
Big Data Infrastructure

Jimmy Lin
University of Maryland

Monday, March 23, 2015

Session 7: Extending MapReduce 

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details



Today’s Agenda
¢  Making Hadoop more efficient

¢  Tweaking the MapReduce programming model

¢  Setup for… What’s beyond MapReduce?



Source: Wikipedia (Tortoise) 

Hadoop is slow...



A Major Step Backwards?
¢  MapReduce is a step backward in database access:

l  Schemas are good
l  Separation of the schema from the application is good

l  High-level access languages are good

¢  MapReduce is poor implementation
l  Brute force and only brute force (no indexes, for example)

¢  MapReduce is not novel

¢  MapReduce is missing features
l  Bulk loader, indexing, updates, transactions…

¢  MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker 



Hadoop vs. Databases: Grep
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Figure 4: Grep Task Results – 535MB/node Data Set
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Figure 5: Grep Task Results – 1TB/cluster Data Set

two figures. In Figure 4, the two parallel databases perform about
the same, more than a factor of two faster in Hadoop. But in Fig-
ure 5, both DBMS-X and Hadoop perform more than a factor of
two slower than Vertica. The reason is that the amount of data pro-
cessing varies substantially from the two experiments. For the re-
sults in Figure 4, very little data is being processed (535MB/node).
This causes Hadoop’s non-insignificant start-up costs to become the
limiting factor in its performance. As will be described in Section
5.1.2, for short-running queries (i.e., queries that take less than a
minute), Hadoop’s start-up costs can dominate the execution time.
In our observations, we found that takes 10–25 seconds before all
Map tasks have been started and are running at full speed across the
nodes in the cluster. Furthermore, as the total number of allocated
Map tasks increases, there is additional overhead required for the
central job tracker to coordinate node activities. Hence, this fixed
overhead increases slightly as more nodes are added to the cluster
and for longer data processing tasks, as shown in Figure 5, this fixed
cost is dwarfed by the time to complete the required processing.

The upper segments of each Hadoop bar in the graphs represent
the execution time of the additional MR job to combine the output
into a single file. Since we ran this as a separate MapReduce job,
these segments consume a larger percentage of overall time in Fig-
ure 4, as the fixed start-up overhead cost again dominates the work
needed to perform the rest of the task. Even though the Grep task is
selective, the results in Figure 5 show how this combine phase can
still take hundreds of seconds due to the need to open and combine
many small output files. Each Map instance produces its output in
a separate HDFS file, and thus even though each file is small there
are many Map tasks and therefore many files on each node.

For the 1TB/cluster data set experiments, Figure 5 shows that all
systems executed the task on twice as many nodes in nearly half the
amount of time, as one would expect since the total amount of data
was held constant across nodes for this experiment. Hadoop and
DBMS-X performs approximately the same, since Hadoop’s start-
up cost is amortized across the increased amount of data processing
for this experiment. However, the results clearly show that Vertica
outperforms both DBMS-X and Hadoop. We attribute this to Ver-
tica’s aggressive use of data compression (see Section 5.1.3), which
becomes more effective as more data is stored per node.

4.3 Analytical Tasks
To explore more complex uses of both types of systems, we de-

veloped four tasks related to HTML document processing. We first
generate a collection of random HTML documents, similar to that
which a web crawler might find. Each node is assigned a set of

600,000 unique HTML documents, each with a unique URL. In
each document, we randomly generate links to other pages set us-
ing a Zipfian distribution.

We also generated two additional data sets meant to model log
files of HTTP server traffic. These data sets consist of values de-
rived from the HTML documents as well as several randomly gen-
erated attributes. The schema of these three tables is as follows:
CREATE TABLE Documents (

url VARCHAR(100)
PRIMARY KEY,

contents TEXT );

CREATE TABLE Rankings (
pageURL VARCHAR(100)

PRIMARY KEY,
pageRank INT,
avgDuration INT );

CREATE TABLE UserVisits (
sourceIP VARCHAR(16),
destURL VARCHAR(100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(6),
searchWord VARCHAR(32),
duration INT );

Our data generator created unique files with 155 million UserVis-
its records (20GB/node) and 18 million Rankings records (1GB/node)
on each node. The visitDate, adRevenue, and sourceIP fields are
picked uniformly at random from specific ranges. All other fields
are picked uniformly from sampling real-world data sets. Each data
file is stored on each node as a column-delimited text file.

4.3.1 Data Loading
We now describe the procedures for loading the UserVisits and

Rankings data sets. For reasons to be discussed in Section 4.3.5,
only Hadoop needs to directly load the Documents files into its in-
ternal storage system. DBMS-X and Vertica both execute a UDF
that processes the Documents on each node at runtime and loads
the data into a temporary table. We account for the overhead of
this approach in the benchmark times, rather than in the load times.
Therefore, we do not provide results for loading this data set.

Hadoop: Unlike the Grep task’s data set, which was uploaded di-
rectly into HDFS unaltered, the UserVisits and Rankings data sets
needed to be modified so that the first and second columns are sep-
arated by a tab delimiter and all other fields in each line are sepa-
rated by a unique field delimiter. Because there are no schemas in
the MR model, in order to access the different attributes at run time,
the Map and Reduce functions in each task must manually split the
value by the delimiter character into an array of strings.

We wrote a custom data loader executed in parallel on each node
to read in each line of the data sets, prepare the data as needed,
and then write the tuple into a plain text file in HDFS. Loading
the data sets in this manner was roughly three times slower than
using the command-line utility, but did not require us to write cus-

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’; 

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD. 



Hadoop vs. Databases: Select

SELECT pageURL, pageRank 
FROM Rankings WHERE pageRank > X; 
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Figure 6: Selection Task Results

tom input handlers in Hadoop; the MR programs are able to use
Hadoop’s KeyValueTextInputFormat interface on the data
files to automatically split lines of text files into key/values pairs by
the tab delimiter. Again, we found that other data format options,
such as SequenceFileInputFormat or custom Writable
tuples, resulted in both slower load and execution times.

DBMS-X: We used the same loading procedures for DBMS-X as
discussed in Section 4.2. The Rankings table was hash partitioned
across the cluster on pageURL and the data on each node was sorted
by pageRank. Likewise, the UserVisits table was hash partitioned
on destinationURL and sorted by visitDate on each node.

Vertica: Similar to DBMS-X, Vertica used the same bulk load com-
mands discussed in Section 4.2 and sorted the UserVisits and Rank-
ings tables by the visitDate and pageRank columns, respectively.

Results & Discussion: Since the results of loading the UserVisits
and Ranking data sets are similar, we only provide the results for
loading the larger UserVisits data in Figure 3. Just as with loading
the Grep 535MB/node data set (Figure 1), the loading times for
each system increases in proportion to the number of nodes used.

4.3.2 Selection Task
The Selection task is a lightweight filter to find the pageURLs

in the Rankings table (1GB/node) with a pageRank above a user-
defined threshold. For our experiments, we set this threshold pa-
rameter to 10, which yields approximately 36,000 records per data
file on each node.

SQL Commands: The DBMSs execute the selection task using the
following simple SQL statement:

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

MapReduce Program: The MR program uses only a single Map
function that splits the input value based on the field delimiter and
outputs the record’s pageURL and pageRank as a new key/value
pair if its pageRank is above the threshold. This task does not re-
quire a Reduce function, since each pageURL in the Rankings data
set is unique across all nodes.

Results & Discussion: As was discussed in the Grep task, the re-
sults from this experiment, shown in Figure 6, demonstrate again
that the parallel DBMSs outperform Hadoop by a rather significant

factor across all cluster scaling levels. Although the relative per-
formance of all systems degrade as both the number of nodes and
the total amount of data increase, Hadoop is most affected. For
example, there is almost a 50% difference in the execution time
between the 1 node and 10 node experiments. This is again due
to Hadoop’s increased start-up costs as more nodes are added to
the cluster, which takes up a proportionately larger fraction of total
query time for short-running queries.

Another important reason for why the parallel DBMSs are able
to outperform Hadoop is that both Vertica and DBMS-X use an in-
dex on the pageRank column and store the Rankings table already
sorted by pageRank. Thus, executing this query is trivial. It should
also be noted that although Vertica’s absolute times remain low, its
relative performance degrades as the number of nodes increases.
This is in spite of the fact that each node still executes the query in
the same amount of time (about 170ms). But because the nodes fin-
ish executing the query so quickly, the system becomes flooded with
control messages from too many nodes, which then takes a longer
time for the system to process. Vertica uses a reliable message layer
for query dissemination and commit protocol processing [4], which
we believe has considerable overhead when more than a few dozen
nodes are involved in the query.

4.3.3 Aggregation Task
Our next task requires each system to calculate the total adRev-

enue generated for each sourceIP in the UserVisits table (20GB/node),
grouped by the sourceIP column. We also ran a variant of this query
where we grouped by the seven-character prefix of the sourceIP col-
umn to measure the effect of reducing the total number of groups
on query performance. We designed this task to measure the per-
formance of parallel analytics on a single read-only table, where
nodes need to exchange intermediate data with one another in order
compute the final value. Regardless of the number of nodes in the
cluster, this tasks always produces 2.5 million records (53 MB); the
variant query produces 2,000 records (24KB).

SQL Commands: The SQL commands to calculate the total adRev-
enue is straightforward:

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

The variant query is:

SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 7);

MapReduce Program: Unlike the previous tasks, the MR program
for this task consists of both a Map and Reduce function. The Map
function first splits the input value by the field delimiter, and then
outputs the sourceIP field (given as the input key) and the adRev-
enue field as a new key/value pair. For the variant query, only the
first seven characters (representing the first two octets, each stored
as three digits) of the sourceIP are used. These two Map functions
share the same Reduce function that simply adds together all of the
adRevenue values for each sourceIP and then outputs the prefix and
revenue total. We also used MR’s Combine feature to perform the
pre-aggregate before data is transmitted to the Reduce instances,
improving the first query’s execution time by a factor of two [8].

Results & Discussion: The results of the aggregation task experi-
ment in Figures 7 and 8 show once again that the two DBMSs out-
perform Hadoop. The DBMSs execute these queries by having each
node scan its local table, extract the sourceIP and adRevenue fields,
and perform a local group by. These local groups are then merged at

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD. 
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Figure 7: Aggregation Task Results (2.5 million Groups)
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Figure 8: Aggregation Task Results (2,000 Groups)

the query coordinator, which outputs results to the user. The results
in Figure 7 illustrate that the two DBMSs perform about the same
for a large number of groups, as their runtime is dominated by the
cost to transmit the large number of local groups and merge them
at the coordinator. For the experiments using fewer nodes, Vertica
performs somewhat better, since it has to read less data (since it
can directly access the sourceIP and adRevenue columns), but it
becomes slightly slower as more nodes are used.

Based on the results in Figure 8, it is more advantageous to use
a column-store system when processing fewer groups for this task.
This is because the two columns accessed (sourceIP and adRev-
enue) consist of only 20 bytes out of the more than 200 bytes per
UserVisits tuple, and therefore there are relatively few groups that
need to be merged so communication costs are much lower than in
the non-variant plan. Vertica is thus able to outperform the other
two systems from not reading unused parts of the UserVisits tuples.

Note that the execution times for all systems are roughly consis-
tent for any number of nodes (modulo Vertica’s slight slow down as
the number of nodes increases). Since this benchmark task requires
the system to scan through the entire data set, the run time is always
bounded by the constant sequential scan performance and network
repartitioning costs for each node.

4.3.4 Join Task
The join task consists of two sub-tasks that perform a complex

calculation on two data sets. In the first part of the task, each sys-
tem must find the sourceIP that generated the most revenue within
a particular date range. Once these intermediate records are gener-
ated, the system must then calculate the average pageRank of all the
pages visited during this interval. We use the week of January 15-
22, 2000 in our experiments, which matches approximately 134,000
records in the UserVisits table.

The salient aspect of this task is that it must consume two data
different sets and join them together in order to find pairs of Rank-
ing and UserVisits records with matching values for pageURL and
destURL. This task stresses each system using fairly complex op-
erations over a large amount of data. The performance results are
also a good indication on how well the DBMS’s query optimizer
produces efficient join plans.

SQL Commands: In contrast to the complexity of the MR program
described below, the DBMSs need only two fairly simple queries to
complete the task. The first statement creates a temporary table and
uses it to store the output of the SELECT statement that performs
the join of UserVisits and Rankings and computes the aggregates.

Once this table is populated, it is then trivial to use a second query
to output the record with the largest totalRevenue field.

SELECT INTO Temp sourceIP,
AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(‘2000-01-15’)
AND Date(‘2000-01-22’)

GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank
FROM Temp

ORDER BY totalRevenue DESC LIMIT 1;

MapReduce Program: Because the MR model does not have an
inherent ability to join two or more disparate data sets, the MR pro-
gram that implements the join task must be broken out into three
separate phases. Each of these phases is implemented together as a
single MR program in Hadoop, but do not begin executing until the
previous phase is complete.

Phase 1 – The first phase filters UserVisits records that are outside
the desired data range and then joins the qualifying records with
records from the Rankings file. The MR program is initially given
all of the UserVisits and Rankings data files as input.

Map Function: For each key/value input pair, we determine its
record type by counting the number of fields produced when split-
ting the value on the delimiter. If it is a UserVisits record, we
apply the filter based on the date range predicate. These qualify-
ing records are emitted with composite keys of the form (destURL,
K1), where K1 indicates that it is a UserVisits record. All Rankings
records are emitted with composite keys of the form (pageURL,
K2), where K2 indicates that it is a Rankings record. These output
records are repartitioned using a user-supplied partitioning function
that only hashes on the URL portion of the composite key.

Reduce Function: The input to the Reduce function is a single
sorted run of records in URL order. For each URL, we divide its
values into two sets based on the tag component of the composite
key. The function then forms the cross product of the two sets to
complete the join and outputs a new key/value pair with the sour-
ceIP as the key and the tuple (pageURL, pageRank, adRevenue) as
the value.

Phase 2 – The next phase computes the total adRevenue and aver-
age pageRank based on the sourceIP of records generated in Phase
1. This phase uses a Reduce function in order to gather all of the

Hadoop vs. Databases: Aggregation

SELECT sourceIP, SUM(adRevenue) 
FROM UserVisits GROUP BY sourceIP; 

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD. 
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Figure 9: Join Task Results
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Figure 10: UDF Aggregation Task Results

records for a particular sourceIP on a single node. We use the iden-
tity Map function in the Hadoop API to supply records directly to
the split process [1, 8].

Reduce Function: For each sourceIP, the function adds up the
adRevenue and computes the average pageRank, retaining the one
with the maximum total ad revenue. Each Reduce instance outputs
a single record with sourceIP as the key and the value as a tuple of
the form (avgPageRank, totalRevenue).

Phase 3 – In the final phase, we again only need to define a sin-
gle Reduce function that uses the output from the previous phase to
produce the record with the largest total adRevenue. We only exe-
cute one instance of the Reduce function on a single node to scan
all the records from Phase 2 and find the target record.

Reduce Function: The function processes each key/value pair
and keeps track of the record with the largest totalRevenue field.
Because the Hadoop API does not easily expose the total number
records that a Reduce instance will process, there is no way for
the Reduce function to know that it is processing the last record.
Therefore, we override the closing callback method in our Reduce
implementation so that the MR program outputs the largest record
right before it exits.

Results & Discussion: The performance results for this task is dis-
played in Figure 9. We had to slightly change the SQL used in 100
node experiments for Vertica due to an optimizer bug in the system,
which is why there is an increase in the execution time for Vertica
going from 50 to 100 nodes. But even with this increase, it is clear
that this task results in the biggest performance difference between
Hadoop and the parallel database systems. The reason for this dis-
parity is two-fold.

First, despite the increased complexity of the query, the perfor-
mance of Hadoop is yet again limited by the speed with which the
large UserVisits table (20GB/node) can be read off disk. The MR
program has to perform a complete table scan, while the parallel
database systems were able to take advantage of clustered indexes
on UserVisits.visitDate to significantly reduce the amount of data
that needed to be read. When breaking down the costs of the dif-
ferent parts of the Hadoop query, we found that regardless of the
number of nodes in the cluster, phase 2 and phase 3 took on aver-
age 24.3 seconds and 12.7 seconds, respectively. In contrast, phase
1, which contains the Map task that reads in the UserVisits and
Rankings tables, takes an average of 1434.7 seconds to complete.
Interestingly, it takes approximately 600 seconds of raw I/O to read
the UserVisits and Rankings tables off of disk and then another 300

seconds to split, parse, and deserialize the various attributes. Thus,
the CPU overhead needed to parse these tables on the fly is the lim-
iting factor for Hadoop.

Second, the parallel DBMSs are able to take advantage of the fact
that both the UserVisits and the Rankings tables are partitioned by
the join key. This means that both systems are able to do the join
locally on each node, without any network overhead of repartition-
ing before the join. Thus, they simply have to do a local hash join
between the Rankings table and a selective part of the UserVisits
table on each node, with a trivial ORDER BY clause across nodes.

4.3.5 UDF Aggregation Task
The final task is to compute the inlink count for each document

in the dataset, a task that is often used as a component of PageR-
ank calculations. Specifically, for this task, the systems must read
each document file and search for all the URLs that appear in the
contents. The systems must then, for each unique URL, count the
number of unique pages that reference that particular URL across
the entire set of files. It is this type of task that the MR is believed
to be commonly used for.

We make two adjustments for this task in order to make pro-
cessing easier in Hadoop. First, we allow the aggregate to include
self-references, as it is non-trivial for a Map function to discover
the name of the input file it is processing. Second, on each node
we concatenate the HTML documents into larger files when storing
them in HDFS. We found this improved Hadoop’s performance by
a factor of two and helped avoid memory issues with the central
HDFS master when a large number of files are stored in the system.

SQL Commands: To perform this task in a parallel DBMS re-
quires a user-defined function F that parses the contents of each
record in the Documents table and emits URLs into the database.
This function can be written in a general-purpose language and is
effectively identical to the Map program discussed below. With this
function F, we populate a temporary table with a list of URLs and
then can execute a simple query to calculate the inlink count:

SELECT INTO Temp F(contents) FROM Documents;
SELECT url, SUM(value) FROM Temp GROUP BY url;

Despite the simplicity of this proposed UDF, we found that in
practice it was difficult to implement in the DBMSs.

For DBMS-X, we translated the MR program used in Hadoop
into an equivalent C program that uses the POSIX regular expres-
sion library to search for links in the document. For each URL
found in the document contents, the UDF returns a new tuple (URL,

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD. 



“On the first day of logging the Facebook clickstream, more than 400 gigabytes of data 
was collected. The load, index, and aggregation processes for this data set really taxed the 
Oracle data warehouse. Even after significant tuning, we were unable to aggregate a day of 
clickstream data in less than 24 hours.” 

Jeff Hammerbacher, Information Platforms and the Rise of the Data Scientist. ���
In, Beautiful Data, O’Reilly, 2009. 



Source: Wikipedia (Tortoise) 

Why?
Integer.parseInt
String.substring



Schemas are a good idea!
¢  Parsing fields out of flat text files is slow

¢  Schemas define a contract, decoupling logical from physical



Thrift
¢  Originally developed by Facebook, now an Apache project

¢  Provides a DDL with numerous language bindings

l  Compact binary encoding of typed structs
l  Fields can be marked as optional or required

l  Compiler automatically generates code for manipulating messages

¢  Provides RPC mechanisms for service definitions

¢  Alternatives include protobufs and Avro



Thrift

struct Tweet { 
 1: required i32 userId; 
 2: required string userName; 
 3: required string text; 
 4: optional Location loc; 
} 
 
struct Location { 
 1: required double latitude; 
 2: required double longitude; 
} 



Why not…
¢  XML or JSON?

¢  REST?



Logical

Physical



Row vs. Column Stores

R1 

R2 

R3 

R4 

Row store

Column store



Row vs. Column Stores
¢  Row stores

l  Easy to modify a record
l  Might read unnecessary data when processing

¢  Column stores
l  Only read necessary data when processing

l  Tuple writes require multiple accesses



OLTP/OLAP Architecture

OLTP OLAP
ETL���

(Extract, Transform, and Load)



Advantages of Column Stores
¢  Read efficiency

¢  Better compression

¢  Vectorized processing

¢  Opportunities to operate directly on compressed data



Why not in Hadoop?

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE. 

No reason why not!

limitation would not help our goal of fast query pro-
cessing for a huge amount of disk scans on massively
growing data sets.

3) Limited by the page-level data manipulation inside a
traditional DBMS engine, PAX uses a fixed page as the
basic unit of data record organization. With such a fixed
size, PAX would not efficiently store data sets with a
highly-diverse range of data resource types of different
sizes in large data processing systems, such as the one
in Facebook.

III. THE DESIGN AND IMPLEMENTATION OF RCFILE

In this section, we present RCFile (Record Columnar File),
a data placement structure designed for MapReduce-based data
warehouse systems, such as Hive. RCFile applies the concept
of “first horizontally-partition, then vertically-partition” from
PAX. It combines the advantages of both row-store and
column-store. First, as row-store, RCFile guarantees that data
in the same row are located in the same node, thus it has
low cost of tuple reconstruction. Second, as column-store,
RCFile can exploit a column-wise data compression and skip
unnecessary column reads.

A. Data Layout and Compression

RCFile is designed and implemented on top of the Hadoop
Distributed File System (HDFS). As demonstrated in the
example shown in Figure 3, RCFile has the following data
layout to store a table:

1) According to the HDFS structure, a table can have
multiple HDFS blocks.

2) In each HDFS block, RCFile organizes records with
the basic unit of a row group. That is to say, all the
records stored in an HDFS block are partitioned into
row groups. For a table, all row groups have the same
size. Depending on the row group size and the HDFS
block size, an HDFS block can have only one or multiple
row groups.

Fig. 3: An example to demonstrate the data layout of RCFile
in an HDFS block.

3) A row group contains three sections. The first section is
a sync marker that is placed in the beginning of the row
group. The sync marker is mainly used to separate two
continuous row groups in an HDFS block. The second
section is a metadata header for the row group. The
metadata header stores the information items on how
many records are in this row group, how many bytes
are in each column, and how many bytes are in each
field in a column. The third section is the table data
section that is actually a column-store. In this section,
all the fields in the same column are stored continuously
together. For example, as shown in Figure 3, the section
first stores all fields in column A, and then all fields in
column B, and so on.

We now introduce how data is compressed in RCFile. In
each row group, the metadata header section and the table
data section are compressed independently as follows.

• First, for the whole metadata header section, RCFile uses
the RLE (Run Length Encoding) algorithm to compress
data. Since all the values of the field lengths in the same
column are continuously stored in this section, the RLE
algorithm can find long runs of repeated data values,
especially for fixed field lengths.

• Second, the table data section is not compressed as a
whole unit. Rather, each column is independently com-
pressed with the Gzip compression algorithm. RCFile
uses the heavy-weight Gzip algorithm in order to get
better compression ratios than other light-weight algo-
rithms. For example, the RLE algorithm is not used since
the column data is not already sorted. In addition, due
to the lazy decompression technology to be discussed
next, RCFile does not need to decompress all the columns
when processing a row group. Thus, the relatively high
decompression overhead of the Gzip algorithm can be
reduced.

Though currently RCFile uses the same algorithm for all
columns in the table data section, it allows us to use different
algorithms to compress different columns. One future work
related to the RCFile project is to automatically select the
best compression algorithm for each column according to its
data type and data distribution.

B. Data Appending

RCFile does not allow arbitrary data writing operations.
Only an appending interface is provided for data writing in
RCFile because the underlying HDFS currently only supports
data writes to the end of a file. The method of data appending
in RCFile is summarized as follows.

1) RCFile creates and maintains an in-memory column

holder for each column. When a record is appended,
all its fields will be scattered, and each field will
be appended into its corresponding column holder. In
addition, RCFile will record corresponding metadata of
each field in the metadata header.

2) RCFile provides two parameters to control how many
records can be buffered in memory before they are

RCFile



What about semi-structured data?

Required: exactly one occurrence
Optional: 0 or 1 occurrence
Repeated: 0 or more occurrences

Columnar Decomposition

What’s the issue?



What’s the solution?
¢  Google’s Dremel storage model

¢  Open-source implementation in Parquet

Source: https://blog.twitter.com/2013/dremel-made-simple-with-parquet 



Optional and Repeated Elements



Tree Decomposition

Columnar Decomposition

What other information 

do we need to store?



Definition Level



Definition Level: Illustration



Repetition Level



Repetition Level: Illustration

0 marks new record and implies creating a new level1 and level2 list
1 marks new level1 list and implies creating a new level2 list as well.
2 marks every new element in a level2 list.



Putting It Together

Columnar Decomposition



Sample Projection

Project onto contacts.phoneNumber



Physical Layout
Columnar Decomposition

Efficient 
Representations?



Key Ideas
¢  Separate logical from physical

¢  Preserve HDFS block structure

¢  Hide physical storage layout behind InputFormats



Indexes are a good thing!

Source: Wikipedia (Card Catalog) 



Why not in Hadoop?

¢  Non-invasive: requires no changes to Hadoop infrastructure

¢  Useful for speeding up selections on joins

¢  Indexing building itself can be performed using MapReduce

No reason why not!

Source: Dittrich et al. (2010) Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). VLDB. 



status = load ’/tables/statuses/2011/03/01’ 
    using StatusProtobufPigLoader()  
    as (id: long, user_id: long, text: chararray, ...); 
 
filtered = filter status by text matches ’.*\\bhadoop\\b.*’; 
… 

Pig performs a brute force scan
Then promptly chucks out most of the data Stupid.

Hadoop + Full-Text Indexes

Source: Lin et al. (2011) Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MAPREDUCE Workshop. 



“Trying to find a needle in a haystack… with a snowplow”
@squarecog



status = load ’/tables/statuses/2011/03/01’ 
    using StatusProtobufPigLoader()  
    as (id: long, user_id: long, text: chararray, ...); 
 
filtered = filter status by text matches ’.*\\bhadoop\\b.*’; 
… 

Pig performs a brute force scan
Then promptly chucks out most of the data Stupid.

Hadoop + Full-Text Indexes

Uhhh… how about an index?
Use Lucene full-text index



… …

InputSplit InputSplit InputSplit 

Mapper Mapper Mapper 

Client 

LZO blocks 



… …
LZO blocks 

Lucene 
Index 

… …

Build “pseudo-document” for each Lzo block

Index for selection on tweet content

Index pseudo-documents with Lucene

Index-time



… …

InputSplit InputSplit InputSplit 

Mapper Mapper Mapper 

Client 

LZO blocks 

Lucene 
Index 

Only process blocks known to satisfy selection criteria

Run-time



Hadoop Integration
¢  Everything encapsulated in the InputFormat

¢  RecordReaders know what blocks to process and skip

¢  Completely transparent to mappers



Experiments
¢  Selection on tweet content

¢  Varied selectivity range

¢  One day sample data (70m tweets, 8/1/2010)







Analytical model
¢  Task: prediction LZO blocks scanned by selectivity

¢  Poisson model: P(observing k occurrences in a block)

¢  E(fraction of blocks scanned): 
€ 

f (k;λ) =
λke−λ

k!

€ 

1− f (k = 0;λ)

€ 

λ : expected number of occurrences within block



Selectivity 0.001 → 82% of all blocks
Selectivity 0.002 → 97% of all blocks

But: can predict a priori!

Total: ~40k blocks



Key Ideas
¢  Separate logical from physical

¢  Preserve HDFS block structure

¢  Hide physical storage layout behind InputFormats



A Major Step Backwards?
¢  MapReduce is a step backward in database access:

l  Schemas are good
l  Separation of the schema from the application is good

l  High-level access languages are good

¢  MapReduce is poor implementation
l  Brute force and only brute force (no indexes, for example)

¢  MapReduce is not novel

¢  MapReduce is missing features
l  Bulk loader, indexing, updates, transactions…

¢  MapReduce is incompatible with DMBS tools

✔
✔

✔

Source: Blog post by DeWitt and Stonebraker 

? 

? 



“there are known knowns; there are things we know we know. We 
also know there are known unknowns; that is to say we know there 
are some things we do not know. But there are unknown unknowns 
– the ones we don't know we don't know…” – Donald Rumsfeld

Source: Wikipedia 



Known and Unknown Unknowns
¢  Databases are great if you know what questions to ask

l  “Known unknowns”

¢  What if you don’t know what you’re looking for?
l  “Unknown unknowns”



Tweaking Hadoop

Source: Wikipedia (Chisel) 



MapReduce Hybrids
¢  Proposed fixes to problems with MapReduce

¢  Mainly presented for historical interest…



Hadoop + DBs = HadoopDB
¢  Why not have the best of both worlds?

l  Parallel databases focused on performance
l  Hadoop focused on scalability, flexibility, fault tolerance

¢  Key ideas:
l  Co-locate a RDBMS on every slave node

l  To the extent possible, “push down” operations into the DB

Source: Abouzeid et al. (2009) HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. VLDB. 



HadoopDB Architecture

MapReduce best meets the fault tolerance and ability to operate in
heterogeneous environment properties. It achieves fault tolerance
by detecting and reassigning Map tasks of failed nodes to other
nodes in the cluster (preferably nodes with replicas of the input Map
data). It achieves the ability to operate in a heterogeneous environ-
ment via redundant task execution. Tasks that are taking a long time
to complete on slow nodes get redundantly executed on other nodes
that have completed their assigned tasks. The time to complete the
task becomes equal to the time for the fastest node to complete the
redundantly executed task. By breaking tasks into small, granular
tasks, the effect of faults and “straggler” nodes can be minimized.

MapReduce has a flexible query interface; Map and Reduce func-
tions are just arbitrary computations written in a general-purpose
language. Therefore, it is possible for each task to do anything on
its input, just as long as its output follows the conventions defined
by the model. In general, most MapReduce-based systems (such as
Hadoop, which directly implements the systems-level details of the
MapReduce paper) do not accept declarative SQL. However, there
are some exceptions (such as Hive).

As shown in previous work, the biggest issue with MapReduce
is performance [23]. By not requiring the user to first model and
load data before processing, many of the performance enhancing
tools listed above that are used by database systems are not possible.
Traditional business data analytical processing, that have standard
reports and many repeated queries, is particularly, poorly suited for
the one-time query processing model of MapReduce.

Ideally, the fault tolerance and ability to operate in heterogeneous
environment properties of MapReduce could be combined with the
performance of parallel databases systems. In the following sec-
tions, we will describe our attempt to build such a hybrid system.

5. HADOOPDB
In this section, we describe the design of HadoopDB. The goal of

this design is to achieve all of the properties described in Section 3.
The basic idea behind HadoopDB is to connect multiple single-

node database systems using Hadoop as the task coordinator and
network communication layer. Queries are parallelized across
nodes using the MapReduce framework; however, as much of
the single node query work as possible is pushed inside of the
corresponding node databases. HadoopDB achieves fault tolerance
and the ability to operate in heterogeneous environments by
inheriting the scheduling and job tracking implementation from
Hadoop, yet it achieves the performance of parallel databases by
doing much of the query processing inside of the database engine.

5.1 Hadoop Implementation Background
At the heart of HadoopDB is the Hadoop framework. Hadoop

consits of two layers: (i) a data storage layer or the Hadoop Dis-
tributed File System (HDFS) and (ii) a data processing layer or the
MapReduce Framework.

HDFS is a block-structured file system managed by a central
NameNode. Individual files are broken into blocks of a fixed size
and distributed across multiple DataNodes in the cluster. The
NameNode maintains metadata about the size and location of
blocks and their replicas.

The MapReduce Framework follows a simple master-slave ar-
chitecture. The master is a single JobTracker and the slaves or
worker nodes are TaskTrackers. The JobTracker handles the run-
time scheduling of MapReduce jobs and maintains information on
each TaskTracker’s load and available resources. Each job is bro-
ken down into Map tasks based on the number of data blocks that
require processing, and Reduce tasks. The JobTracker assigns tasks
to TaskTrackers based on locality and load balancing. It achieves
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Figure 1: The Architecture of HadoopDB

locality by matching a TaskTracker to Map tasks that process data
local to it. It load-balances by ensuring all available TaskTrackers
are assigned tasks. TaskTrackers regularly update the JobTracker
with their status through heartbeat messages.

The InputFormat library represents the interface between the
storage and processing layers. InputFormat implementations parse
text/binary files (or connect to arbitrary data sources) and transform
the data into key-value pairs that Map tasks can process. Hadoop
provides several InputFormat implementations including one that
allows a single JDBC-compliant database to be accessed by all
tasks in one job in a given cluster.

5.2 HadoopDB’s Components
HadoopDB extends the Hadoop framework (see Fig. 1) by pro-

viding the following four components:

5.2.1 Database Connector
The Database Connector is the interface between independent

database systems residing on nodes in the cluster and TaskTrack-
ers. It extends Hadoop’s InputFormat class and is part of the Input-
Format Implementations library. Each MapReduce job supplies the
Connector with an SQL query and connection parameters such as:
which JDBC driver to use, query fetch size and other query tuning
parameters. The Connector connects to the database, executes the
SQL query and returns results as key-value pairs. The Connector
could theoretically connect to any JDBC-compliant database that
resides in the cluster. However, different databases require different
read query optimizations. We implemented connectors for MySQL
and PostgreSQL. In the future we plan to integrate other databases
including open-source column-store databases such as MonetDB
and InfoBright. By extending Hadoop’s InputFormat, we integrate
seamlessly with Hadoop’s MapReduce Framework. To the frame-
work, the databases are data sources similar to data blocks in HDFS.

5.2.2 Catalog
The catalog maintains metainformation about the databases. This

includes the following: (i) connection parameters such as database
location, driver class and credentials, (ii) metadata such as data
sets contained in the cluster, replica locations, and data partition-
ing properties.

The current implementation of the HadoopDB catalog stores its
metainformation as an XML file in HDFS. This file is accessed by
the JobTracker and TaskTrackers to retrieve information necessary

Source: Abouzeid et al. (2009) HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. VLDB. 



HadoopDB: Query Plans

Source: Abouzeid et al. (2009) HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. VLDB. 

to schedule tasks and process data needed by a query. In the future,
we plan to deploy the catalog as a separate service that would work
in a way similar to Hadoop’s NameNode.

5.2.3 Data Loader
The Data Loader is responsible for (i) globally repartitioning data

on a given partition key upon loading, (ii) breaking apart single
node data into multiple smaller partitions or chunks and (iii) finally
bulk-loading the single-node databases with the chunks.

The Data Loader consists of two main components: Global
Hasher and Local Hasher. The Global Hasher executes a custom-
made MapReduce job over Hadoop that reads in raw data files
stored in HDFS and repartitions them into as many parts as the
number of nodes in the cluster. The repartitioning job does not
incur the sorting overhead of typical MapReduce jobs.

The Local Hasher then copies a partition from HDFS into the
local file system of each node and secondarily partitions the file into
smaller sized chunks based on the maximum chunk size setting.

The hashing functions used by both the Global Hasher and the
Local Hasher differ to ensure chunks are of a uniform size. They
also differ from Hadoop’s default hash-partitioning function to en-
sure better load balancing when executing MapReduce jobs over
the data.

5.2.4 SQL to MapReduce to SQL (SMS) Planner
HadoopDB provides a parallel database front-end to data analysts

enabling them to process SQL queries.
The SMS planner extends Hive [11]. Hive transforms HiveQL, a

variant of SQL, into MapReduce jobs that connect to tables stored
as files in HDFS. The MapReduce jobs consist of DAGs of rela-
tional operators (such as filter, select (project), join, aggregation)
that operate as iterators: each operator forwards a data tuple to the
next operator after processing it. Since each table is stored as a
separate file in HDFS, Hive assumes no collocation of tables on
nodes. Therefore, operations that involve multiple tables usually
require most of the processing to occur in the Reduce phase of
a MapReduce job. This assumption does not completely hold in
HadoopDB as some tables are collocated and if partitioned on the
same attribute, the join operation can be pushed entirely into the
database layer.

To understand how we extended Hive for SMS as well as the dif-
ferences between Hive and SMS, we first describe how Hive creates
an executable MapReduce job for a simple GroupBy-Aggregation
query. Then, we describe how we modify the execution plan for
HadoopDB by pushing most of the query processing logic into the
database layer.

Consider the following query:
SELECT YEAR(saleDate), SUM(revenue)
FROM sales GROUP BY YEAR(saleDate);

Hive processes the above SQL query in a series of phases:
(1) The parser transforms the query into an Abstract Syntax Tree.
(2) The Semantic Analyzer connects to Hive’s internal catalog,

the MetaStore, to retrieve the schema of the sales table. It also
populates different data structures with meta information such as
the Deserializer and InputFormat classes required to scan the table
and extract the necessary fields.

(3) The logical plan generator then creates a DAG of relational
operators, the query plan.

(4) The optimizer restructures the query plan to create a more
optimized plan. For example, it pushes filter operators closer to the
table scan operators. A key function of the optimizer is to break up
the plan into Map or Reduce phases. In particular, it adds a Repar-
tition operator, also known as a Reduce Sink operator, before Join
or GroupBy operators. These operators mark the Map and Reduce
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Figure 2: (a) MapReduce job generated by Hive (b)
MapReduce job generated by SMS assuming sales is par-
titioned by YEAR(saleDate). This feature is still unsup-
ported (c) MapReduce job generated by SMS assuming
no partitioning of sales

phases of a query plan. The Hive optimizer is a simple, naı̈ve, rule-
based optimizer. It does not use cost-based optimization techniques.
Therefore, it does not always generate efficient query plans. This is
another advantage of pushing as much as possible of the query pro-
cessing logic into DBMSs that have more sophisticated, adaptive or
cost-based optimizers.

(5) Finally, the physical plan generator converts the logical query
plan into a physical plan executable by one or more MapReduce
jobs. The first and every other Reduce Sink operator marks a tran-
sition from a Map phase to a Reduce phase of a MapReduce job and
the remaining Reduce Sink operators mark the start of new MapRe-
duce jobs. The above SQL query results in a single MapReduce
job with the physical query plan illustrated in Fig. 2(a). The boxes
stand for the operators and the arrows represent the flow of data.

(6) Each DAG enclosed within a MapReduce job is serialized
into an XML plan. The Hive driver then executes a Hadoop job.
The job reads the XML plan and creates all the necessary operator
objects that scan data from a table in HDFS, and parse and process
one tuple at a time.

The SMS planner modifies Hive. In particular we intercept the
normal Hive flow in two main areas:

(i) Before any query execution, we update the MetaStore with
references to our database tables. Hive allows tables to exist exter-
nally, outside HDFS. The HadoopDB catalog, Section 5.2.2, pro-
vides information about the table schemas and required Deserial-
izer and InputFormat classes to the MetaStore. We implemented
these specialized classes.

(ii) After the physical query plan generation and before the ex-
ecution of the MapReduce jobs, we perform two passes over the
physical plan. In the first pass, we retrieve data fields that are actu-
ally processed by the plan and we determine the partitioning keys
used by the Reduce Sink (Repartition) operators. In the second
pass, we traverse the DAG bottom-up from table scan operators to
the output or File Sink operator. All operators until the first repar-
tition operator with a partitioning key different from the database’s
key are converted into one or more SQL queries and pushed into
the database layer. SMS uses a rule-based SQL generator to recre-
ate SQL from the relational operators. The query processing logic
that could be pushed into the database layer ranges from none (each

SELECT YEAR(saleDate), SUM(revenue) 
FROM sales GROUP BY YEAR(saleDate); 



MapReduce Sucks: Iterative Algorithms
¢  Java verbosity

¢  Hadoop task startup time

¢  Stragglers

¢  Needless data shuffling

¢  Checkpointing at each iteration



HaLoop: MapReduce + Iteration
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ABSTRACT
The growing demand for large-scale data mining and data anal-
ysis applications has led both industry and academia to design
new types of highly scalable data-intensive computing platforms.
MapReduce and Dryad are two popular platforms in which the
dataflow takes the form of a directed acyclic graph of operators.
These platforms lack built-in support for iterative programs, which
arise naturally in many applications including data mining, web
ranking, graph analysis, model fitting, and so on. This paper
presents HaLoop, a modified version of the Hadoop MapReduce
framework that is designed to serve these applications. HaLoop
not only extends MapReduce with programming support for it-
erative applications, it also dramatically improves their efficiency
by making the task scheduler loop-aware and by adding various
caching mechanisms. We evaluated HaLoop on real queries and
real datasets. Compared with Hadoop, on average, HaLoop reduces
query runtimes by 1.85, and shuffles only 4% of the data between
mappers and reducers.

1. INTRODUCTION
The need for highly scalable parallel data processing platforms

is rising due to an explosion in the number of massive-scale data-
intensive applications both in industry (e.g., web-data analysis,
click-stream analysis, network-monitoring log analysis) and in the
sciences (e.g., analysis of data produced by massive-scale simula-
tions, sensor deployments, high-throughput lab equipment).

MapReduce [4] is a well-known framework for programming
commodity computer clusters to perform large-scale data process-
ing in a single pass. A MapReduce cluster can scale to thousands
of nodes in a fault-tolerant manner. Although parallel database sys-
tems [5] may also serve these data analysis applications, they can
be expensive, difficult to administer, and lack fault-tolerance for
long-running queries [16]. Hadoop [7], an open-source MapRe-
duce implementation, has been adopted by Yahoo!, Facebook, and
other companies for large-scale data analysis. With the MapReduce
framework, programmers can parallelize their applications simply
by implementing a map function and a reduce function to transform

⇤Work was done while the author was at University of Washington, Seattle. Current
affiliation: Yingyi Bu - University of California, Irvine.
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Figure 1: PageRank example

and aggregate their data, respectively. Many algorithms naturally
fit into the MapReduce model, such as word counting, equi-join
queries, and inverted list construction [4].

However, many data analysis techniques require iterative com-
putations, including PageRank [15], HITS (Hypertext-Induced
Topic Search) [11], recursive relational queries [3], clustering,
neural-network analysis, social network analysis, and network traf-
fic analysis. These techniques have a common trait: data are pro-
cessed iteratively until the computation satisfies a convergence or
stopping condition. The MapReduce framework does not directly
support these iterative data analysis applications. Instead, program-
mers must implement iterative programs by manually issuing mul-
tiple MapReduce jobs and orchestrating their execution using a
driver program [12].

There are two key problems with manually orchestrating an iter-
ative program in MapReduce. The first problem is that even though
much of the data may be unchanged from iteration to iteration, the
data must be re-loaded and re-processed at each iteration, wasting
I/O, network bandwidth, and CPU resources. The second prob-
lem is that the termination condition may involve detecting when
a fixpoint has been reached — i.e., when the application’s output
does not change for two consecutive iterations. This condition may
itself require an extra MapReduce job on each iteration, again in-
curring overhead in terms of scheduling extra tasks, reading extra
data from disk, and moving data across the network. To illustrate
these problems, consider the following two examples.

EXAMPLE 1. (PageRank) PageRank is a link analysis algo-
rithm that assigns weights (ranks) to each vertex in a graph by
iteratively computing the weight of each vertex based on the weight
of its inbound neighbors. In the relational algebra, the PageRank
algorithm can be expressed as a join followed by an update with

Source: Bu et al. (2010) HaLoop: Efficient Iterative Data Processing on Large Clusters. VLDB. 
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Figure 3: The HaLoop framework, a variant of Hadoop
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1, job 2, and job 3. Each job has three tasks running concurrently
on slave nodes.

In order to accommodate the requirements of iterative data anal-
ysis applications, we made several changes to the basic Hadoop
MapReduce framework. First, HaLoop exposes a new application
programming interface to users that simplifies the expression of
iterative MapReduce programs (Section 2.2). Second, HaLoop’s
master node contains a new loop control module that repeatedly
starts new map-reduce steps that compose the loop body, until
a user-specified stopping condition is met (Section 2.2). Third,
HaLoop uses a new task scheduler for iterative applications that
leverages data locality in these applications (Section 3). Fourth,
HaLoop caches and indexes application data on slave nodes (Sec-
tion 4). As shown in Figure 3, HaLoop relies on the same file
system and has the same task queue structure as Hadoop, but the
task scheduler and task tracker modules are modified, and the loop
control, caching, and indexing modules are new. The task tracker
not only manages task execution, but also manages caches and in-
dices on the slave node, and redirects each task’s cache and index
accesses to local file system.

2.2 Programming Model
The PageRank and descendant query examples are representative

of the types of iterative programs that HaLoop supports. Here, we
present the general form of the recursive programs we support and
a detailed API.

The iterative programs that HaLoop supports can be distilled into
the following core construct:

R
i+1

= R
0

[ (R
i

./ L)

where R
0

is an initial result and L is an invariant relation. A
program in this form terminates when a fixpoint is reached —
when the result does not change from one iteration to the next, i.e.
R

i+1

= R
i

. This formulation is sufficient to express a broad class
of recursive programs.1

1SQL (ANSI SQL 2003, ISO/IEC 9075-2:2003) queries using the
WITH clause can also express a variety of iterative applications, in-
cluding complex analytics that are not typically implemented in
SQL such as k-means and PageRank; see Section 9.5.

A fixpoint is typically defined by exact equality between iter-
ations, but HaLoop also supports the concept of an approximate
fixpoint, where the computation terminates when either the differ-
ence between two consecutive iterations is less than a user-specified
threshold, or the maximum number of iterations has been reached.
Both kinds of approximate fixpoints are useful for expressing con-
vergence conditions in machine learning and complex analytics.
For example, for PageRank, it is common to either use a user-
specified convergence threshold ✏ [15] or a fixed number of iter-
ations as the loop termination condition.

Although our recursive formulation describes the class of iter-
ative programs we intend to support, this work does not develop
a high-level declarative language for expressing recursive queries.
Rather, we focus on providing an efficient foundation API for it-
erative MapReduce programs; we posit that a variety of high-level
languages (e.g., Datalog) could be implemented on this foundation.

To write a HaLoop program, a programmer specifies the loop
body (as one or more map-reduce pairs) and optionally specifies
a termination condition and loop-invariant data. We now discuss
HaLoop’s API (see Figure 16 in the appendix for a summary). Map
and Reduce are similar to standard MapReduce and are required;
the rest of the API is new and is optional.

To specify the loop body, the programmer constructs a multi-step
MapReduce job, using the following functions:

• Map transforms an input hkey, valuei tuple into intermediate
hin key, in valuei tuples.

• Reduce processes intermediate tuples sharing the same in key,
to produce hout key, out valuei tuples. The interface contains
a new parameter for cached invariant values associated with the
in key.

• AddMap and AddReduce express a loop body that consists of
more than one MapReduce step. AddMap (AddReduce) asso-
ciates a Map (Reduce) function with an integer indicating the
order of the step.

HaLoop defaults to testing for equality from one iteration to the
next to determine when to terminate the computation. To specify an
approximate fixpoint termination condition, the programmer uses
the following functions.

• SetFixedPointThreshold sets a bound on the distance be-
tween one iteration and the next. If the threshold is exceeded,
then the approximate fixpoint has not yet been reached, and the
computation continues.

• The ResultDistance function calculates the distance between
two out value sets sharing the same out key. One out value set v

i

is from the reducer output of the current iteration, and the other
out value set v

i�1

is from the previous iteration’s reducer output.
The distance between the reducer outputs of the current iteration
i and the last iteration i � 1 is the sum of ResultDistance on
every key. (It is straightforward to support additional aggrega-
tions besides sum.)

• SetMaxNumOfIterations provides further control of the loop
termination condition. HaLoop terminates a job if the maxi-
mum number of iterations has been executed, regardless of the
distance between the current and previous iteration’s outputs.
SetMaxNumOfIterations can also be used to implement a
simple for-loop.

To specify and control inputs, the programmer uses:

• SetIterationInput associates an input source with a specific
iteration, since the input files to different iterations may be dif-
ferent. For example, in Example 1, at each iteration i + 1, the
input is R

i

[ L.

Source: Bu et al. (2010) HaLoop: Efficient Iterative Data Processing on Large Clusters. VLDB. 
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Figure 4: Boundary between an iterative application and the
framework (HaLoop vs. Hadoop). HaLoop knows and controls
the loop, while Hadoop only knows jobs with one map-reduce
pair.

Figure 5: A schedule exhibiting inter-iteration locality. Tasks
processing the same inputs on consecutive iterations are sched-
uled to the same physical nodes.

• AddStepInput associates an additional input source with an in-
termediate map-reduce pair in the loop body. The output of pre-
ceding map-reduce pair is always in the input of the next map-
reduce pair.

• AddInvariantTable specifies an input table (an HDFS file)
that is loop-invariant. During job execution, HaLoop will cache
this table on cluster nodes.

This programming interface is sufficient to express a variety of
iterative applications. The appendix sketches the implementation
of PageRank (Section 9.2), descendant query (Section 9.3), and k-
means (Section 9.4) using this programming interface. Figure 4
shows the difference between HaLoop and Hadoop, from the appli-
cation’s perspective: in HaLoop, a user program specifies loop set-
tings and the framework controls the loop execution, but in Hadoop,
it is the application’s responsibility to control the loops.

3. LOOP-AWARE TASK SCHEDULING
This section introduces the HaLoop task scheduler. The sched-

uler provides potentially better schedules for iterative programs
than Hadoop’s scheduler. Sections 3.1 and 3.2 illustrate the desired
schedules and scheduling algorithm respectively.

3.1 Inter-Iteration Locality
The high-level goal of HaLoop’s scheduler is to place on the

same physical machines those map and reduce tasks that occur in
different iterations but access the same data. With this approach,
data can more easily be cached and re-used between iterations. For
example, Figure 5 is a sample schedule for the join step (MR1 in
Figure 1(c)) of the PageRank application from Example 1. There
are two iterations and three slave nodes involved in the job.

The scheduling of iteration 1 is no different than in Hadoop. In
the join step of the first iteration, the input tables are L and R0.
Three map tasks are executed, each of which loads a part of one or
the other input data file (a.k.a., a file split). As in ordinary Hadoop,
the mapper output key (the join attribute in this example) is hashed
to determine the reduce task to which it should be assigned. Then,

three reduce tasks are executed, each of which loads a partition of
the collective mapper output. In Figure 5, reducer R00 processes
mapper output keys whose hash value is 0, reducer R10 processes
keys with hash value 1, and reducer R20 processes keys with hash
value 2.

The scheduling of the join step of iteration 2 can take advantage
of inter-iteration locality: the task (either mapper or reducer) that
processes a specific data partition D is scheduled on the physical
node where D was processed in iteration 1. Note that the two file
inputs to the join step in iteration 2 are L and R1.

The schedule in Figure 5 provides the feasibility to reuse loop-
invariant data from past iterations. Because L is loop-invariant,
mappers M01 and M11 would compute identical results to M00

and M10. There is no need to re-compute these mapper outputs,
nor to communicate them to the reducers. In iteration 1, if reducer
input partitions 0, 1, and 2 are stored on nodes n3, n1, and n2

respectively, then in iteration 2, L need not be loaded, processed
or shuffled again. In that case, in iteration 2, only one mapper
M21 for R1-split0 needs to be launched, and thus the three reducers
will only copy intermediate data from M21. With this strategy, the
reducer input is no different, but it now comes from two sources:
the output of the mappers (as usual) and the local disk.

We refer to the property of the schedule in Figure 5 as inter-
iteration locality. Let d be a file split (mapper input partition) or a
reducer input partition2, and let T i

d be a task consuming d in itera-
tion i. Then we say that a schedule exhibits inter-iteration locality
if for all i > 1, T i

d and T i�1
d are assigned to the same physical node

if T i�1
d exists.

The goal of task scheduling in HaLoop is to achieve inter-
iteration locality. To achieve this goal, the only restriction is that
HaLoop requires that the number of reduce tasks should be invari-
ant across iterations, so that the hash function assigning mapper
outputs to reducer nodes remains unchanged.

3.2 Scheduling Algorithm
HaLoop’s scheduler keeps track of the data partitions processed

by each map and reduce task on each physical machine, and it uses
that information to schedule subsequent tasks taking inter-iteration
locality into account.

More specifically, the HaLoop scheduler works as follows. Upon
receiving a heartbeat from a slave node, the master node tries to
assign the slave node an unassigned task that uses data cached on
that node. To support this assignment, the master node maintains a
mapping from each slave node to the data partitions that this node
processed in the previous iteration. If the slave node already has a
full load, the master re-assigns its tasks to a nearby slave node.

Figure 6 gives pseudocode for the scheduling algorithm. Before
each iteration, previous is set to current, and then current is
set to a new empty HashMap object. In a job’s first iteration, the
schedule is exactly the same as that produced by Hadoop (line 2).
After scheduling, the master remembers the association between
data and node (lines 3 and 13). In later iterations, the scheduler
tries to retain previous data-node associations (lines 11 and 12). If
the associations can no longer hold due to the load, the master node
will associate the data with another node (lines 6–8).

4. CACHING AND INDEXING
Thanks to the inter-iteration locality offered by the task sched-

uler, access to a particular loop-invariant data partition is usually
2Mapper input partitions are represented by an input file URL plus
an offset and length; reducer input partitions are represented by an
integer hash value. Two partitions are assumed to be equal if their
representations are equal.

Source: Bu et al. (2010) HaLoop: Efficient Iterative Data Processing on Large Clusters. VLDB. 



HaLoop: Optimizations
¢  Loop-aware scheduling

¢  Caching

l  Reducer input for invariant data
l  Reducer output speeding up convergence checks

Source: Bu et al. (2010) HaLoop: Efficient Iterative Data Processing on Large Clusters. VLDB. 
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Figure 9: PageRank Performance: HaLoop vs. Hadoop (Livejournal Dataset, 50 nodes)
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Figure 10: PageRank Performance: HaLoop vs. Hadoop (Freebase Dataset, 90 nodes)
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Figure 11: Descendant Query Performance: HaLoop vs. Hadoop (Triples Dataset, 90 nodes)
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Figure 12: Descendant Query Performance: HaLoop vs. Hadoop (Livejournal Dataset, 50 nodes)

each iteration, there are few new records produced, so the join’s
selectivity on F is very low. Thus the cost becomes negligible.
By contrast, for PageRank, the index does not help much, because
the selectivity is high. For the descendants query on Livejournal
(Figure 12), in iteration>3, the index does not help either, because
the selectivity becomes high.

I/O in Shuffle Phase of Join Step. To tell how much shuffling
I/O is saved, we compared the amount of shuffled data in the join
step of each iteration. Since HaLoop caches loop-invariant data, the
overhead of shuffling these invariant data are completely avoided.
These savings contribute an important part of the overall perfor-
mance improvement. Figure 9(d), Figure 10(d), Figure 11(d), and
Figure 12(d) plot the sizes of shuffled data. On average, HaLoop’s
join step shuffles 4% as much data as Hadoop’s does.

5.2 Evaluation of Reducer Output Cache
This experiment shares the same hardware and dataset as the re-

ducer input cache experiments. To see how effective HaLoop’s re-
ducer output cache is, we compared the cost of fixpoint evaluation
in each iteration. Since descendant query has a trivial fixpoint eval-
uation step that only requires testing to see if a file is empty, we run

the PageRank implementation in Section 9.2 on Livejournal and
Freebase. In the Hadoop implementation, the fixpoint evaluation is
implemented by an extra MapReduce job. On average, compared
with Hadoop, HaLoop reduces the cost of this step to 40%, by tak-
ing advantage of the reducer output cache and a built-in distributed
fixpoint evaluation. Figure 13(a) and (b) shows the time spent on
fixpoint evaluation in each iteration.

5.3 Evaluation of Mapper Input Cache
Since the mapper input cache aims to reduce data transportation

between slave nodes but we do not know the disk I/O implemen-
tations of EC2 virtual machines, this suite of experiments uses an
8-node physical machine cluster. PageRank and descendant query
cannot utilize the mapper input cache because their inputs change
from iteration to iteration. Thus, the application used in the eval-
uation is the k-means clustering algorithm. We used two real-
world Astronomy datasets (multi-dimensional tuples): cosmo-dark
(46GB) and cosmo-gas (54GB). Detailed hardware and dataset de-
scriptions are in Section 9.6. We vary the number of total iterations,
and plot the algorithm running time in Figure 14. The mapper lo-
cality rate is around 95% since there are not concurrent jobs in our

Source: Bu et al. (2010) HaLoop: Efficient Iterative Data Processing on Large Clusters. VLDB. 



Beyond MapReduce…

Source: Wikipedia (Demolition) 



Hadoop Cluster Architecture
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YARN
¢  Hadoop limitations:

l  Can only run MapReduce
l  What if we want to run other distributed frameworks?

¢  YARN = Yet-Another-Resource-Negotiator
l  Provides API to develop any generic distribution application

l  Handles scheduling and resource request

l  MapReduce (MR2) is one such application in YARN



YARN: Architecture



Today’s Agenda
¢  Making Hadoop more efficient

¢  Tweaking the MapReduce programming model

¢  Setup for… What’s beyond MapReduce?



Source: Wikipedia (Japanese rock garden) 

Questions?


