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Today’s Agenda
¢  Clustering

¢  Classification



Clustering

Source: Wikipedia (Star cluster) 



Problem Setup
¢  Arrange items into clusters

l  High similarity (low distance) between objects in the same cluster
l  Low similarity (high distance) between objects in different clusters

¢  Cluster labeling is a separate problem



Applications
¢  Exploratory analysis of large collections of objects

¢  Collection pre-processing for web search

¢  Image segmentation

¢  Recommender systems

¢  Cluster hypothesis in information retrieval

¢  Computational biology and bioinformatics

¢  Many more!



Distance Metrics
1.  Non-negativity:

2.  Identity: 

3.  Symmetry:

4.  Triangle Inequality

d(x, y) � 0

d(x, y) = 0 () x = y

d(x, y) = d(y, x)

d(x, y)  d(x, z) + d(z, y)



Distance: Jaccard
¢  Given two sets A, B

¢  Jaccard similarity:

J(A,B) =
|A \B|
|A [B|

d(A,B) = 1� J(A,B)



Distance: Norms
¢  Given:

¢  Euclidean distance (L2-norm)

¢  Manhattan distance (L1-norm)

¢  Lr-norm

x = [x1, x2, . . . xn]

y = [y1, y2, . . . yn]

d(x, y) =

vuut
nX

i=0

(xi � yi)
2

d(x, y) =

nX

i=0

|xi � yi|

d(x, y) =

"
nX

i=0
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Distance: Cosine
¢  Given:

¢  Idea: measure distance between the vectors

¢  Thus:

x = [x1, x2, . . . xn]

y = [y1, y2, . . . yn]

cos ✓ =

x · y
|x||y|

sim(x, y) =

Pn
i=0 xiyipPn

i=0 x
2
i

pPn
i=0 y

2
i

d(x, y) = 1� sim(x, y)



Distance: Hamming
¢  Given two bit vectors

¢  Hamming distance: number of elements which differ



Representations: Text
¢  Unigrams (i.e., words)

¢  Shingles = n-grams

l  At the word level
l  At the character level

¢  Feature weights
l  boolean

l  tf.idf

l  BM25

l  …



Representations: Beyond Text
¢  For recommender systems:

l  Items as features for users
l  Users as features for items

¢  For graphs:
l  Adjacency lists as features for vertices

¢  With log data:
l  Behaviors (clicks) as features



Minhash

Source: www.flickr.com/photos/rheinitz/6158837748/ 



Near-Duplicate Detection of Webpages
¢  What’s the source of the problem?

l  Mirror pages (legit)
l  Spam farms (non-legit)

l  Additional complications (e.g., nav bars)

¢  Naïve algorithm:
l  Compute cryptographic hash for webpage (e.g., MD5)

l  Insert hash values into a big hash table

l  Compute hash for new webpage: collision implies duplicate 

¢  What’s the issue?

¢  Intuition:
l  Hash function needs to be tolerant of minor differences

l  High similarity implies higher probability of hash collision



Minhash
¢  Seminal algorithm for near-duplicate detection of webpages

l  Used by AltaVista
l  For details see Broder et al. (1997)

¢  Setup:
l  Documents (HTML pages) represented by shingles (n-grams)

l  Jaccard similarity: dups are pairs with high similarity



Preliminaries: Representation
¢  Sets:

l  A = {e1, e3, e7}
l  B = {e3, e5, e7}

¢  Can be equivalently expressed as matrices:

Element A B

e1 1 0

e2 0 0

e3 1 1

e4 0 0

e5 0 1

e6 0 0

e7 1 1



Preliminaries: Jaccard

M00 = # rows where both elements are 0

Let:

M11 = # rows where both elements are 1

M01 = # rows where A=0, B=1

M10 = # rows where A=1, B=0

Element A B

e1 1 0

e2 0 0

e3 1 1

e4 0 0

e5 0 1

e6 0 0

e7 1 1

J(A,B) =
M11

M01 +M10 +M11



Minhash
¢  Computing minhash

l  Start with the matrix representation of the set
l  Randomly permute the rows of the matrix

l  minhash is the first row with a “one”

¢  Example:

Element A B

e1 1 0

e2 0 0

e3 1 1

e4 0 0

e5 0 1

e6 0 0

e7 1 1

Element A B

e6 0 0

e2 0 0

e5 0 1

e3 1 1

e7 1 1

e4 0 0

e1 1 0

h(A) = e3 h(B) = e5



Minhash and Jaccard

Element A B

e6 0 0

e2 0 0

e5 0 1

e3 1 1

e7 1 1

e4 0 0

e1 1 0

P [h(A) = h(B)] = J(A,B)

M00

M00

M01

M11

M11

M00

M10

M11

M01 +M10 +M11

M11

M01 +M10 +M11



To Permute or Not to Permute?
¢  Permutations are expensive

¢  Interpret the hash value as the permutation

¢  Only need to keep track of the minimum hash value
l  Can keep track of multiple minhash values at once 



Extracting Similar Pairs (LSH)
¢  We know:

¢  Task: discover all pairs with similarity greater than s 

¢  Algorithm:
l  For each object, compute its minhash value

l  Group objects by their hash values
l  Output all pairs within each group

¢  Analysis:
l  Probability we will discovered all pairs is s

l  Probability that any pair is invalid is (1 – s)

¢  What’s the fundamental issue?

P [h(A) = h(B)] = J(A,B)



Two Minhash Signatures
¢  Task: discover all pairs with similarity greater than s 

¢  Algorithm:

l  For each object, compute two minhash values and concatenate together 
into a signature

l  Group objects by their signatures
l  Output all pairs within each group

¢  Analysis:
l  Probability we will discovered all pairs is s2

l  Probability that any pair is invalid is (1 – s)2



k Minhash Signatures
¢  Task: discover all pairs with similarity greater than s 

¢  Algorithm:

l  For each object, compute k minhash values and concatenate together 
into a signature

l  Group objects by their signatures
l  Output all pairs within each group

¢  Analysis:
l  Probability we will discovered all pairs is sk

l  Probability that any pair is invalid is (1 – s)k

¢  What’s the issue now?



n different k Minhash Signatures
¢  Task: discover all pairs with similarity greater than s 

¢  Algorithm:

l  For each object, compute n sets k minhash values
l  For each set, concatenate k minhash values together

l  Within each set:
•  Group objects by their signatures
•  Output all pairs within each group

l  De-dup pairs

¢  Analysis:
l  Probability we will miss a pair is (1 – sk )n

l  Probability that any pair is invalid is n(1 – s)k



Practical Notes
¢  In some cases, checking all candidate pairs may be possible

l  Time cost is small relative to everything else
l  Easy method to discard false positives

¢  Most common practical implementation:
l  Generate M minhash values, randomly select k of them n times

l  Reduces amount of hash computations needed

¢  Determining “authoritative” version is non-trivial



MapReduce Implementation
¢  Map over objects:

l  Generate M minhash values, randomly select k of them n times
l  Each draw yields a signature: emit as intermediate key, value is object id

¢  Shuffle/sort:

¢  Reduce:

l  Receive all object ids with same signature, emit clusters

¢  Second pass to de-dup and group clusters



General Clustering Approaches
¢  Hierarchical

¢  K-Means

¢  Gaussian Mixture Models



Hierarchical Agglomerative Clustering
¢  Start with each document in its own cluster

¢  Until there is only one cluster:

l  Find the two clusters ci and cj, that are most similar
l  Replace ci and cj with a single cluster ci ∪ cj

¢  The history of merges forms the hierarchy



HAC in Action

A B C D E F G H



Cluster Merging
¢  Which two clusters do we merge?

¢  What’s the similarity between two clusters?

l  Single Link: similarity of two most similar members
l  Complete Link: similarity of two least similar members

l  Group Average: average similarity between members



Link Functions
¢  Single link:

l  Uses maximum similarity of pairs:

l  Can result in “straggly” (long and thin) clusters due to chaining effect

¢  Complete link:
l  Use minimum similarity of pairs:

l  Makes more “tight” spherical clusters

sim(c

i

, c

j

) = max

x2ci,y2cj

sim(x, y)

sim(c
i

, c

j

) = min
x2ci,y2cj

sim(x, y)



MapReduce Implementation
¢  What’s the inherent challenge?



K-Means Algorithm
¢  Let d be the distance between documents

¢  Define the centroid of a cluster to be:

¢  Select k random instances {s1, s2,… sk} as seeds.

¢  Until clusters converge:

l  Assign each instance xi to the cluster cj such that d(xi, sj) is minimal
l  Update the seeds to the centroid of each cluster

l  For each cluster cj, sj = µ(cj)

µ(c) =
1

|c|
X

x2c

x



Compute centroids

¤ 
¤ 

K-Means Clustering Example

Pick seeds

Reassign clusters

Reassign clusters

¤ ¤ Compute centroids

Reassign clusters

Converged!



Basic MapReduce Implementation

input point and then updates the location of each cluster
by taking the arithmetic mean of the points it is nearest to.
The algorithm iterates until a stopping condition is met. To
apply this to the MapReduce framework (see Algorithm 5)
we find the cluster membership for each point in the map-
per, emitting the point’s nearest cluster number as the key
and the point itself as the value. The points are extended
by one dimension and initialized to a value of one to repre-
sent the count for cluster normalization. For simplicity, we
load the current cluster estimate into memory in the map-
per; however, later we will discuss a method that can be
used when the clusters are too large to fit into memory. The
MapReduce framework will group the points by their nearest
cluster. The reducer sums all of the points and normalizes
to produce the updated cluster center, which is emitted as
the value with the key being the cluster number. A ‘driver’
program orchestrates the communication of the new clusters
to the mapper during the next k-means iteration.

In practice the previous implementation will perform poorly
as the entire dataset will be transferred over the network
during the shu✏e phase, resulting in a bottleneck due to the
high network tra�c. We can dramatically improve the per-
formance by observing that the cluster mean computation
requires the sum of all of the points and their cardinality.
Addition is associative and commutative which allows us to
perform partial aggregation in a combiner that is similar to
the reducer, except that it will not normalize the result. Af-
ter the combiner runs, it decreases the data sent over the
network from O(N) where N is points to O(KM) where K
is clusters and M is Map tasks. For the k-means algorithm,
the usefulness of the combiner increases as the ratio N

KM

increases.
We can further extend this idea by noting that before the

combiner can run, the mapper output is sorted; however, we
can instead maintain an associative array in the mapper that
holds the partial sums. By using the in-mapper combining
design pattern (see Section 3.2.2), the initial algorithm is
modified to not emit during calls to the Map method, and
instead accumulate the partial sums until the Closemethod
is called after all of the input has been processed (see Al-
gorithm 6). This adds on to the previous optimization by
decreasing the amount of data that is serialized between the
mapper to the combiner and the time taken to sort the map-
per’s output for the combiner. This modification uses up to
twice the memory as the original k-means algorithm while
generally improving the run-time.

To simplify the previous k-means algorithms, we assumed
that there is enough memory to hold the clusters. If this
is not the case then the following extension can be used to
perform k-means in three jobs per iteration. We start by
partitioning the clusters into smaller sets that fit into mem-
ory. In a map-only job emit the point id as the key and a
tuple of the point, nearest available cluster, and the cluster
distance as the value; there is one job for every set of clusters
and they can all be run in parallel. The results from these
jobs are passed through an identity (i.e., emits what is re-
ceived) mapper and the reducer emits the minimum distance
cluster as the key and the point as the value. These clus-
ter assignments are then passed through an identity mapper
and the reducer computes the updated cluster centers.

4.5 Bag-of-Features
In Csurka et al. [3] an analogy between textual words and

1: class Mapper
2: method Configure()
3: c  LoadClusters()
4: method Map(id i, point p)
5: n  NearestClusterID(clusters c, point p)
6: p  ExtendPoint(point p)
7: Emit(clusterid n, point p)
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s  InitPointSum()
4: for all point p 2 points do
5: s  s + p
6: m  ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)

Algorithm 5: K-means clustering algorithm.

1: class Mapper
2: method Configure()
3: c  LoadClusters()
4: H  InitAssociativeArray()

5: method Map(id i, point p)
6: n  NearestClusterID(clusters c, point p)
7: p  ExtendPoint(point p)
8: H{n}  H{n} + p
9: method Close()

10: for all clusterid n 2 H do
11: Emit(clusterid n, point H{n})
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s  InitPointSum()
4: for all point p 2 points do
5: s  s + p
6: m  ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)
Algorithm 6: K-means clustering algorithm with
IMC (in-mapper combining) design pattern.

image key point clusters was drawn to produce an e↵ective
method of capturing a global image feature composed of
many local descriptors. This “bag-of-features” (BoF) model
has been shown to produce state-of-the-art performance in
several applications [3, 9, 10]. To compute BoF vectors, lo-
cal feature points are selected by a detection algorithm [3]
or randomly [16], the local features are clustered, and a his-
togram is calculated from the local feature quantizations.
To apply this algorithm to the MapReduce framework we
will use 3 separate stages: compute features, cluster fea-
tures (see Section 4.4), and create feature quantization his-
tograms. The feature computation is a mapper that takes in
images and outputs the features as a list or individually de-
pending on the clustering and quantization algorithms used.
Two approaches are provided for computing quantization
histograms, Algorithm 7 is most e↵ective when the nearest
cluster operation is fast (i.e., e�cient distance metric with
few clusters and features) while Algorithm 8 distributes the
features to di↵erent mappers which scales to more clusters
and features.

4.6 Background Subtraction
A successful method of segmenting objects of interest in

a surveillance setting is by using background subtraction [7,

(Just a clever way to keep 
track of denominator)



MapReduce Implementation w/ IMC

input point and then updates the location of each cluster
by taking the arithmetic mean of the points it is nearest to.
The algorithm iterates until a stopping condition is met. To
apply this to the MapReduce framework (see Algorithm 5)
we find the cluster membership for each point in the map-
per, emitting the point’s nearest cluster number as the key
and the point itself as the value. The points are extended
by one dimension and initialized to a value of one to repre-
sent the count for cluster normalization. For simplicity, we
load the current cluster estimate into memory in the map-
per; however, later we will discuss a method that can be
used when the clusters are too large to fit into memory. The
MapReduce framework will group the points by their nearest
cluster. The reducer sums all of the points and normalizes
to produce the updated cluster center, which is emitted as
the value with the key being the cluster number. A ‘driver’
program orchestrates the communication of the new clusters
to the mapper during the next k-means iteration.

In practice the previous implementation will perform poorly
as the entire dataset will be transferred over the network
during the shu✏e phase, resulting in a bottleneck due to the
high network tra�c. We can dramatically improve the per-
formance by observing that the cluster mean computation
requires the sum of all of the points and their cardinality.
Addition is associative and commutative which allows us to
perform partial aggregation in a combiner that is similar to
the reducer, except that it will not normalize the result. Af-
ter the combiner runs, it decreases the data sent over the
network from O(N) where N is points to O(KM) where K
is clusters and M is Map tasks. For the k-means algorithm,
the usefulness of the combiner increases as the ratio N

KM

increases.
We can further extend this idea by noting that before the

combiner can run, the mapper output is sorted; however, we
can instead maintain an associative array in the mapper that
holds the partial sums. By using the in-mapper combining
design pattern (see Section 3.2.2), the initial algorithm is
modified to not emit during calls to the Map method, and
instead accumulate the partial sums until the Closemethod
is called after all of the input has been processed (see Al-
gorithm 6). This adds on to the previous optimization by
decreasing the amount of data that is serialized between the
mapper to the combiner and the time taken to sort the map-
per’s output for the combiner. This modification uses up to
twice the memory as the original k-means algorithm while
generally improving the run-time.

To simplify the previous k-means algorithms, we assumed
that there is enough memory to hold the clusters. If this
is not the case then the following extension can be used to
perform k-means in three jobs per iteration. We start by
partitioning the clusters into smaller sets that fit into mem-
ory. In a map-only job emit the point id as the key and a
tuple of the point, nearest available cluster, and the cluster
distance as the value; there is one job for every set of clusters
and they can all be run in parallel. The results from these
jobs are passed through an identity (i.e., emits what is re-
ceived) mapper and the reducer emits the minimum distance
cluster as the key and the point as the value. These clus-
ter assignments are then passed through an identity mapper
and the reducer computes the updated cluster centers.

4.5 Bag-of-Features
In Csurka et al. [3] an analogy between textual words and

1: class Mapper
2: method Configure()
3: c  LoadClusters()
4: method Map(id i, point p)
5: n  NearestClusterID(clusters c, point p)
6: p  ExtendPoint(point p)
7: Emit(clusterid n, point p)
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s  InitPointSum()
4: for all point p 2 points do
5: s  s + p
6: m  ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)

Algorithm 5: K-means clustering algorithm.

1: class Mapper
2: method Configure()
3: c  LoadClusters()
4: H  InitAssociativeArray()

5: method Map(id i, point p)
6: n  NearestClusterID(clusters c, point p)
7: p  ExtendPoint(point p)
8: H{n}  H{n} + p
9: method Close()

10: for all clusterid n 2 H do
11: Emit(clusterid n, point H{n})
1: class Reducer
2: method Reduce(clusterid n, points [p1, p2, . . .])
3: s  InitPointSum()
4: for all point p 2 points do
5: s  s + p
6: m  ComputeCentroid(point s)
7: Emit(clusterid n, centroid m)
Algorithm 6: K-means clustering algorithm with
IMC (in-mapper combining) design pattern.

image key point clusters was drawn to produce an e↵ective
method of capturing a global image feature composed of
many local descriptors. This “bag-of-features” (BoF) model
has been shown to produce state-of-the-art performance in
several applications [3, 9, 10]. To compute BoF vectors, lo-
cal feature points are selected by a detection algorithm [3]
or randomly [16], the local features are clustered, and a his-
togram is calculated from the local feature quantizations.
To apply this algorithm to the MapReduce framework we
will use 3 separate stages: compute features, cluster fea-
tures (see Section 4.4), and create feature quantization his-
tograms. The feature computation is a mapper that takes in
images and outputs the features as a list or individually de-
pending on the clustering and quantization algorithms used.
Two approaches are provided for computing quantization
histograms, Algorithm 7 is most e↵ective when the nearest
cluster operation is fast (i.e., e�cient distance metric with
few clusters and features) while Algorithm 8 distributes the
features to di↵erent mappers which scales to more clusters
and features.

4.6 Background Subtraction
A successful method of segmenting objects of interest in

a surveillance setting is by using background subtraction [7,



Implementation Notes
¢  Standard setup of iterative MapReduce algorithms

l  Driver program sets up MapReduce job
l  Waits for completion

l  Checks for convergence

l  Repeats if necessary

¢  Must be able keep cluster centroids in memory
l  With large k, large feature spaces, potentially an issue

l  Memory requirements of centroids grow over time!

¢  Variant: k-medoids



Clustering w/ Gaussian Mixture Models
¢  Model data as a mixture of Gaussians

¢  Given data, recover model parameters

Source: Wikipedia (Cluster analysis) 



Gaussian Distributions
¢  Univariate Gaussian (i.e., Normal):

l  A random variable with such a distribution we write as:

¢  Multivariate Gaussian:

l  A vector-value random variable with such a distribution we write as:

p(x;µ,�

2
) =

1p
2⇡�

exp

✓
� 1

2�

2
(x� µ)

2

◆

x ⇠ N (µ,�2)

x ⇠ N (µ,⌃)

p(x;µ,⌃) =
1

(2⇡)n/2|⌃|1/2
exp

✓
�1

2

(x� µ)T⌃�1
(x� µ)

◆



Univariate Gaussian

Source: Wikipedia (Normal Distribution) 



Multivariate Gaussians
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Figure 2:
The figure on the left shows a heatmap indicating values of the density function for an

axis-aligned multivariate Gaussian with mean µ =

[

3
2

]

and diagonal covariance matrix Σ =
[

25 0
0 9

]

. Notice that the Gaussian is centered at (3, 2), and that the isocontours are all

elliptically shaped with major/minor axis lengths in a 5:3 ratio. The figure on the right
shows a heatmap indicating values of the density function for a non axis-aligned multivariate

Gaussian with mean µ =

[

3
2

]

and covariance matrix Σ =

[

10 5
5 5

]

. Here, the ellipses are

again centered at (3, 2), but now the major and minor axes have been rotated via a linear
transformation.

6

µ =


3
2

�
µ =


3
2

�
⌃ =


25 0
0 9

�
⌃ =


10 5
5 5

�

Source: Lecture notes by Chuong B. Do (IIT Delhi) 



Gaussian Mixture Models
¢  Model parameters

l  Number of components:
l  “Mixing” weight vector:

l  For each Gaussian, mean and covariance matrix:

¢  Varying constraints on co-variance matrices
l  Spherical vs. diagonal vs. full

l  Tied vs. untied

µ1:K ⌃1:K

⇡
K



Learning for Simple Univariate Case
¢  Problem setup:

l  Given number of components:
l  Given points:

l  Learn parameters:

¢  Model selection criterion: maximize likelihood of data
l  Introduce indicator variables:

l  Likelihood of the data:

K

⇡, µ1:K ,�2
1:K

x1:N

p(x1:N , z1:N,1:K |µ1:K ,�

2
1:K ,⇡)

zn,k =

⇢
1 if xn is in cluster k

0 otherwise



EM to the Rescue!
¢  We’re faced with this:

l  It’d be a lot easier if we knew the z’s!

¢  Expectation Maximization
l  Guess the model parameters
l  E-step: Compute posterior distribution over latent (hidden) variables 

given the model parameters
l  M-step: Update model parameters using posterior distribution computed 

in the E-step
l  Iterate until convergence

p(x1:N , z1:N,1:K |µ1:K ,�

2
1:K ,⇡)





EM for Univariate GMMs
¢  Initialize:

¢  Iterate:

l  E-step: compute expectation of z variables

l  M-step: compute new model parameters

⇡, µ1:K ,�2
1:K

E[zn,k] =
N (xn|µk,�

2
k) · ⇡kP

k0 N (xn|µk0
,�

2
k0) · ⇡k0

⇡k =
1

N

X

n

zn,k

µk =
1P

n zn,k

X

n

zn,k · xn

�

2
k =

1P
n zn,k

X

n

zn,k||xn � µk||2



MapReduce Implementation

E[zn,k] =
N (xn|µk,�

2
k) · ⇡kP

k0 N (xn|µk0
,�

2
k0) · ⇡k0

⇡k =
1

N

X

n

zn,k

µk =
1P

n zn,k

X

n

zn,k · xn

�

2
k =

1P
n zn,k

X

n

zn,k||xn � µk||2

z1,1

z2,1

z2,1

zN,1

z1,2

z2,2

z2,3

zN,2

z1,K

z2,K

z2,K

zN,K

…

…x1

x2

x3

xN

Map

Reduce



K-Means vs. GMMs

Map

Reduce

K-Means GMM

Compute distance of 
points to centroids

Recompute new centroids

E-step: compute expectation 
of z indicator variables

M-step: update values of 
model parameters



Summary
¢  Hierarchical clustering

l  Difficult to implement in MapReduce

¢  K-Means
l  Straightforward implementation in MapReduce

¢  Gaussian Mixture Models
l  Implementation conceptually similar to k-means, more “bookkeeping”



Source: Wikipedia (Sorting) 

Classification



Supervised Machine Learning
¢  The generic problem of function induction given sample 

instances of input and output
l  Classification: output draws from finite discrete labels

l  Regression: output is a continuous value

¢  Focus here on supervised classification
l  Suffices to illustrate large-scale machine learning

This is not meant to be an exhaustive 
treatment of machine learning!



Applications
¢  Spam detection

¢  Content (e.g., movie) classification

¢  POS tagging

¢  Friendship recommendation

¢  Document ranking

¢  Many, many more!



Supervised Binary Classification
¢  Restrict output label to be binary

l  Yes/No
l  1/0

¢  Binary classifiers form a primitive building block for multi-class 
problems
l  One vs. rest classifier ensembles

l  Classifier cascades



Limits of Supervised Classification?
¢  Why is this a big data problem?

l  Isn’t gathering labels a serious bottleneck?

¢  Solution: user behavior logs
l  Learning to rank

l  Computational advertising

l  Link recommendation

¢  The virtuous cycle of data-driven products



¢  Induce
l  Such that loss is minimized

f : X ! Y
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¢  Given D = {(xi, yi)}ni

¢  Typically, consider functions of a parametric form:
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Key insight: machine learning as an optimization problem!
(closed form solutions generally not possible)



Gradient Descent: Preliminaries
¢  Rewrite:

¢  Compute gradient:
l  “Points” to fastest increasing “direction”

¢  So, at any point:

rL(✓) =


@L(✓)

@w0
,
@L(✓)

@w1
, . . .

@L(✓)

@wd

�

b = a� �rL(a)

L(a) � L(b)

*

* caveats

argmin
✓

L(✓)
argmin

✓

1

n

nX

i=0

`(f(xi; ✓), yi)



Gradient Descent: Iterative Update
¢  Start at an arbitrary point, iteratively update:

¢  We have:

¢  Lots of details:
l  Figuring out the step size

l  Getting stuck in local minima

l  Convergence rate

l  …
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Gradient Descent
Repeat until convergence:
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Intuition behind the math…

Old weights
Update based on gradient

New weights
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Gradient Descent

Source: Wikipedia (Hills) 
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Lots More Details…
¢  Gradient descent is a “first order” optimization technique

l  Often, slow convergence
l  Conjugate techniques accelerate convergence

¢  Newton and quasi-Newton methods:
l  Intuition: Taylor expansion

l  Requires the Hessian (square matrix of second order partial derivatives): 
impractical to fully compute
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Source: Wikipedia (Hammer) 

Logistic Regression



Logistic Regression: Preliminaries
¢  Given

¢  Let’s define:

¢  Interpretation:

D = {(xi, yi)}ni
xi = [x1, x2, x3, . . . , xd]

y 2 {0, 1}

ln
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�
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f(x; w) : Rd ! {0, 1}

f(x; w) =

⇢
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0 if w · x < t



Relation to the Logistic Function
¢  After some algebra:

¢  The logistic function:
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Training an LR Classifier
¢  Maximize the conditional likelihood:

¢  Define the objective in terms of conditional log likelihood:

l  We know                     so:

l  Substituting:
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LR Classifier Update Rule
¢  Take the derivative:

¢  General form for update rule:

¢  Final update rule:
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Lots more details…
¢  Regularization

¢  Different loss functions

¢  …

Want more details? ���
Take a real machine-learning course!
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compute partial gradient

single reducer

mappers

update model 
iterate until convergence
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MapReduce Implementation



Shortcomings
¢  Hadoop is bad at iterative algorithms

l  High job startup costs
l  Awkward to retain state across iterations

¢  High sensitivity to skew
l  Iteration speed bounded by slowest task

¢  Potentially poor cluster utilization
l  Must shuffle all data to a single reducer

¢  Some possible tradeoffs
l  Number of iterations vs. complexity of computation per iteration

l  E.g., L-BFGS: faster convergence, but more to compute



Gradient Descent

Source: Wikipedia (Hills) 



Stochastic Gradient Descent

Source: Wikipedia (Water Slide) 



Gradient Descent

Stochastic Gradient Descent (SGD)

“batch” learning: update model after considering all 
training instances

“online” learning: update model after considering each 
(randomly-selected) training instance

In practice… just as good!
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Practical Notes
¢  Most common implementation:

l  Randomly shuffle training instances
l  Stream instances through learner

¢  Single vs. multi-pass approaches

¢  “Mini-batching” as a middle ground between batch and 
stochastic gradient descent

We’ve solved the iteration problem!

What about the single reducer problem?



Source: Wikipedia (Orchestra) 

Ensembles



Ensemble Learning
¢  Learn multiple models, combine results from different models 

to make prediction

¢  Why does it work?
l  If errors uncorrelated, multiple classifiers being wrong is less likely

l  Reduces the variance component of error

¢  A variety of different techniques:
l  Majority voting

l  Simple weighted voting:

l  Model averaging

l  …
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Practical Notes
¢  Common implementation:

l  Train classifiers on different input partitions of the data
l  Embarassingly parallel!

¢  Contrast with bagging

¢  Contrast with boosting



MapReduce Implementation
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MapReduce Implementation: Details
¢  Shuffling/resort training instances before learning

¢  Two possible implementations:

l  Mappers write model out as “side data”
l  Mappers emit model as intermediate output



Sentiment Analysis Case Study

¢  Binary polarity classification: {positive, negative} sentiment

l  Independently interesting task
l  Illustrates end-to-end flow

l  Use the “emoticon trick” to gather data

¢  Data
l  Test: 500k positive/500k negative tweets from 9/1/2011

l  Training: {1m, 10m, 100m} instances from before (50/50 split)

¢  Features: Sliding window byte-4grams

¢  Models:
l  Logistic regression with SGD (L2 regularization)

l  Ensembles of various sizes (simple weighted voting)

Lin and Kolcz, SIGMOD 2012
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Takeaway Lesson
¢  Big data “recipe” for problem solving

l  Simple technique
l  Simple features

l  Lots of data

¢  Usually works very well!



Today’s Agenda
¢  Clustering

¢  Classification



Source: Wikipedia (Japanese rock garden) 

Questions?


