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Today’s Agenda	

¢  Basics of stream processing	


¢  Sampling and hashing	


¢  Architectures for stream processing	


¢  Twitter case study	




What is a data stream?	

¢  Sequence of items:	


l  Structured (e.g., tuples)	

l  Ordered (implicitly or timestamped)	


l  Arriving continuously at high volumes	


l  Not possible to store entirely	


l  Sometimes not possible to even examine all items	




What to do with data streams?	

¢  Network traffic monitoring	


¢  Datacenter telemetry monitoring	


¢  Sensor networks monitoring	


¢  Credit card fraud detection	


¢  Stock market analysis	


¢  Online mining of click streams	


¢  Monitoring social media streams	




What’s the scale? Packet data streams	

¢  Single 2 Gb/sec link; say avg. packet size is 50 bytes	


l  Number of packets/sec = 5 million 	

l  Time per packet = 0.2 microseconds 	


¢  If we only capture header information per packet: ���
source/destination IP, time, no. of bytes, etc. – at least 10 bytes	

l  50 MB per second	


l  4+ TB per day	


l  Per link!	


What if you wanted to do deep-packet inspection?	

Source: Minos Garofalakis, Berkeley  CS 286 



Converged IP/MPLS 
Network 

 
 PSTN  

 
DSL/Cable 
Networks 

 
 

Enterprise 
Networks 

Network Operations 
Center  (NOC) 

BG
P Peer 

R1 R2 
R3 

What are the top (most frequent) 1000 (source, dest) 
pairs seen by R1 over the last month? 

SELECT COUNT (R1.source, R1.dest) 
FROM  R1, R2 
WHERE R1.source = R2.source 

SQL Join Query 

How many distinct (source, dest) pairs have 
been seen by both R1 and R2 but not R3? 

Set-Expression Query 

Off-line analysis – Data 
access is slow, expensive 

 
DBMS 

 

Source: Minos Garofalakis, Berkeley  CS 286 



Common Architecture	


¢  Data stream management system (DSMS) at observation points	

l  Voluminous streams-in, reduced streams-out	


¢  Database management system (DBMS)	

l  Outputs of DSMS can be treated as data feeds to databases	


DSMS	


DSMS	


DBMS	


data streams	

queries	


queries	

data feeds	


Source: Peter Bonz 



DBMS vs. DSMS	


DBMS	

l  Model: persistent relations 	

l  Relation: tuple set/bag	


l  Data update: modifications 	


l  Query: transient 	


l  Query answer: exact	

l  Query evaluation: arbitrary 	


l  Query plan: fixed 	


DSMS	

l  Model: (mostly) transient relations 	

l  Relation: tuple sequence 	


l  Data update: appends	


l  Query: persistent 	


l  Query answer: approximate	

l  Query evaluation: one pass 	


l  Query plan: adaptive 	


Source: Peter Bonz 



What makes it hard?	

¢  Intrinsic challenges:	


l  Volume	

l  Velocity	


l  Limited storage	


l  Strict latency requirements	


l  Out-of-order delivery	


¢  System challenges:	


l  Load balancing	

l  Unreliable message delivery	


l  Fault-tolerance	


l  Consistency semantics (lossy, exactly once, at least once, etc.)	




What exactly do you do?	

¢  “Standard” relational operations:	


l  Select	

l  Project	


l  Transform (i.e., apply custom UDF)	


l  Group by	


l  Join	

l  Aggregations	


¢  What else do you need to make this “work”?	




Issues of Semantics	

¢  Group by… aggregate	


l  When do you stop grouping and start aggregating?	


¢  Joining a stream and a static source	

l  Simple lookup	


¢  Joining two streams	

l  How long do you wait for the join key in the other stream?	


¢  Joining two streams, group by and aggregation	

l  When do you stop joining?	


What’s the solution?	




Windows	

¢  Mechanism for extracting finite relations from an infinite stream	


¢  Windows restrict processing scope:	


l  Windows based on ordering attributes (e.g., time) 	

l  Windows based on item (record) counts	


l  Windows based on explicit markers (e.g., punctuations)	


l  Variants (e.g., some semantic partitioning constraint)	




Windows on Ordering Attributes	

¢  Assumes the existence of an attribute that defines the order of 

stream elements (e.g., time)	


¢  Let T be the window size in units of the ordering attribute	


t1 t2 t3 t4 t1' t2’ t3’ t4’ 

t1 t2 
t3 

sliding window 

tumbling window 

ti’ – ti = T 

ti+1 – ti = T 

Source: Peter Bonz 



Windows on Counts	

¢  Window of size N elements (sliding, tumbling) over the stream	


¢  Challenges:	


l  Problematic with non-unique timestamps: non-deterministic output	

l  Unpredictable window size (and storage requirements)	


t1 t2 t3 t1' t2’ t3’ t4’ 

Source: Peter Bonz 



Windows from “Punctuations”	

¢  Application-inserted “end-of-processing”	


l  Example: stream of actions… “end of user session”	


¢  Properties	

l  Advantage: application-controlled semantics	


l  Disadvantage: unpredictable window size (too large or too small)	




Common Techniques	


Source: Wikipedia (Forge) 



“Hello World” Stream Processing	

¢  Problem:	


l  Count the frequency of items in the stream	


¢  Why?	

l  Take some action when frequency exceeds a threshold	


l  Data mining: raw counts → co-occurring counts → association rules	




The Raw Stream…	
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Source: Peter Bonz 



Divide Into Windows…	


window 1 window 2 window 3

Source: Peter Bonz 



First Window	


Source: Peter Bonz 
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Window Counting	

¢  What’s the issue?	


¢  What’s the solution?	


Lessons learned?	

Solutions are approximate (or lossy)	




General Strategies	

¢  Sampling	


¢  Hashing	




Reservoir Sampling	

¢  Task: select s elements from a stream of size N with uniform 

probability	

l  N can be very very large	


l  We might not even know what N is! (infinite stream)	


¢  Solution: Reservoir sampling	

l  Store first s elements	


l  For the k-th element thereafter, keep with probability s/k ���
(randomly discard an existing element)	


¢  Example: s = 10	

l  Keep first 10 elements	


l  11th element: keep with 10/11	

l  12th element: keep with 10/12	


l  …	




Reservoir Sampling: How does it work?	

¢  Example: s = 10	


l  Keep first 10 elements	

l  11th element: keep with 10/11	


¢  General case: at the (k + 1)th element	

l  Probability of selecting each item up until now is s/k	


l  Probability existing element is replaced: s/(k+1) × 1/s = 1/(k + 1)	


l  Probability existing element is not replaced: k/(k + 1)	


l  Probability each element survives to (k + 1)th round: ���
(s/k) × k/(k + 1) = s/(k + 1)	


If we decide to keep it: sampled uniformly by definition	

probability existing item discarded: 10/11 × 1/10 = 1/11	

probability existing item survives: 10/11	




Hashing for Three Common Tasks	

¢  Cardinality estimation	


l  What’s the cardinality of set S?	

l  How many unique visitors to this page?	


¢  Set membership	

l  Is x a member of set S?	


l  Has this user seen this ad before?	


¢  Frequency estimation	

l  How many times have we observed x?	


l  How many queries has this user issued?	


HashSet	


HashSet	


HashMap	


HLL counter	


Bloom Filter	


CMS	




HyperLogLog Counter	

¢  Task: cardinality estimation of set	


l  size() → number of unique elements in the set	


¢  Observation: hash each item and examine the hash code	

l  On expectation, 1/2 of the hash codes will start with 1	


l  On expectation, 1/4 of the hash codes will start with 01	


l  On expectation, 1/8 of the hash codes will start with 001	


l  On expectation, 1/16 of the hash codes will start with 0001	


l  …	


How do we take advantage of this observation?	




Bloom Filters	

¢  Task: keep track of set membership	


l  put(x) → insert x into the set	

l  contains(x) → yes if x is a member of the set	


¢  Components	

l  m-bit bit vector	


l  k hash functions: h1 … hk	
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Bloom Filters: put	
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Bloom Filters: put	
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Bloom Filters: contains	
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Bloom Filters: contains	
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Bloom Filters: contains	
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Bloom Filters: contains	
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What’s going on here?	


AND                      = NO     	

A[h1(y)]	

A[h2(y)]	
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Bloom Filters	

¢  Error properties: contains(x)	


l  False positives possible	

l  No false negatives	


¢  Usage:	

l  Constraints: capacity, error probability	


l  Tunable parameters: size of bit vector m, number of hash functions k	




Count-Min Sketches	

¢  Task: frequency estimation	


l  put(x) → increment count of x by one	

l  get(x) → returns the frequency of x	


¢  Components	

l  k hash functions: h1 … hk	


l  m by k array of counters	
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Count-Min Sketches: put	
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Count-Min Sketches: put	
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Count-Min Sketches: put	
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Count-Min Sketches: put	
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Count-Min Sketches: put	
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Count-Min Sketches: put	
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Count-Min Sketches: get	
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Count-Min Sketches: get	
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Count-Min Sketches: get	
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Count-Min Sketches: get	
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Count-Min Sketches	

¢  Error properties:	


l  Reasonable estimation of heavy-hitters	

l  Frequent over-estimation of tail	


¢  Usage:	

l  Constraints: number of distinct events, distribution of events, error 

bounds	

l  Tunable parameters: number of counters m, number of hash functions k, 

size of counters	




Three Common Tasks	

¢  Cardinality estimation	


l  What’s the cardinality of set S?	

l  How many unique visitors to this page?	


¢  Set membership	

l  Is x a member of set S?	


l  Has this user seen this ad before?	


¢  Frequency estimation	

l  How many times have we observed x?	


l  How many queries has this user issued?	


HashSet	


HashSet	


HashMap	


HLL counter	


Bloom Filter	


CMS	




Source: Wikipedia (River) 

Stream Processing Architectures	




Typical Architecture	


trigger processing required in this environment far exceeds 
that found in traditional DBMS applications. 

Input data 
streams

Output to 
applications

Continuous & ad hoc
queries

Operator boxes Historical
Storage

 
Figure 1: Aurora system model 

Fourth, stream data is often lost, stale, or intentionally 
omitted for processing reasons. An object being monitored 
may move out of range of a sensor system, thereby 
resulting in lost data. The most recent report on the location 
of the object becomes more and more inaccurate over time. 
Moreover, in managing data streams with high input rates, 
it might be necessary to shed load by dropping less 
important input data. All of this, by necessity, leads to 
approximate answers. 

Lastly, many monitoring applications have real-time 
requirements. Applications that monitor mobile sensors 
(e.g., military applications monitoring soldier locations) 
often have a low tolerance for stale data, making these 
applications effectively real time. The added stress on a 
DBMS that must serve real-time applications makes it 
imperative that the DBMS employ intelligent resource 
management (e.g., scheduling) and graceful degradation 
strategies (e.g., load shedding) during periods of high load. 
We expect that applications will supply Quality of Service 
(QoS) specifications that will be used by the running 
system to make these dynamic resource allocation 
decisions. 

Monitoring applications are very difficult to implement 
in traditional DBMSs. First, the basic computation model is 
wrong: DBMSs have a HADP model while monitoring 
applications often require a DAHP model. In addition, to 
store time-series information one has only two choices. 
First, he can encode the time series as current data in 
normal tables. In this case, assembling the historical time 
series is very expensive because the required data is spread 
over many tuples, thereby dramatically slowing 
performance. Alternately, he can encode time series 
information in binary large objects to achieve physical 
locality, at the expense of making queries to individual 
values in the time series very difficult. One system that 
tries to do something more intelligent with time series data 
is the Informix Universal Server, which implemented a 
time-series data type and associated methods that speed 
retrieval of values in a time series [2]; however, this system 
does not address the concerns raised above. 

If a monitoring application had a very large number of 
triggers or alerters, then current DBMSs would fail because 
they do not scale past a few triggers per table. The only 
alternative is to encode triggers in some middleware 
application. Using this implementation, the system cannot 
reason about the triggers (e.g., optimization), because they 
are outside the DBMS. Moreover, performance is typically 
poor because middleware must poll for data values that 
triggers and alerters depend on. 

Lastly, no DBMS that we are aware of has built-in 
facilities for approximate query answering. The same 
comment applies to real-time capabilities. Again, the user 
must build custom code into his application.   

For these reasons, monitoring applications are difficult 
to implement using traditional DBMS technology. To do 
better, all the basic mechanisms in current DBMSs must be 

rethought. In this paper, we describe a prototype system, 
Aurora, which is designed to better support monitoring 
applications. We use Aurora to illustrate design issues that 
would arise in any system of this kind. 

Monitoring applications are applications for which 
streams of information, triggers, imprecise data, and real-
time requirements are prevalent. We expect that there will 
be a large class of such applications. For example, we 
expect the class of monitoring applications for physical 
facilities (e.g., monitoring unusual events at nuclear power 
plants) to grow in response to growing needs for security. 
In addition, as GPS-style devices are attached to a broader 
and broader class of objects, monitoring applications will 
expand in scope. Currently such monitoring is expensive 
and is restricted to costly items like automobiles (e.g., 
Lojack technology). In the future, it will be available for 
most objects whose position is of interest. 

In Section 2, we begin by describing the basic Aurora 
architecture and fundamental building blocks. In Section 3, 
we show why traditional query optimization fails in our 
environment, and present our alternate strategies for 
optimizing Aurora applications. Section 4 describes the 
run-time architecture and behavior of Aurora, concentrating 
on storage organization, scheduling, introspection, and load 
shedding. In Section 5, we discuss the myriad of related 
work that has preceded our effort. We describe the status of 
our prototype implementation in Section 6, and conclude in 
Section 7. 

2 Aurora System Model 
Aurora data is assumed to come from a variety of data 
sources such as computer programs that generate values at 
regular or irregular intervals or hardware sensors. We will 
use the term data source for either case. In addition, a data 
stream is the term we will use for the collection of data 
values that are presented by a data source. Each data source 
is assumed to have a unique source identifier and Aurora 
timestamps every incoming tuple to monitor the quality of 
service being provided.   

The basic job of Aurora is to process incoming streams 
in the way defined by an application administrator. Aurora 
is fundamentally a data-flow system and uses the popular 
boxes and arrows paradigm found in most process flow and 
workflow systems. Hence, tuples flow through a loop-free, 
directed graph of processing operations (i.e., boxes). 
Ultimately, output streams are presented to applications, 
which must be programmed to deal with the asynchronous 

 

Source: Carney et al. (VLDB 2002) 



Typical Architecture	

expected number of output tuples per input tuple. Consider 
two boxes, bi and bj, with bj following bi. In this case, for 
each input tuple for bi, we can compute the amount of 
processing as c(bi) + c(bj) × s(bi). Reversing the operators 
gives a like calculation. Hence, we can compute the 
condition used to decide whether the boxes should be 
switched as: 
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Figure 3: Aurora run-time architecture 
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It is straightforward to generalize the above calculation 

to deal with cases that involve fan-in or fan-out situations. 
Moreover, it is easy to see that we can obtain an optimal 
ordering by sorting all the boxes according to their 
corresponding ratios in decreasing order. We use this result 
in a heuristic algorithm that iteratively reorders boxes (to 
the extent allowed by their commutativity properties) until 
no more reorderings are possible. 

When the optimizer has found all productive 
transformations using the above tactics, it constructs a new 
sub-network, binds it into the composite Aurora network 
that is running, and then instructs the scheduler to stop 
holding messages at the input connection points. Of course, 
outputs affected by the sub-network will see a blip in 
response time; however the remainder of the network can 
proceed unimpeded.  

An Aurora network is broken naturally into a collection 
of k sub-networks by the connection points that are inserted 
by the application administrator. Each of these sub-
networks can be optimized individually, because it is a 
violation of Aurora semantics to optimize across a 
connection point. The Aurora optimizer is expected to 
cycle periodically through all k sub-networks and run as a 
background task. 
3.2 Ad-Hoc Query Optimization 
One last issue that must be dealt with is ad-hoc query 
optimization. Recall that the semantics of an ad-hoc query 
is that it must run on all the historical information saved at 
the connection point(s) to which it is connected. 
Subsequently, it becomes a normal portion of an Aurora 
network, until it is discarded. Aurora processes ad-hoc 
queries in two steps by constructing two separate 
subnetworks. Each is attached to a connection point, so the 
optimizer can be run before the scheduler lets messages 
flow through the newly added subnetworks. 

Aurora semantics require the historical subnetwork to be 
run first. Since historical information is organized as a B-
tree, the Aurora optimizer begins at each connection point 
and examines the successor box(es). If the box is a filter, 
then Aurora examines the condition to see if it is 
compatible with the storage key associated with the 
connection point. If so, it switches the implementation of 
the filter box to perform an indexed lookup in the B-tree. 
Similarly, if the successor box is a join, then the Aurora 
optimizer costs performing a merge-sort or indexed lookup, 
chooses the cheapest one, and changes the join 
implementation appropriately. Other boxes cannot 
effectively use the indexed structure, so only these two 
need be considered. Moreover, once the initial box 

performs its work on the historical tuples, the index 
structure is lost, and all subsequent boxes will work in the 
normal way. Hence, the optimizer converts the historical 
subnetwork into an optimized one, which is then executed. 

When it is finished, the subnetwork used for continuing 
operation can be run to produce subsequent output. Since 
this is merely one of the sub-networks, it can be optimized 
in the normal way suggested above. 

In summary, the initial boxes in an ad-hoc query can pull 
information from the B-tree associated with the 
corresponding connection point(s). When the historical 
operation is finished, Aurora switches the implementation 
to the standard push-based data structures, and continues 
processing in the conventional fashion.   

4 Run-Time Operation 
The basic purpose of Aurora run-time network is to process 
data flows through a potentially large workflow diagram. 
Figure 3 illustrates the basic Aurora architecture. Here, 
inputs  from data sources and outputs from boxes are fed to 
the router, which forwards them either to external 
applications or to the storage manager to be placed on the 
proper queue.  The storage manager is responsible for 
maintaining the box queues and managing the buffer. 
Conceptually, the scheduler picks a box for execution, 
ascertains what processing is required, and passes a pointer 
to the box description (together with a pointer to the box 
state) to the multi-threaded box processor. The box 
processor executes the appropriate operation and then 
forwards the output tuples to the router.  The scheduler then 
ascertains the next processing step and the cycle repeats. 
The QoS monitor continually monitors system performance 
and activates the load shedder when it detects an overload 
situation and poor system performance. The load shedder 
then sheds load till the performance of the system reaches 
an acceptable level. The catalog in Figure 3 contains 
information regarding the network topology, inputs, 
outputs, QoS information, and relevant statistics (e.g., 
selectivity, average box processing costs), and is essentially 
used by all components.  

 

Source: Carney et al. (VLDB 2002) 



Typical Distributed Architecture	
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(a) Continuous operator processing model. Each node con-
tinuously receives records, updates internal state, and emits
new records. Fault tolerance is typically achieved through
replication, using a synchronization protocol like Flux or
DPC [33, 5] to ensure that replicas of each node see records in
the same order (e.g., when they have multiple parent nodes).

(b) D-Stream processing model. In each time interval, the
records that arrive are stored reliably across the cluster to form
an immutable, partitioned dataset. This is then processed via
deterministic parallel operations to compute other distributed
datasets that represent program output or state to pass to the
next interval. Each series of datasets forms one D-Stream.

Figure 1: Comparison of traditional record-at-a-time stream processing (a) with discretized streams (b).

the state of operators on a lost, or slow, node. Previ-
ous systems use one of two schemes, replication and
upstream backup [19], which offer a sharp tradeoff be-
tween cost and recovery time.

In replication, which is common in database systems,
there are two copies of the processing graph, and input
records are sent to both. However, simply replicating the
nodes is not enough; the system also needs to run a syn-
chronization protocol, such as Flux [33] or Borealis’s
DPC [5], to ensure that the two copies of each operator
see messages from upstream parents in the same order.
For example, an operator that outputs the union of two
parent streams (the sequence of all records received on
either one) needs to see the parent streams in the same
order to produce the same output stream, so the two
copies of this operator need to coordinate. Replication
is thus costly, though it recovers quickly from failures.

In upstream backup, each node retains a copy of the
messages it sent since some checkpoint. When a node
fails, a standby machine takes over its role, and the
parents replay messages to this standby to rebuild its
state. This approach thus incurs high recovery times,
because a single node must recompute the lost state
by running data through the serial stateful operator
code. TimeStream [32] and MapReduce Online [10]
use this model. Popular message queueing systems, like
Storm [36], also use this approach, but typically only
provide “at-least-once” delivery for messages, relying
on the user’s code to handle state recovery.2

More importantly, neither replication nor upstream
backup handle stragglers. If a node runs slowly in the
replication model, the whole system is affected because

2 Storm’s Trident layer [25] automatically keeps state in a repli-
cated database instead, writing updates in batches. This is expensive,
as all updates must be replicated transactionally across the network.

of the synchronization required to have the replicas re-
ceive messages in the same order. In upstream backup,
the only way to mitigate a straggler is to treat it as a fail-
ure, which requires going through the slow state recov-
ery process mentioned above, and is heavy-handed for a
problem that may be transient.3 Thus, while traditional
streaming approaches work well at smaller scales, they
face substantial problems in a large commodity cluster.

3 Discretized Streams (D-Streams)
D-Streams avoid the problems with traditional stream
processing by structuring computations as a set of
short, stateless, deterministic tasks instead of continu-
ous, stateful operators. They then store the state in mem-
ory across tasks as fault-tolerant data structures (RDDs)
that can be recomputed deterministically. Decomposing
computations into short tasks exposes dependencies at a
fine granularity and allows powerful recovery techniques
like parallel recovery and speculation. Beyond fault tol-
erance, the D-Stream model gives other benefits, such as
powerful unification with batch processing.

3.1 Computation Model
We treat a streaming computation as a series of deter-
ministic batch computations on small time intervals. The
data received in each interval is stored reliably across the
cluster to form an input dataset for that interval. Once
the time interval completes, this dataset is processed via
deterministic parallel operations, such as map, reduce
and groupBy, to produce new datasets representing ei-
ther program outputs or intermediate state. In the for-
mer case, the results may be pushed to an external sys-

3 Note that a speculative execution approach as in batch systems
would be challenging to apply here because the operator code assumes
that it is fed inputs serially, so even a backup copy of an operator would
need to spend a long time recovering from its last checkpoint.
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What makes it hard?	

¢  Intrinsic challenges:	


l  Volume	

l  Velocity	


l  Limited storage	


l  Strict latency requirements	


l  Out-of-order delivery	


¢  System challenges:	


l  Load balancing	

l  Unreliable message delivery	


l  Fault-tolerance	


l  Consistency semantics (lossy, exactly once, at least once, etc.)	




Example Operator Graph	


Functor

Pass trades and
compute volume*price

Source

Read input 
from WFO

Functor

Pass quotes

Aggregate

Compute moving average
(for each symbol)

Functor

Compute VWAP

Write results 
to DB2 DSE

Sink

Join

Compute bargain index

Functor

Drop zero indexes

Figure 5: Bargain Index computation for all stock symbols

Source Data: Trades and Quotes

The source data contains trade and quote information. A
trade shows the price of a stock that was just traded,
whereas a quote reveals either an “ask” price to sell a stock
or a “bid” price to buy a stock. For this application, we only
consider the ask price in the quote data, i.e., we care about
sell quotes and ignore the buy ones. Table 1 lists relevant
fields of the trade and quote data. Note that, each trade
has an associated price and a volume, whereas each quote
has an associated ask price and an ask volume. In Figure 5,
live stock data is read directly from the IBM WebSphere
Front Office (WFO) [24] − a commercial middleware plat-
form for performing front office processing tasks in financial
markets. Spade’s source operator has built-in support for
tapping into WFO sources and converting them into Spade

streams.

Ticker Type Price Volume Ask Price Ask Size

MWG Trade 24.27 500 − −

TEO Quote − − 12.85 1
UIS Quote − − 5.85 6
NP Trade 28.00 5700 − −

TEO Trade 12.79 700 − −

Table 1: Sample trade and quote data (relevant
fields shown)

Processing Logic: Bargain Detection

To compute the bargain index, we first need to separate the
source stream into two branches, trades and quotes. This is
achieved via the use of two Functor operators (see Figure 5).
The Functor operator that creates the upper trade branch
also computes trade price × volume, which will later be used
to compute the volume weighted average price (VWAP) − a
commonly used metric in algorithmic trading. The Aggre-
gate operator that follows the Functor computes a moving
sum over price × volume and volume. It uses a per-group
window of size 15 tuples with a slide of 1 tuple, i.e. it outputs
a new aggregate every time it receives a trade, where the ag-
gregate is computed over the last 15 tuples that contained
the same stock symbol of the last received trade. Another
Functor operator is used to divide the moving summation
of price × volume to that of volume, giving the most re-
cent VWAP value for the stock symbol of the last received
trade. The resulting intermediate stream is connected to
the first input of an equi-Join (on stock symbol) operator,
which has a per-group window of size 1 tuple on the same

input. In other words, the join window for the first input
has one group for each unique stock symbol seen so far and
stores the last VWAP value within each group. The second
input of the join is connected to the quote stream, and has
a zero-sized window (this is a single-sided join). The aim
is to associate the last received quote with the most recent
VWAP value computed for the stock symbol of that quote.
Once this is done, a simple formula is used to compute the
bargain index as a function of the ask price, ask size, and
the VWAP value. A final Functor operator filters out the
bargain indexes that are zero, indicating that a bargain has
not been detected.

Results Management and DB2 DSE

In Figure 5, the non-zero bargain index values are fed into a
Sink operator, which is connected to IBM DB2 Data Stream
Edition [9] − an extension of DB2 designed for persisting
high-rate data streams. The result database can potentially
be connected to an automated trading platform, in order to
act upon the bargain index results.

6.2 A Parallel Version for Historical Data
We now present a parallel and distributed version of the

same query and provide brief performance results. To show-
case scalability, we use historic market feed data stored on
the disk. The data set contains 22 days’ worth of ticker data
(the month of December 2005) for ≈ 3000 stocks with a total
of ≈ 250 million trade and quote transactions, resulting in
≈ 20GBs of data. It is organized as one file per day on the
disk, and is stored on IBM’s General Parallel File System
(GPFS) [13] − a commercial high-performance shared-disk
clustered file system. For this workload, we run the bargain
index computation query and store the detected bargains
back into output files on GPFS.

To parallelize the processing we run 22 copies of the flow
depicted in Figure 5, one for each trading day. This is
achieved using a Spade for loop construct that encloses the
complete query specification. For performance reasons, we
run operators that are part of the processing of the same
day within a single PE. We distribute these PEs over 16
nodes in our cluster. Spade is capable of expressing more
sophisticated parallelization and distribution schemes, yet
for this application a simple coarse-grained scheme is suffi-
ciently effective. The Spade code for this parallel version of
the application is given in the Appendix.

It is important to note that a developer interacts only with
the Spade language and the compiler, for generating a par-
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Storm	

¢  Open-source real-time distributed stream processing system	


l  Started at BackType	

l  BackType acquired by Twitter in 2011	


l  Now an Apache project	


¢  Storm aspires to be the Hadoop of real-time processing!	




Storm Topologies	

¢  Storm topologies = “job”	


l  Once started, runs continuously until killed	


¢  A Storm topology is a computation graph	

l  Graph contains nodes and edges 	


l  Nodes hold processing logic (i.e., transformation over its input)	


l  Directed edges indicate communication between nodes	




Streams, Spouts, and Bolts	


bolt	
 bolt	
 bolt	


bolt	
 bolt	


bolt	
 bolt	


spout	
spout	


spout	


stream	


stream	
 stream	


•  Spouts	


–  Stream generators	

–  May propagate a single stream to 

multiple consumers	

•  Bolts	


–  Subscribe to streams	

–  Streams transformers 	


–  Process incoming streams and produce 
new ones	


•  Streams	


–  The basic collection abstraction: an 
unbounded sequence of tuples 	


–  Streams are transformed by the 
processing elements of a topology 	




Storm Architecture	
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Stream Groupings	

¢  Bolts are executed by multiple workers in parallel	


¢  When a bolt emits a tuple, where should it go?	


¢  Stream groupings: 	

l  Shuffle grouping: round-robin	


l  Field grouping: based on data value 	


spout spout

boltbolt

bolt



Storm: Example	

//	  instantiate	  a	  new	  topology	  
TopologyBuilder	  builder	  =	  new	  TopologyBuilder();	  
	  
//	  set	  up	  a	  new	  spout	  with	  five	  tasks	  
builder.setSpout("spout",	  new	  RandomSentenceSpout(),	  5);	  
	  
//	  the	  sentence	  splitter	  bolt	  with	  eight	  tasks	  
builder.setBolt("split",	  new	  SplitSentence(),	  8)	  
	  	  	  	  .shuffleGrouping("spout");	  //	  shuffle	  grouping	  for	  the	  ouput	  
	  
//	  word	  counter	  with	  twelve	  tasks	  
builder.setBolt("count",	  new	  WordCount(),	  12)	  
	  	  	  	  .fieldsGrouping("split",	  new	  Fields("word"));	  //	  field	  grouping	  	  
	  
//	  new	  configuration	  
Config	  conf	  =	  new	  Config();	  
	  
//	  set	  the	  number	  of	  workers	  for	  the	  topology;	  the	  5x8x12=480	  tasks	  
//	  will	  be	  allocated	  round-‐robin	  to	  the	  three	  workers,	  each	  task	  
//	  running	  as	  a	  separate	  thread	  
conf.setNumWorkers(3);	  
	  
//	  submit	  the	  topology	  to	  the	  cluster	  
StormSubmitter.submitTopology("word-‐count",	  conf,	  builder.createTopology());	  



Spark Streaming	

Discretized stream processing: run a streaming computation as a 
series of very small, deterministic batch jobs	


mutable state 

synchronization 

primaries 

replicas 
 

node 1 node 2 

node 1’ node 2’ 

input 

(a) Continuous operator processing model. Each node con-
tinuously receives records, updates internal state, and emits
new records. Fault tolerance is typically achieved through
replication, using a synchronization protocol like Flux or
DPC [33, 5] to ensure that replicas of each node see records in
the same order (e.g., when they have multiple parent nodes).

(b) D-Stream processing model. In each time interval, the
records that arrive are stored reliably across the cluster to form
an immutable, partitioned dataset. This is then processed via
deterministic parallel operations to compute other distributed
datasets that represent program output or state to pass to the
next interval. Each series of datasets forms one D-Stream.

Figure 1: Comparison of traditional record-at-a-time stream processing (a) with discretized streams (b).

the state of operators on a lost, or slow, node. Previ-
ous systems use one of two schemes, replication and
upstream backup [19], which offer a sharp tradeoff be-
tween cost and recovery time.

In replication, which is common in database systems,
there are two copies of the processing graph, and input
records are sent to both. However, simply replicating the
nodes is not enough; the system also needs to run a syn-
chronization protocol, such as Flux [33] or Borealis’s
DPC [5], to ensure that the two copies of each operator
see messages from upstream parents in the same order.
For example, an operator that outputs the union of two
parent streams (the sequence of all records received on
either one) needs to see the parent streams in the same
order to produce the same output stream, so the two
copies of this operator need to coordinate. Replication
is thus costly, though it recovers quickly from failures.

In upstream backup, each node retains a copy of the
messages it sent since some checkpoint. When a node
fails, a standby machine takes over its role, and the
parents replay messages to this standby to rebuild its
state. This approach thus incurs high recovery times,
because a single node must recompute the lost state
by running data through the serial stateful operator
code. TimeStream [32] and MapReduce Online [10]
use this model. Popular message queueing systems, like
Storm [36], also use this approach, but typically only
provide “at-least-once” delivery for messages, relying
on the user’s code to handle state recovery.2

More importantly, neither replication nor upstream
backup handle stragglers. If a node runs slowly in the
replication model, the whole system is affected because

2 Storm’s Trident layer [25] automatically keeps state in a repli-
cated database instead, writing updates in batches. This is expensive,
as all updates must be replicated transactionally across the network.

of the synchronization required to have the replicas re-
ceive messages in the same order. In upstream backup,
the only way to mitigate a straggler is to treat it as a fail-
ure, which requires going through the slow state recov-
ery process mentioned above, and is heavy-handed for a
problem that may be transient.3 Thus, while traditional
streaming approaches work well at smaller scales, they
face substantial problems in a large commodity cluster.

3 Discretized Streams (D-Streams)
D-Streams avoid the problems with traditional stream
processing by structuring computations as a set of
short, stateless, deterministic tasks instead of continu-
ous, stateful operators. They then store the state in mem-
ory across tasks as fault-tolerant data structures (RDDs)
that can be recomputed deterministically. Decomposing
computations into short tasks exposes dependencies at a
fine granularity and allows powerful recovery techniques
like parallel recovery and speculation. Beyond fault tol-
erance, the D-Stream model gives other benefits, such as
powerful unification with batch processing.

3.1 Computation Model
We treat a streaming computation as a series of deter-
ministic batch computations on small time intervals. The
data received in each interval is stored reliably across the
cluster to form an input dataset for that interval. Once
the time interval completes, this dataset is processed via
deterministic parallel operations, such as map, reduce
and groupBy, to produce new datasets representing ei-
ther program outputs or intermediate state. In the for-
mer case, the results may be pushed to an external sys-

3 Note that a speculative execution approach as in batch systems
would be challenging to apply here because the operator code assumes
that it is fed inputs serially, so even a backup copy of an operator would
need to spend a long time recovering from its last checkpoint.
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(a) Continuous operator processing model. Each node con-
tinuously receives records, updates internal state, and emits
new records. Fault tolerance is typically achieved through
replication, using a synchronization protocol like Flux or
DPC [33, 5] to ensure that replicas of each node see records in
the same order (e.g., when they have multiple parent nodes).

t = 1: 

t = 2: 

D-Stream 1 D-Stream 2 

immutable 
dataset 

immutable 
dataset 

batch operation 

…
 

input 

(b) D-Stream processing model. In each time interval, the
records that arrive are stored reliably across the cluster to form
an immutable, partitioned dataset. This is then processed via
deterministic parallel operations to compute other distributed
datasets that represent program output or state to pass to the
next interval. Each series of datasets forms one D-Stream.

Figure 1: Comparison of traditional record-at-a-time stream processing (a) with discretized streams (b).

the state of operators on a lost, or slow, node. Previ-
ous systems use one of two schemes, replication and
upstream backup [19], which offer a sharp tradeoff be-
tween cost and recovery time.

In replication, which is common in database systems,
there are two copies of the processing graph, and input
records are sent to both. However, simply replicating the
nodes is not enough; the system also needs to run a syn-
chronization protocol, such as Flux [33] or Borealis’s
DPC [5], to ensure that the two copies of each operator
see messages from upstream parents in the same order.
For example, an operator that outputs the union of two
parent streams (the sequence of all records received on
either one) needs to see the parent streams in the same
order to produce the same output stream, so the two
copies of this operator need to coordinate. Replication
is thus costly, though it recovers quickly from failures.

In upstream backup, each node retains a copy of the
messages it sent since some checkpoint. When a node
fails, a standby machine takes over its role, and the
parents replay messages to this standby to rebuild its
state. This approach thus incurs high recovery times,
because a single node must recompute the lost state
by running data through the serial stateful operator
code. TimeStream [32] and MapReduce Online [10]
use this model. Popular message queueing systems, like
Storm [36], also use this approach, but typically only
provide “at-least-once” delivery for messages, relying
on the user’s code to handle state recovery.2

More importantly, neither replication nor upstream
backup handle stragglers. If a node runs slowly in the
replication model, the whole system is affected because

2 Storm’s Trident layer [25] automatically keeps state in a repli-
cated database instead, writing updates in batches. This is expensive,
as all updates must be replicated transactionally across the network.

of the synchronization required to have the replicas re-
ceive messages in the same order. In upstream backup,
the only way to mitigate a straggler is to treat it as a fail-
ure, which requires going through the slow state recov-
ery process mentioned above, and is heavy-handed for a
problem that may be transient.3 Thus, while traditional
streaming approaches work well at smaller scales, they
face substantial problems in a large commodity cluster.

3 Discretized Streams (D-Streams)
D-Streams avoid the problems with traditional stream
processing by structuring computations as a set of
short, stateless, deterministic tasks instead of continu-
ous, stateful operators. They then store the state in mem-
ory across tasks as fault-tolerant data structures (RDDs)
that can be recomputed deterministically. Decomposing
computations into short tasks exposes dependencies at a
fine granularity and allows powerful recovery techniques
like parallel recovery and speculation. Beyond fault tol-
erance, the D-Stream model gives other benefits, such as
powerful unification with batch processing.

3.1 Computation Model
We treat a streaming computation as a series of deter-
ministic batch computations on small time intervals. The
data received in each interval is stored reliably across the
cluster to form an input dataset for that interval. Once
the time interval completes, this dataset is processed via
deterministic parallel operations, such as map, reduce
and groupBy, to produce new datasets representing ei-
ther program outputs or intermediate state. In the for-
mer case, the results may be pushed to an external sys-

3 Note that a speculative execution approach as in batch systems
would be challenging to apply here because the operator code assumes
that it is fed inputs serially, so even a backup copy of an operator would
need to spend a long time recovering from its last checkpoint.
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Continuous Operator Model	
 Discretized Streams	


Source: Zaharia et al. (SOSP 2013) 



Spark and Spark Streaming	
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Figure 2: High-level overview of the Spark Streaming
system. Spark Streaming divides input data streams
into batches and stores them in Spark’s memory. It
then executes a streaming application by generating
Spark jobs to process the batches.

tem in a distributed manner. In the latter case, the inter-
mediate state is stored as resilient distributed datasets
(RDDs) [42], a fast storage abstraction that avoids repli-
cation by using lineage for recovery, as we shall explain.
This state dataset may then be processed along with the
next batch of input data to produce a new dataset of up-
dated intermediate states. Figure 1(b) shows our model.

We implemented our system, Spark Streaming, based
on this model. We used Spark [42] as our batch process-
ing engine for each batch of data. Figure 2 shows a high-
level sketch of the computation model in the context of
Spark Streaming. This is explained in more detail later.

In our API, users define programs by manipulating
objects called discretized streams (D-Streams). A D-
Stream is a sequence of immutable, partitioned datasets
(RDDs) that can be acted on by deterministic transfor-
mations. These transformations yield new D-Streams,
and may create intermediate state in the form of RDDs.

We illustrate the idea with a Spark Streaming pro-
gram that computes a running count of view events by
URL. Spark Streaming exposes D-Streams through a
functional API similar to LINQ [41, 2] in the Scala pro-
gramming language.4 The code for our program is:

pageViews = readStream("http://...", "1s")

ones = pageViews.map(event => (event.url, 1))

counts = ones.runningReduce((a, b) => a + b)

This code creates a D-Stream called pageViews by
reading an event stream over HTTP, and groups these
into 1-second intervals. It then transforms the event
stream to get a new D-Stream of (URL, 1) pairs called
ones, and performs a running count of these with a
stateful runningReduce transformation. The arguments
to map and runningReduce are Scala function literals.

4Other interfaces, such as streaming SQL, would also be possible.

Figure 3: Lineage graph for RDDs in the view count
program. Each oval is an RDD, with partitions shown
as circles. Each sequence of RDDs is a D-Stream.

To execute this program, Spark Streaming will receive
the data stream, divide it into one second batches and
store them in Spark’s memory as RDDs (see Figure 2).
Additionally, it will invoke RDD transformations like
map and reduce to process the RDDs. To execute these
transformations, Spark will first launch map tasks to pro-
cess the events and generate the url-one pairs. Then it
will launch reduce tasks that take both the results of the
maps and the results of the previous interval’s reduces,
stored in an RDD. These tasks will produce a new RDD
with the updated counts. Each D-Stream in the program
thus turns into a sequence of RDDs.

Finally, to recover from faults and stragglers, both D-
Streams and RDDs track their lineage, that is, the graph
of deterministic operations used to build them [42].
Spark tracks this information at the level of partitions
within each distributed dataset, as shown in Figure 3.
When a node fails, it recomputes the RDD partitions that
were on it by re-running the tasks that built them from
the original input data stored reliably in the cluster. The
system also periodically checkpoints state RDDs (e.g.,
by asynchronously replicating every tenth RDD)5 to pre-
vent infinite recomputation, but this does not need to
happen for all data, because recovery is often fast: the
lost partitions can be recomputed in parallel on separate
nodes. In a similar way, if a node straggles, we can spec-
ulatively execute copies of its tasks on other nodes [11],
because they will produce the same result.

We note that the parallelism usable for recovery in D-
Streams is higher than in upstream backup, even if one
ran multiple operators per node. D-Streams expose par-
allelism across both partitions of an operator and time:
1. Much like batch systems run multiple tasks per node,

each timestep of a transformation may create multi-
ple RDD partitions per node (e.g., 1000 RDD parti-
tions on a 100-core cluster). When the node fails, we
can recompute its partitions in parallel on others.

5Since RDDs are immutable, checkpointing does not block the job.
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Today’s Agenda	

¢  Basics of stream processing	


¢  Sampling and hashing	


¢  Architectures for stream processing	


¢  Twitter case study	




Source: Wikipedia (Japanese rock garden) 

Questions?	



