Big Data Infrastructure

Session 9: Beyond MapReduce — Dataflow Languages

Jimmy Lin
University of Maryland
Monday, April 6, 2015

‘@ ®®©| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Today’s Agenda

O What’s beyond MapReduce!

e SQL on Hadoop
e Dataflow languages

O Past and present developments

A Major Step Backwards?

O MapReduce is a step backward in database access:

e Schemas are good V
e Separation of the schema from the application is good V

e High-level access languages are good ?

O MapReduce is poor implementation

e Brute force and only brute force (no indexes, for example) V

O MapReduce is not novel

O MapReduce is missing features

e Bulk loader, indexing, updates, transactions...

o MapReduce is incompatible with DMBS tools 2

Source: Blog post by DeWitt and Stonebraker

Need for High-Level Languages

O Hadoop is great for large-data processing!

e But writing Java programs for everything is verbose and slow
e Data scientists don’t want to write Java

O Solution: develop higher-level data processing languages

e Hive: HQL is like SQL
e Pig: Pig Latin is a bit like Perl

Hive and Pig

O Hive: data warehousing application in Hadoop

e Query language is HQL, variant of SQL
e Tables stored on HDFS with different encodings

® Developed by Facebook, now open source

O Pig: large-scale data processing system

e Scripts are written in Pig Latin, a dataflow language
® Programmer focuses on data transformations

e Developed by Yahoo!, now open source

o0 Common idea:

® Provide higher-level language to facilitate large-data processing
e Higher-level language “compiles down” to Hadoop jobs

facebook.

Jeff Hammerbacher, Information Platforms and the Rise of the Data Scientist.
In, Beautiful Data, O’Reilly, 2009.

“On the first day of logging the Facebook clickstream, more than 400 gigabytes of data
was collected. The load, index, and aggregation processes for this data set really taxed the
Oracle data warehouse. Even after significant tuning, we were unable to aggregate a day of
clickstream data in less than 24 hours.”

Hive: Example

O Hive looks similar to an SQL database

O Relational join on two tables:

e Table of word counts from Shakespeare collection
e Table of word counts from the bible
SELECT s.word, s.freq, k.freq FROM shakespeare s

JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
| 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445

is 8882 6884

Source: Material drawn from Cloudera training VM

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1

ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

Hive: Behind the Scenes

STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
s
TableScan
alias: s
Filter Operator
predicate:
expr: (freq >= 1)
type: boolean
Reduce Output Operator
key expressions:
expr: word
type: string
sort order: +

Map-reduce partition columns:

expr: word
type: string
tag: 0
value expressions:
expr: freq
type: int
expr: word
type: string
k
TableScan
alias: k
Filter Operator
predicate:
expr: (freq >=1)
type: boolean
Reduce Output Operator
key expressions:
expr: word
type: string
sort order: +

Map-reduce partition columns:

expr: word
type: string
tag: 1
value expressions:
expr: freq
type: int

Reduce Operator Tree:
Join Operator
condition map:
Inner Join 0 to 1
condition expressions:

0 {VALUE._col0} {VALUE._col1}

1 {VALUE._col0}
outputColumnNames: _col0, _col1, _col2
Filter Operator

predicate:

expr: ((_col0 >=1) and (_col2 >= 1))
type: boolean

Select Operator

expressions:
expr: _col1
type: string
expr: _col0
type: int
expr: _col2
type: int
outputColumnNames: _col0, _col1, _col2
File Output Operator
compressed: false
GlobalTableld: 0
table:

Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:
hdfs://localhost:8022/tmp/hive-training/364214370/10002
Reduce Output Operator
key expressions:
expr: _col1
type: int
sort order: -
tag: -1
value expressions:
expr: _col0
type: string
expr: _col1
type: int
expr: _col2
type: int
Reduce Operator Tree:
Extract
Limit
File Output Operator
compressed: false
GlobalTableld: 0
table:

input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HivelgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator
limit: 10

input format: org.apache.hadoop.mapred.SequenceFilelnputFormat
output format: org.apache.hadoop.hive.gl.io.HiveSequenceFileOutputFormat

Hive Architecture

s

HADOOP
(MAP-REDUCE + HDFS)

Job

3

Y,

Hive Implementation

O Metastore holds metadata

e Databases, tables
e Schemas (field names, field types, etc.)

® Permission information (roles and users)

O Hive data stored in HDFS

e Tables in directories
e Partitions of tables in sub-directories

e Actual data in files

e 107 gy By

-
2 -
- B
N7
.
' \
—

e 4 - 1\
f"l . y A ! / % N
Sotirce: Wikiped JPig)/” 1 YA TANS

Pig: Example

Task: Find the top 10 most visited pages in each category

Visits

Url Info

cnn.com
Amy bbc.com 10:00
Amy flickr.com 10:05
Fred cnn.com 12:00

@
@
@

Pig Slides adapted from Olston et al. (SIGMOD 2008)

cnn.com News

bbc.com News 0.8
flickr.com Photos 0.7
espn.com Sports 0.9

(©]
(©]
(©]

Pig Script

visits = (user, url, time);

gVisits = visits by url;

visitCounts = gVisits url, count(visits);
urlinfo = ‘/data/urlinfo” as (url, category, pRank);
visitCounts = visitCounts by url, urllnfo by url;
gCategories = visitCounts by category;

topUrls = gCategories top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Query Plan

Load Visits

Group by url

Foreach

generate count Load url Info

Join on url

Group by category

Foreach
generate top10(urls)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Script in Hadoop

Foreach

generate count

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Foreach
generate top10(urls)

Reduce,

Map,

Reduce,

Pig: Basics
O Sequence of statements manipulating relations (aliases)

O Data model

atoms
tuples
bags

maps

json

Pig: Common Operations

O LOAD: load data

O FOREACH ... GENERATE: per tuple processing
O FILTER: discard unwanted tuples

o GROUP/COGROUP: group tuples

O JOIN: relational join

Pig: GROUPIng

A = LOAD 'myfile.txt’ AS (fl: int, f2: int, f3: int);

(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

X = GROUP A BY f1;

(1, {(1, 2, 3)})
(4, {4, 2, 1), (4, 3, 3)})
(7, {(7, 2, 5)})
(8, {(3, 3, 4), (8, 4, 3)})

Pig: COGROUPIng

A: B:
(1, 2, 3) (2, 4)
4, 2, 1) (8, 9)
(8, 3, 4) (1, 3)
(4, 3, 3) (2, 7)
(7, 2, 5) (2, 9)
(8, 4, 3) (4, 6)
(4, 9)

X = COGROUP A BY fl, B BY %$0;

(1, {(1, 2, 3)}, {(1, 3)})
(2, {}, {2, 4), (2, 7), (2, 9)})
(4, {(4, 2, 1), (4, 3, 3)}, {(4, 6),(4, 9)})
(7, {(7, 2, 5}, {})
3,

(8, {(8, 4), (8, 4, 3)}, {8, N}

Pig UDFs

O User-defined functions:

® Java

e Python
e JavaScript
e Ruby

O UDFs make Pig arbitrarily extensible

e Express “core” computations in UDFs

e Take advantage of Pig as glue code for scale-out plumbing

PageRank in Pig

previous _pagerank = LOAD ‘$docs _in’ USING PigStorage()
AS (url: chararray, pagerank: float,
links:{link: (url: chararray)});

outbound pagerank = FOREACH previous_pagerank
GENERATE pagerank / COUNT(links) AS pagerank,
FLATTEN(links) AS to_url;

new_pagerank =
FOREACH (COGROUP outbound pagerank
BY to _url, previous_pagerank BY url INNER)
GENERATE group AS url,
(1 - $d) + $d * SUM(outbound pagerank.pagerank) AS pagerank,
FLATTEN(previous _pagerank.links) AS 1links;

STORE new pagerank INTO ‘$docs out’ USING PigStorage();

From: http://techblug.wordpress.com/2011/07/29/pagerank-implementation-in-pig/

Oh, the iterative part too...

#!/usr/bin/python
from org.apache.pig.scripting import *
P = Pig.compile(""" Pig part goes here """)

params = { ‘d’: ‘0.5’, ‘docs_in’: ‘data/
pagerank data _simple’ }

for i in range(10):
out = "out/pagerank data " + str(i + 1)
params["docs out"] = out
Pig.fs("rmr " + out)
stats = P.bind(params) .runSingle()
if not stats.isSuccessful():
raise ‘failed’
params["docs_in"] = out

From: http://techblug.wordpress.com/2011/07/29/pagerank-implementation-in-pig/

What’s next!

Imapala

O Open source analytical database for Hadoop

O Tight integration with HDFS and Parquet format

O Released October 2012

Impala Architecture

O Impala daemon (impalad)

* Handles client requests

* Handles internal query execution requests

O State store daemon (statestored)

* Provides name service and metadata distribution

Impala Query Execution

I. Request arrives

2. Planner turns request into collections of plan fragments
3. Coordinator initiates execution on remote impala daemons
4. Intermediate results are streamed between executors

5. Query results are streamed back to client

SQL request

Impala Execution Engine

O Written in C++

O Runtime code generation for “big loops” (via LLVM)

N e

at’s the instruction set?

o

Answer?

[

i [

< [

. [

< [

i [

/]

map

!
B R

map

!

¢ E

¢ B

115

|

reduce

!
- B

2 B

Shuffle and Sort: aggregate

X

map

!

N\

¢ B

b B

7

|

reduce

)

v |

values by keys

map

!

¢ E

2

3

6|8

|

!
-, Y

reduce

Answer?

Foreach

generate count

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Url Info

Reduce,

Foreach
generate top10(urls)

Map,

Reduce,

Generically, what is this?

Load Visits

Foreach
generate count

Collections of tuples

- —

~

Load Url Info

Group by category

Foreach
generate top10(urls)

Transformations on
those collections

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Dataflows

O Comprised of:

e Collections of records

e Transformations on those collections

O Two important questions:

® What are the logical operators!?

® What are the physical operators?

Analogy: NAND Gates are universal

A
‘ NAND Out AA=A
A AB AB
NAND NAND
B

A—1 A Py
NAND AB=A+B8B
NAND
B —y— B
NAND

Dryad: Graph Operators

(B>=C) || (B>=D)

E = (AS >=C >=BS) E || (AS >= BS) (A>=C>=D>=B) || (A>=F>=B)

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Dryad: Architecture

Job schedule Data plane
Qeo0a9 i Files, FIFO, Network

=z

Control plane

The Dryad system organization.The job manager (JM) consults the name server (NS) to discover the
list of available computers. It maintains the job graph and schedules running vertices (V) as computers
become available using the daemon (D) as a proxy.Vertices exchange data through files, TCP pipes, or
shared-memory channels. The shaded bar indicates the vertices in the job that are currently running.

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Dryad: Cool Tricks

O Channel: abstraction for vertex-to-vertex communication
e File
e TCP pipe
e Shared memory

O Runtime graph refinement

e Size of input is not known until runtime

e Automatically rewrite graph based on invariant properties

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Dryad: Sample Program

[]

GraphBuilder XSet
GraphBuilder DSet
GraphBuilder MSet
GraphBuilder SSet
GraphBuilder YSet
GraphBuilder HSet

moduleX”N;
moduleD"N;
moduleM” (N*4) ;
moduleS~ (N*4) ;
moduleY™N;
moduleH"1;

GraphBuilder XInputs = (ugrizl >= XSet) || (neighbor >= XSet);
GraphBuilder YInputs = ugriz2 >= YSet;

GraphBuilder XToY = XSet >= DSet >> MSet >= SSet;
for (i = 0; i < N*4; ++i)

XToY = XToY || (SSet.GetVertex(i) >= YSet.GetVertex(i/4));

}

GraphBuilder YToH = YSet >= HSet;
GraphBuilder HOutputs = HSet >= output;

GraphBuilder final = XInputs || YInputs || XToY || YToH || HOutputs;

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

DryadLINQ

O LINQ = Language INtegrated Query

e .NET constructs for combining imperative and declarative programming

O Developers write in DryadLINQ

® Program compiled into computations that run on Dryad

Sound familiar?

Source: Yu et al. (2008) DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language. OSDI.

DryadLINQ: Word Count

PartitionedTable<LineRecord> inputTable =
PartitionedTable.Get<LineRecord>(uri);

IQueryable<string> words = inputTable.SelectMany(x => x.line.Split('
IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x);

IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count()));

IQueryable<Pair> ordered = counts.OrderByDescending(x => x.Count);
IQueryable<Pair> top = ordered.Take(k);

Compare:

load ’file.txt' as (text: chararray);

foreach a generate flatten(TOKENIZE(text)) as term;
= group b by term;

foreach c generate group as term, COUNT(b) as count;

O N T W
Il

store d into 'cnt';

Compare and contrast...

What happened to Dryad?

Job schedule Data plane
Qeo0a9 i Files, FIFO, Network

=z

Control plane

The Dryad system organization.The job manager (JM) consults the name server (NS) to discover the
list of available computers. It maintains the job graph and schedules running vertices (V) as computers
become available using the daemon (D) as a proxy.Vertices exchange data through files, TCP pipes, or
shared-memory channels. The shaded bar indicates the vertices in the job that are currently running.

Source: Isard et al. (2007) Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. EuroSys.

Spark

O One popular answer to “What's beyond MapReduce?”

O Open-source engine for large-scale batch processing

e Supports generalized dataflows
e Written in Scala, with bindings in Java and Python

O Brief history:

® Developed at UC Berkeley AMPLab in 2009
e Open-sourced in 2010
e Became top-level Apache project in February 2014

e Commercial support provided by DataBricks

Resilient Distributed Datasets (RDDs)

O RDD: Spark “primitive” representing a collection of records

e Immutable
e Partitioned (the D in RDD)

O Transformations operate on an RDD to create another RDD

e Coarse-grained manipulations only

e RDDs keep track of lineage

O Persistence

® RDDs can be materialized in memory or on disk

e OOM or machine failures: What happens!?
O Fault tolerance (the R in RDD):

® RDDs can always be recomputed from stable storage (disk)

Operations on RDDs

O Transformations (lazy):

® map

flatMap

filter
union/intersection
join

reduceByKey
groupByKey

O Actions (actually trigger computations)

e collect

e saveAsTextFile/saveAsSequenceFile

Spark Architecture

Input Data
=P

T~

RAM
"d%/grkerj
RAM Ianf Data
Worker | g
Inp& Data

Spark Physical Operators

Narrow Dependencies: Wide Dependencies:

(I1]

map, filter groupByKey

CLL(TT]

join with inputs
co-partitioned

join with inputs not
co-partitioned

union

Spark Execution Plan

Today’s Agenda

O What’s beyond MapReduce!

e SQL on Hadoop
e Dataflow languages

O Past and present developments

