
Big Data Infrastructure

Jimmy Lin
University of Maryland

Monday, April 13, 2015

Session 10: Beyond MapReduce — Graph Processing

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Today’s Agenda
¢  What makes graph processing hard?

¢  Graph processing frameworks

¢  Twitter case study

What makes graph processing hard?
¢  Lessons learned so far:

l  Partition
l  Replicate

l  Reduce cross-partition communication

¢  What makes MapReduce “work”?

Characteristics of Graph Algorithms
¢  What are some common features of graph algorithms?

l  Graph traversals
l  Computations involving vertices and their neighbors

l  Passing information along graph edges

¢  What’s the obvious idea?
l  Keep “neighborhoods” together!

Simple Partitioning Techniques
¢  Hash partitioning

¢  Range partitioning on some underlying linearization

l  Web pages: lexicographic sort of domain-reversed URLs
l  Social networks: sort by demographic characteristics

Country Structure in Facebook

Ugander et al. (2011) The Anatomy of the Facebook Social Graph.

Analysis of 721 million active
users (May 2011)

54 countries w/ >1m active
users, >50% penetration

12
ID PH LK AU N
Z

TH M
Y

SG H
K

TW U
S

D
O

PR M
X

C
A

VE C
L

AR U
Y

C
O

C
R

G
T

EC PE BO ES G
H

G
B

ZA IL JO AE KW D
Z

TN IT M
K

AL R
S

SI BA H
R

TR PT BE FR H
U

IE D
K

N
O

SE C
Z

BG G
R

GR
BG
CZ
SE
NO
DK
IE
HU
FR
BE
PT
TR
HR
BA
SI
RS
AL
MK
IT
TN
DZ
KW
AE
JO
IL
ZA
GB
GH
ES
BO
PE
EC
GT
CR
CO
UY
AR
CL
VE
CA
MX
PR
DO
US
TW
HK
SG
MY
TH
NZ
AU
LK
PH
ID

Figure 9. Normalized country adjacency matrix. Matrix of edges between countries with > 1
million users and > 50% Facebook penetration shown on a log scale. To normalize, we divided each
element of the adjacency matrix by the product of the row country degree and column country degree.

country, and the data shows that 84.2% percent of edges are within countries. So the network divides fairly
cleanly along country lines into network clusters or communities. This mesoscopic-scale organization is
to be expected as Facebook captures social relationships divided by national borders. We can further
quantify this division using the modularity Q [37] which is the fraction of edges within communities
minus the expected fraction of edges within communities in a randomized version of the network that
preserves the degrees for each individual [38], but is otherwise random. In this case, the communities
are the countries. The computed value is Q = 0.7486 which is quite large [39] and indicates a strongly
modular network structure at the scale of countries. Especially considering that unlike numerous studies
using the modularity to detect communities, we in no way attempted to maximize it directly, and instead
merely utilized the given countries as community labels.

We visualize this highly modular structure in Fig. 9. The figure displays a heatmap of the number
of edges between the 54 countries where the active Facebook user population exceeds one million users
and is more than 50% of the internet-enabled population [40]. To be entirely accurate, the shown matrix
contains each edge twice, once in both directions, and therefore has twice the number of edges in diagonal
elements. The number of edges was normalized by dividing the ijth entry by the row and column sums,
equal to the product of the degrees of country i and j. The ordering of the countries was then determined
via complete linkage hierarchical clustering.

How much difference does it make?

“Best Practices”

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

+18%
1.4b

674m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

+18%

-15%

1.4b

674m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

+18%

-15%

-60%

1.4b

674m

86m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

How much difference does it make?

+18%

-15%

-60%
-69%

1.4b

674m

86m

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

PageRank over webgraph
(40m vertices, 1.4b edges)

Aside: Partitioning Geo-data

Geo-data = regular graph

Space-filling curves: Z-Order Curves

Space-filling curves: Hilbert Curves

General-Purpose Graph Partitioning
MULTILEVEL GRAPH PARTITIONING 363

G
G

1

projected partition
refined partition

C
o

ar
se

ni
n

g
Ph

as
e

U
n

c
o

arsenin
g Ph

ase

Initial Partitioning Phase

Multilevel Graph Bisection

G

G3

G2

G1

O

G

2G

O

4

G3

Fig. 1. The various phases of the multilevel graph bisection. During the coarsening phase, the
size of the graph is successively decreased; during the initial partitioning phase, a bisection of the
smaller graph is computed; and during the uncoarsening phase, the bisection is successively refined as
it is projected to the larger graphs. During the uncoarsening phase the light lines indicate projected
partitions, and dark lines indicate partitions that were produced after refinement.

Formally, a multilevel graph bisection algorithm works as follows: consider a
weighted graph G0 = (V0, E0), with weights both on vertices and edges. A multilevel
graph bisection algorithm consists of the following three phases.

Coarsening phase. The graph G0 is transformed into a sequence of smaller
graphs G1, G2, . . . , Gm

such that |V0| > |V1| > |V2| > · · · > |V
m

|.
Partitioning phase. A 2-way partition P

m

of the graph G
m

= (V
m

, E
m

) is
computed that partitions V

m

into two parts, each containing half the vertices
of G0.

Uncoarsening phase. The partition P
m

of G
m

is projected back to G0 by going
through intermediate partitions P

m�1, Pm�2, . . . , P1, P0.

3. Coarsening phase. During the coarsening phase, a sequence of smaller
graphs, each with fewer vertices, is constructed. Graph coarsening can be achieved in
various ways. Some possibilities are shown in Figure 2.

In most coarsening schemes, a set of vertices of G
i

is combined to form a single
vertex of the next level coarser graph G

i+1. Let V v

i

be the set of vertices of G
i

combined to form vertex v of G
i+1. We will refer to vertex v as a multinode. In order

for a bisection of a coarser graph to be good with respect to the original graph, the

Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

Graph Coarsening

Karypis and Kumar. (1998) A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

364 GEORGE KARYPIS AND VIPIN KUMAR

1

1

2

2

1

1

1

1

1
1

1
1

1 1

1

1

1

1

11
1

1

1

1

11

1

5

3

3
3

2

2
1

1

4

4

44

4

1 1

1

1
1

1

2

5

1

1

1

2

2

1

11
1

1

2

2
2

2

5

2

2
2

Fig. 2. Di↵erent ways to coarsen a graph.

weight of vertex v is set equal to the sum of the weights of the vertices in V v

i

. Also,
in order to preserve the connectivity information in the coarser graph, the edges of
v are the union of the edges of the vertices in V v

i

. In the case where more than one
vertex of V v

i

contains edges to the same vertex u, the weight of the edge of v is equal
to the sum of the weights of these edges. This is useful when we evaluate the quality
of a partition at a coarser graph. The edge-cut of the partition in a coarser graph
will be equal to the edge-cut of the same partition in the finer graph. Updating the
weights of the coarser graph is illustrated in Figure 2.

Two main approaches have been proposed for obtaining coarser graphs. The first
approach is based on finding a random matching and collapsing the matched vertices
into a multinode [4, 26], while the second approach is based on creating multinodes
that are made of groups of vertices that are highly connected [7, 19, 20, 10]. The
later approach is suited for graphs arising in VLSI applications, since these graphs
have highly connected components. However, for graphs arising in finite element
applications, most vertices have similar connectivity patterns (i.e., the degree of each
vertex is fairly close to the average degree of the graph). In the rest of this section
we describe the basic ideas behind coarsening using matchings.

Given a graph G
i

= (V
i

, E
i

), a coarser graph can be obtained by collapsing
adjacent vertices. Thus, the edge between two vertices is collapsed and a multinode
consisting of these two vertices is created. This edge collapsing idea can be formally
defined in terms of matchings. A matching of a graph is a set of edges no two of
which are incident on the same vertex. Thus, the next level coarser graph G

i+1 is
constructed from G

i

by finding a matching of G
i

and collapsing the vertices being
matched into multinodes. The unmatched vertices are simply copied over to G

i+1.
Since the goal of collapsing vertices using matchings is to decrease the size of the graph
G

i

, the matching should contain a large number of edges. For this reason, maximal
matchings are used to obtain the successively coarse graphs. A matching is maximal
if any edge in the graph that is not in the matching has at least one of its endpoints
matched. Note that depending on how matchings are computed, the number of edges

Partition

Partition

Partition + Replicate

What’s the issue?
Solutions?

Neighborhood Replication

Ugander et al. (2011) The Anatomy of the Facebook Social Graph.

What’s the cost of replicating n-hop neighborhoods?

What’s the more general challenge?

4

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hop distance

Pe
rc

en
ta

ge
 o

f p
ai

rs
 w

ith
in

 h
op

 d
is

ta
nc

e
Global
U.S.

Figure 2. Diameter. The neighborhood function N(h) showing the percentage of user pairs that are
within h hops of each other. The average distance between users on Facebook in May 2011 was 4.7,
while the average distance within the U.S. at the same time was 4.3.

laws, represented mathematically by pk ∝ k−α for some α > 0 [24,25]. Power-laws are straight lines on a
log-log plot, and clearly the observed distribution is not straight. We conclude, like Ref. [23], that strict
power-law models are inappropriate for Facebook’s degree distribution. It is not our intent, though, to
determine which parametric form best models the distribution. The relevant results are the monotonicity
and curvature of the degree distribution, the degrees of typical users, the large variance in degrees, and
the network’s sparsity.

The sparsity of the network does not, however, imply that users are far from each other in Facebook’s
network. While most pairs of users are not directly connected to each other, practically all pairs of users
are connected via paths of longer lengths. In the next section, we measure the distances between users
in the social graph.

Path lengths. When studying a network’s structure, the distribution of distances between vertices
is a truly macroscopic property of fundamental interest. Here we characterize the neighborhood functions
and the average pairwise distances of the Facebook and U.S. networks.

Formally, the neighborhood function N(h) of a graph describes the number of pairs of vertices (u, v)
such that u is reachable from v along a path in the network with h edges or less. Given the neighborhood
function, the diameter of a graph is simply the maximum distance between any pair of vertices in the
graph. The diameter is an extremal measure, and it is commonly considered less interesting than the full
neighborhood function, which measures what percentile of vertex pairs are within a given distance. The
exact diameter can be wildly distorted by the presence of a single ill-connected path in some peripheral
region of the graph, while the neighborhood function and its average are thought to robustly capture the
‘typical’ distances between pairs of vertices.

Like many other graphs, the Facebook graph does not have paths between all pairs of vertices. This
does not prevent us from describing the network using the neighborhood function though. As we shall
see in the next section, the vast majority of the network consists of one large connected component and
therefore the neighborhood function is representative of the overwhelming majority of pairs of vertices.

Figure 2 shows the neighborhood function computed for both the graph of all Facebook users as
well as the graph of U.S. Facebook users, as of May 2011, using the recently developed HyperANF

What makes graph processing hard?
¢  It’s tough to apply our “usual tricks” :

l  Partition
l  Replicate

l  Reduce cross-partition communication

Graph Processing Frameworks

Source: Wikipedia (Waste container)

Pregel: Computational Model
¢  Based on Bulk Synchronous Parallel (BSP)

l  Computational units encoded in a directed graph
l  Computation proceeds in a series of supersteps

l  Message passing architecture

¢  Each vertex, at each superstep:
l  Receives messages directed at it from previous superstep

l  Executes a user-defined function (modifying state)

l  Emits messages to other vertices (for the next superstep)

¢  Termination:

l  A vertex can choose to deactivate itself
l  Is “woken up” if new messages received

l  Computation halts when all vertices are inactive

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel

superstep t

superstep t+1

superstep t+2

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: Implementation
¢  Master-Slave architecture

l  Vertices are hash partitioned (by default) and assigned to workers
l  Everything happens in memory

¢  Processing cycle:
l  Master tells all workers to advance a single superstep

l  Worker delivers messages from previous superstep, executing vertex
computation

l  Messages sent asynchronously (in batches)

l  Worker notifies master of number of active vertices

¢  Fault tolerance

l  Checkpointing
l  Heartbeat/revert

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: PageRank

class PageRankVertex : public Vertex<double, void, double> {
public:
 virtual void Compute(MessageIterator* msgs) {
 if (superstep() >= 1) {
 double sum = 0;
 for (; !msgs->Done(); msgs->Next())
 sum += msgs->Value();
 *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
 }

 if (superstep() < 30) {
 const int64 n = GetOutEdgeIterator().size();
 SendMessageToAllNeighbors(GetValue() / n);
 } else {
 VoteToHalt();
 }
 }
};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: SSSP

class ShortestPathVertex : public Vertex<int, int, int> {
 void Compute(MessageIterator* msgs) {
 int mindist = IsSource(vertex_id()) ? 0 : INF;
 for (; !msgs->Done(); msgs->Next())
 mindist = min(mindist, msgs->Value());
 if (mindist < GetValue()) {
 *MutableValue() = mindist;
 OutEdgeIterator iter = GetOutEdgeIterator();
 for (; !iter.Done(); iter.Next())
 SendMessageTo(iter.Target(),
 mindist + iter.GetValue());
 }
 VoteToHalt();
 }
};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Pregel: Combiners

class MinIntCombiner : public Combiner<int> {
 virtual void Combine(MessageIterator* msgs) {

 int mindist = INF;
 for (; !msgs->Done(); msgs->Next())
 mindist = min(mindist, msgs->Value());
 Output("combined_source", mindist);
 }

};

Source: Malewicz et al. (2010) Pregel: A System for Large-Scale Graph Processing. SIGMOD.

Giraph Architecture
¢  Master – Application coordinator

l  Synchronizes supersteps
l  Assigns partitions to workers before superstep begins

¢  Workers – Computation & messaging
l  Handle I/O – reading and writing the graph

l  Computation/messaging of assigned partitions

¢  ZooKeeper
l  Maintains global application state

Giraph slides borrowed from Joffe (2013)

Part 0

Part 1

Part 2

Part 3

Compute /
Send

Messages

W
or

ke
r

1

Compute /
Send

Messages

M
as

te
r

W
or

ke
r

0

In-memory
graph

Send stats / iterate!

Compute/Iterate

2

W
or

ke
r

1
W

or
ke

r
0 Part 0

Part 1

Part 2

Part 3

Output format

Part 0

Part 1

Part 2

Part 3

Storing the graph

3

Split 0

Split 1

Split 2

Split 3

W
or

ke
r

1

M
as

te
r

W
or

ke
r

0

Input format

Load /
Send
Graph

Load /
Send
Graph

Loading the graph

1

Split 4

Split

Giraph Dataflow

Giraph Lifecycle

Output

All Vertices
Halted?

Input
Compute
Superstep

No

Master
halted?

No

Yes

Yes

Active Inactive

Vote to Halt

Received Message

Vertex Lifecycle

Giraph Example

Execution Trace

5

1
5

2

5

5

2
5

5

5

5

5

1

2

Processor 1

Processor 2

Time

GraphX: Motivation

GraphX = Spark for Graphs
¢  Integration of record-oriented and graph-oriented processing

¢  Extends RDDs to Resilient Distributed Property Graphs

¢  Property graphs:
l  Present different views of the graph (vertices, edges, triplets)

l  Support map-like operations
l  Support distributed Pregel-like aggregations

Property Graph: Example

Underneath the Covers

Today’s Agenda
¢  What makes graph processing hard?

¢  Graph processing frameworks

¢  Twitter case study

Source: Wikipedia (Japanese rock garden)

Questions?

