \) elements
 - For the \(k \)-th element thereafter, keep with probability \(s/k \)
 (randomly discard an existing element)

- Example: \(s = 10 \)
 - Keep first 10 elements
 - 11th element: keep with 10/11
 - 12th element: keep with 10/12
 - …
Reservoir Sampling: How does it work?

- Example: \(s = 10 \)
 - Keep first 10 elements
 - 11th element: keep with 10/11

 If we decide to keep it: sampled uniformly by definition
 probability existing item discarded: \(\frac{10}{11} \times \frac{1}{10} = \frac{1}{11} \)
 probability existing item survives: \(\frac{10}{11} \)

- General case: at the \((k + 1)\)th element
 - Probability of selecting each item up until now is \(s/k \)
 - Probability existing element is replaced: \(\frac{s}{k+1} \times \frac{1}{s} = \frac{1}{k + 1} \)
 - Probability existing element is not replaced: \(\frac{k}{k + 1} \)
 - Probability each element survives to \((k + 1)\)th round:
 \[\left(\frac{s}{k} \right) \times \frac{k}{k + 1} = \frac{s}{k + 1} \]
Hashing for Three Common Tasks

- **Cardinality estimation**
 - What’s the cardinality of set S?
 - How many unique visitors to this page?

- **Set membership**
 - Is x a member of set S?
 - Has this user seen this ad before?

- **Frequency estimation**
 - How many times have we observed x?
 - How many queries has this user issued?
HyperLogLog Counter

- Task: cardinality estimation of set
 - `size()` → number of unique elements in the set

- Observation: hash each item and examine the hash code
 - On expectation, 1/2 of the hash codes will start with 1
 - On expectation, 1/4 of the hash codes will start with 01
 - On expectation, 1/8 of the hash codes will start with 001
 - On expectation, 1/16 of the hash codes will start with 0001
 - …

How do we take advantage of this observation?
Bloom Filters

- Task: keep track of set membership
 - put(x) → insert x into the set
 - contains(x) → yes if x is a member of the set

- Components
 - m-bit bit vector
 - k hash functions: h_1, \ldots, h_k
Bloom Filters: put

\[h_1(x) = 2 \]
\[h_2(x) = 5 \]
\[h_3(x) = 11 \]
Bloom Filters: put

put x

0 1 0 0 1 0 0 0 0 0 0 1 0
Bloom Filters: contains

contains x

$h_1(x) = 2$
$h_2(x) = 5$
$h_3(x) = 11$
Bloom Filters: contains

contains x

$h_1(x) = 2$
$h_2(x) = 5$
$h_3(x) = 11$

AND \{ A[h_1(x)] \}
AND \{ A[h_2(x)] \}
AND \{ A[h_3(x)] \} = \text{YES}
Bloom Filters: contains

contains \(y \)

\[h_1(y) = 2 \]
\[h_2(y) = 6 \]
\[h_3(y) = 9 \]
Bloom Filters: contains

contains y

$h_1(y) = 2$
$h_2(y) = 6$
$h_3(y) = 9$

AND

$\{ A[h_1(y)] \quad A[h_2(y)] \quad A[h_3(y)] \} = \text{NO}$

What’s going on here?
Bloom Filters

- Error properties: \text{contains}(x)
 - False positives possible
 - No false negatives

- Usage:
 - Constraints: capacity, error probability
 - Tunable parameters: size of bit vector \(m \), number of hash functions \(k \)
Count-Min Sketches

- **Task**: frequency estimation
 - `put(x)` → increment count of `x` by one
 - `get(x)` → returns the frequency of `x`

- **Components**
 - `k` hash functions: `h_1` … `h_k`
 - `m` by `k` array of counters
Count-Min Sketches: put

\[h_1(x) = 2 \]
\[h_2(x) = 5 \]
\[h_3(x) = 11 \]
\[h_4(x) = 4 \]
Count-Min Sketches: put

put x
Count-Min Sketches: put

put x

$h_1(x) = 2$
$h_2(x) = 5$
$h_3(x) = 11$
$h_4(x) = 4$
Count-Min Sketches: put

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

put x
Count-Min Sketches: put

\[h_1(y) = 6 \]
\[h_2(y) = 5 \]
\[h_3(y) = 12 \]
\[h_4(y) = 2 \]
Count-Min Sketches: put

put y

```
0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
```
Count-Min Sketches: get

get \(x \)

\[h_1(x) = 2 \]
\[h_2(x) = 5 \]
\[h_3(x) = 11 \]
\[h_4(x) = 4 \]
Count-Min Sketches: get

\[h_1(x) = 2 \]
\[h_2(x) = 5 \]
\[h_3(x) = 11 \]
\[h_4(x) = 4 \]

\[\min \{ A[h_1(x)], A[h_2(x)], A[h_3(x)], A[h_4(x)] \} = 2 \]
Count-Min Sketches: get

get y

$h_1(y) = 6$
$h_2(y) = 5$
$h_3(y) = 12$
$h_4(y) = 2$
Count-Min Sketches: get

\[
\text{get } y \\
\begin{align*}
h_1(y) &= 6 \\
h_2(y) &= 5 \\
h_3(y) &= 12 \\
h_4(y) &= 2
\end{align*}
\]

\[
\text{MIN } \{ A[h_1(y)] , A[h_2(y)] , A[h_3(y)] , A[h_4(y)] \} = 1
\]
Count-Min Sketches

- Error properties:
 - Reasonable estimation of heavy-hitters
 - Frequent over-estimation of tail

- Usage:
 - Constraints: number of distinct events, distribution of events, error bounds
 - Tunable parameters: number of counters m, number of hash functions k, size of counters
Three Common Tasks

- **Cardinality estimation**
 - What’s the cardinality of set S?
 - How many unique visitors to this page?

- **Set membership**
 - Is x a member of set S?
 - Has this user seen this ad before?

- **Frequency estimation**
 - How many times have we observed x?
 - How many queries has this user issued?

Tools:
- **HashSet**
- **HLL counter**
- **Bloom Filter**
- **HashMap**
- **CMS**
Source: Wikipedia (River)

Stream Processing Architectures
Typical Architecture

Source: Carney et al. (VLDB 2002)
Typical Architecture

Source: Carney et al. (VLDB 2002)
Typical Distributed Architecture

Source: Zaharia et al. (SOSP 2013)
What makes it hard?

- Intrinsic challenges:
 - Volume
 - Velocity
 - Limited storage
 - Strict latency requirements
 - Out-of-order delivery

- System challenges:
 - Load balancing
 - Unreliable message delivery
 - Fault-tolerance
 - Consistency semantics (lossy, exactly once, at least once, etc.)
The application computes the volume-weighted average price (VWAP) for each stock symbol. The process involves reading live stock data from the IBM WebSphere Tivoli Monitoring (WFO) and converting it into a stream for processing. Two sources are created, one for trades and another for quotes, which are then connected to a join operator. The join is performed on the stock symbol fields of the trade and quote data. The resulting intermediate stream is connected to a window join that divides the moving summation of price and volume into two branches, representing trades and quotes. This is achieved using two Functor operators (Figure 5).

The application computes the bargain index as a function of the ask price, ask size, and VWAP value for the stock symbol of the last received trade. Another aggregate is computed over the last 15 tuples that contained the same stock symbol of the last received trade. The resulting bargain index is then filtered and written to DB2 Database Edition (DB2 DSE).
Storm

- Open-source real-time distributed stream processing system
 - Started at BackType
 - BackType acquired by Twitter in 2011
 - Now an Apache project

- Storm aspires to be the Hadoop of real-time processing!
Storm Topologies

- Storm topologies = “job”
 - Once started, runs continuously until killed

- A Storm topology is a computation graph
 - Graph contains nodes and edges
 - Nodes hold processing logic (i.e., transformation over its input)
 - Directed edges indicate communication between nodes
Streams, Spouts, and Bolts

- **Streams**
 - The basic collection abstraction: an unbounded sequence of tuples
 - Streams are transformed by the processing elements of a topology

- **Spouts**
 - Stream generators
 - May propagate a single stream to multiple consumers

- **Bolts**
 - Subscribe to streams
 - Streams transformers
 - Process incoming streams and produce new ones
Storm Architecture

- **Nimbus**: The master node of the Storm cluster.
- **ZooKeeper**: Distributed coordination service.
- **Supervisor**: Manages worker processes.
- **Spout**: Source of data in Storm.
- **Bolt**: Processors that transform the data stream.

Storm Job Topology

- **Task Allocation**: Distributed across supervisors.

Distributed Coordination

- **Nimbus** communicates with ZooKeeper for coordination.
Stream Groupings

- Bolts are executed by multiple workers in parallel
- When a bolt emits a tuple, where should it go?
- Stream groupings:
 - Shuffle grouping: round-robin
 - Field grouping: based on data value
Storm: Example

// instantiate a new topology
TopologyBuilder builder = new TopologyBuilder();

// set up a new spout with five tasks
builder.setSpout("spout", new RandomSentenceSpout(), 5);

// the sentence splitter bolt with eight tasks
builder.setBolt("split", new SplitSentence(), 8)
 .shuffleGrouping("spout"); // shuffle grouping for the output

// word counter with twelve tasks
builder.setBolt("count", new WordCount(), 12)
 .fieldsGrouping("split", new Fields("word")); // field grouping

// new configuration
Config conf = new Config();

// set the number of workers for the topology; the 5x8x12=480 tasks
// will be allocated round-robin to the three workers, each task
// running as a separate thread
conf.setNumWorkers(3);

// submit the topology to the cluster
StormSubmitter.submitTopology("word-count", conf, builder.createTopology());
Spark Streaming

Discretized stream processing: run a streaming computation as a series of very small, deterministic batch jobs

Continuous Operator Model

Discretized Streams

Source: Zaharia et al. (SOSP 2013)
Spark and Spark Streaming

Spark Streaming divides input data streams into discretized streams (D-Streams). A D-Stream is a sequence of immutable, partitioned datasets, and may create intermediate states. Figure 2 shows a high-level sketch of the computation model in the context of this model. We used Spark [42] as our batch processing engine for each batch of data. Figure 1(b) shows our model.

Our API, users define programs by manipulating resilient distributed datasets (RDDs) that can be acted on by deterministic transformations. The arguments to these transformations yield new D-Streams, and may create intermediate datasets. Figure 3 shows the lineage of an operator and its underlying RDDs. Each oval represents an RDD, with partitions shown as circles. Each sequence of RDDs is a D-Stream.

When a node fails, it recomputes the RDD partitions that were on it by re-running the tasks that built them from the original input data stored reliably in the cluster. The system also periodically checkpoints state RDDs (e.g., every 1000 RDD partitions per node), e.g., by asynchronously replicating every tenth RDD). When the node fails, we can recompute its partitions in parallel on others. Much like batch systems run multiple tasks per node, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster). When the node fails, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster).

In a similar way, if a node straggles, we can speculatively execute copies of its tasks on other nodes [11], e.g., to achieve higher parallelism across both the downstream and upstream backups, even if one or the other straggles. The system also recomputes partitions that were lost due to stragglers or network failures. In all cases, Spark re-executes transformations on both lost partitions and lost states as well as partitions and states that were created after the node failure. Spark can recompute its partitions in parallel on others. This does not need to happen for all data, because recovery is often fast: the system also periodically checkpoints state RDDs (e.g., every 1000 RDD partitions per node). When the node fails, we can recompute its partitions in parallel on others. Much like batch systems run multiple tasks per node, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster). When the node fails, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster).

When a node fails, it recomputes the RDD partitions that were on it by re-running the tasks that built them from the original input data stored reliably in the cluster. The system also periodically checkpoints state RDDs (e.g., every 1000 RDD partitions per node). When the node fails, we can recompute its partitions in parallel on others. Much like batch systems run multiple tasks per node, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster). When the node fails, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster).

Spark batch jobs also periodically checkpoints state RDDs (e.g., every 1000 RDD partitions per node). When the node fails, we can recompute its partitions in parallel on others. Much like batch systems run multiple tasks per node, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster). When the node fails, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster).

We illustrate the idea with a Spark Streaming program. Each oval is an RDD, with partitions shown as circles. Each sequence of RDDs is a D-Stream. Spark tracks this information at the level of each distributed dataset, as shown in Figure 3. Spark batch jobs also periodically checkpoints state RDDs (e.g., every 1000 RDD partitions per node). When the node fails, we can recompute its partitions in parallel on others. Much like batch systems run multiple tasks per node, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster). When the node fails, we can recompute multi-RDD partitions per node (e.g., 1000 RDD partitions per node on a 100-core cluster).

This code creates a D-Stream called `readStream`, and performs a running count of these with a `map` transformation. The arguments to this `map` transformation are Scala function literals. Other interfaces, such as streaming SQL, would also be possible.

Source: Zaharia et al. (SOSP 2013)
Today’s Agenda

- Basics of stream processing
- Sampling and hashing
- Architectures for stream processing
- Twitter case study
Questions?