Big Data Infrastructure

Session 6: MapReduce - Data Mining

Jimmy Lin
University of Maryland
Monday, March 9, 2015

Today's Agenda

- Clustering
- Classification

Clustering

Problem Setup

- Arrange items into clusters
- High similarity (low distance) between objects in the same cluster
- Low similarity (high distance) between objects in different clusters
- Cluster labeling is a separate problem

Applications

- Exploratory analysis of large collections of objects
- Collection pre-processing for web search
- Image segmentation
- Recommender systems
- Cluster hypothesis in information retrieval
o Computational biology and bioinformatics
o Many more!

Distance Metrics

।. Non-negativity:

$$
d(x, y) \geq 0
$$

2. Identity:

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=0 \Longleftrightarrow \mathrm{x}=\mathrm{y}
$$

3. Symmetry:

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})
$$

4. Triangle Inequality

$$
\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})
$$

Distance: Jaccard

- Given two sets A, B
- Jaccard similarity:

$$
\begin{aligned}
\mathrm{J}(A, B) & =\frac{|A \cap B|}{|A \cup B|} \\
\mathrm{d}(A, B) & =1-\mathrm{J}(A, B)
\end{aligned}
$$

Distance: Norms

- Given: $\quad \mathrm{x}=\left[x_{1}, x_{2}, \ldots x_{n}\right]$

$$
\mathrm{y}=\left[y_{1}, y_{2}, \ldots y_{n}\right]
$$

- Euclidean distance (L_{2}-norm)

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\sqrt{\sum_{i=0}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

- Manhattan distance (L_{1}-norm)

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\sum_{i=0}^{n}\left|x_{i}-y_{i}\right|
$$

- L_{r}-norm

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\left[\sum_{i=0}^{n}\left|x_{i}-y_{i}\right|^{r}\right]^{1 / r}
$$

Distance: Cosine

- Given: $\quad \mathrm{x}=\left[x_{1}, x_{2}, \ldots x_{n}\right]$

$$
\mathbf{y}=\left[y_{1}, y_{2}, \ldots y_{n}\right]
$$

- Idea: measure distance between the vectors

$$
\cos \theta=\frac{\mathrm{x} \cdot \mathrm{y}}{|\mathrm{x}||\mathrm{y}|}
$$

o Thus:

$$
\begin{aligned}
& \operatorname{sim}(\mathrm{x}, \mathrm{y})=\frac{\sum_{i=0}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=0}^{n} x_{i}^{2}} \sqrt{\sum_{i=0}^{n} y_{i}^{2}}} \\
& \mathrm{~d}(\mathrm{x}, \mathrm{y})=1-\operatorname{sim}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Distance: Hamming

- Given two bit vectors
- Hamming distance: number of elements which differ

Representations: Text

- Unigrams (i.e., words)
- Shingles $=n$-grams
- At the word level
- At the character level
- Feature weights
- boolean
- tf.idf
- BM25

Representations: Beyond Text

- For recommender systems:
- Items as features for users
- Users as features for items
- For graphs:
- Adjacency lists as features for vertices
- With log data:
- Behaviors (clicks) as features

Near-Duplicate Detection of Webpages

- What's the source of the problem?
- Mirror pages (legit)
- Spam farms (non-legit)
- Additional complications (e.g., nav bars)
- Naïve algorithm:
- Compute cryptographic hash for webpage (e.g., MD5)
- Insert hash values into a big hash table
- Compute hash for new webpage: collision implies duplicate
o What's the issue?
- Intuition:
- Hash function needs to be tolerant of minor differences
- High similarity implies higher probability of hash collision

Minhash

- Seminal algorithm for near-duplicate detection of webpages
- Used by AltaVista
- For details see Broder et al. (1997)
- Setup:
- Documents (HTML pages) represented by shingles (n-grams)
- Jaccard similarity: dups are pairs with high similarity

Preliminaries: Representation

- Sets:
- $A=\left\{e_{1}, e_{3}, e_{7}\right\}$
- $B=\left\{e_{3}, e_{5}, e_{7}\right\}$
- Can be equivalently expressed as matrices:

Element	A	B
e_{1}	l	0
e_{2}	0	0
e_{3}	l	l
e_{4}	0	0
e_{5}	0	1
e_{6}	0	0
e_{7}	l	l

Preliminaries: Jaccard

Element	A	B	
e_{1}	I	0	
e_{2}	0	0	Let:
e_{3}	I	I	$M_{00}=\#$ rows where both elements are 0
e_{4}	0	0	$M_{11}=\#$ rows where both elements are I
e_{5}	0	l	$M_{01}=\#$ rows where $A=0, B=1$
e_{6}	0	0	$M_{10}=\#$ rows where $A=I, B=0$
e_{7}	l	l	

$$
\mathrm{J}(A, B)=\frac{M_{11}}{M_{01}+M_{10}+M_{11}}
$$

Minhash

- Computing minhash
- Start with the matrix representation of the set
- Randomly permute the rows of the matrix
- minhash is the first row with a "one"
o Example:

$$
h(A)=e_{3} h(B)=e_{5}
$$

Element	A	B
e_{1}	l	0
e_{2}	0	0
e_{3}	I	I
e_{4}	0	0
e_{5}	0	I
e_{6}	0	0
e_{7}	l	l

Element	A	B
e_{6}	0	0
e_{2}	0	0
e_{5}	0	1
e_{3}	1	1
e_{7}	I	1
e_{4}	0	0
e_{1}	l	0

Minhash and Jaccard

Element	A	B	
e_{6}	0	0	M_{00}
e_{2}	0	0	M_{00}
e_{5}	0	1	M_{01}
e_{3}	1	1	M_{11}
e_{7}	1	1	M_{11}
e_{4}	0	0	M_{00}
e_{1}	1	0	M_{10}
$P[h(A)=h(B)]=\mathrm{J}(A, B)$			
M_{11}			M_{11}
$\overline{M_{01}+M_{10}+M_{11}}$			$+M_{10}$

To Permute or Not to Permute?

- Permutations are expensive
- Interpret the hash value as the permutation
- Only need to keep track of the minimum hash value
- Can keep track of multiple minhash values at once

Extracting Similar Pairs (LSH)

- We know: $\quad P[h(A)=h(B)]=\mathrm{J}(A, B)$
- Task: discover all pairs with similarity greater than s
- Algorithm:
- For each object, compute its minhash value
- Group objects by their hash values
- Output all pairs within each group
- Analysis:
- Probability we will discovered all pairs is s
- Probability that any pair is invalid is ($1-s$)
- What's the fundamental issue?

Two Minhash Signatures

- Task: discover all pairs with similarity greater than s
- Algorithm:
- For each object, compute two minhash values and concatenate together into a signature
- Group objects by their signatures
- Output all pairs within each group
- Analysis:
- Probability we will discovered all pairs is s^{2}
- Probability that any pair is invalid is $(\mathrm{I}-s)^{2}$

k Minhash Signatures

o Task: discover all pairs with similarity greater than s

- Algorithm:
- For each object, compute k minhash values and concatenate together into a signature
- Group objects by their signatures
- Output all pairs within each group
- Analysis:
- Probability we will discovered all pairs is s^{k}
- Probability that any pair is invalid is $(I-s)^{k}$
- What's the issue now?

n different k Minhash Signatures

- Task: discover all pairs with similarity greater than s
- Algorithm:
- For each object, compute n sets k minhash values
- For each set, concatenate k minhash values together
- Within each set:
- Group objects by their signatures
- Output all pairs within each group
- De-dup pairs
- Analysis:
- Probability we will miss a pair is $\left(I-s^{k}\right)^{n}$
- Probability that any pair is invalid is $n(I-s)^{k}$

Practical Notes

- In some cases, checking all candidate pairs may be possible
- Time cost is small relative to everything else
- Easy method to discard false positives
- Most common practical implementation:
- Generate M minhash values, randomly select k of them n times
- Reduces amount of hash computations needed
o Determining "authoritative" version is non-trivial

MapReduce Implementation

- Map over objects:
- Generate M minhash values, randomly select k of them n times
- Each draw yields a signature: emit as intermediate key, value is object id
o Shuffle/sort:
- Reduce:
- Receive all object ids with same signature, emit clusters
- Second pass to de-dup and group clusters

General Clustering Approaches

- Hierarchical
- K-Means
- Gaussian Mixture Models

Hierarchical Agglomerative Clustering

- Start with each document in its own cluster
- Until there is only one cluster:
- Find the two clusters c_{i} and c_{j}, that are most similar
- Replace c_{i} and c_{j} with a single cluster $c_{i} \cup c_{j}$
o The history of merges forms the hierarchy

HAC in Action

Cluster Merging

- Which two clusters do we merge?
- What's the similarity between two clusters?
- Single Link: similarity of two most similar members
- Complete Link: similarity of two least similar members
- Group Average: average similarity between members

Link Functions

- Single link:
- Uses maximum similarity of pairs:

$$
\operatorname{sim}\left(c_{i}, c_{j}\right)=\max _{x \in c_{i}, y \in c_{j}} \operatorname{sim}(x, y)
$$

- Can result in "straggly" (long and thin) clusters due to chaining effect
- Complete link:
- Use minimum similarity of pairs:

$$
\operatorname{sim}\left(c_{i}, c_{j}\right)=\min _{x \in c_{i}, y \in c_{j}} \operatorname{sim}(x, y)
$$

- Makes more "tight" spherical clusters

MapReduce Implementation

- What's the inherent challenge?

K-Means Algorithm

- Let d be the distance between documents
- Define the centroid of a cluster to be:

$$
\mu(c)=\frac{1}{|c|} \sum_{\mathrm{x} \in c} \mathrm{x}
$$

- Select k random instances $\left\{s_{1}, s_{2}, \ldots s_{k}\right\}$ as seeds.
- Until clusters converge:
- Assign each instance x_{i} to the cluster c_{j} such that $\mathrm{d}\left(x_{i}, s_{j}\right)$ is minimal
- Update the seeds to the centroid of each cluster
- For each cluster c_{j}, $s_{j}=\mu\left(c_{j}\right)$

K-Means Clustering Example

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters
Converged!

Basic MapReduce Implementation

```
class Mapper
    method Configure()
        c\leftarrow LoadClusters()
    method Map(id i, point p)
            n\leftarrowNEArestClusterID(clusters c, point p)
            p\leftarrowExtendPoint(point p)
            Emit(clusterid n, point p)
    class Reducer
    method REDUCE(clusterid n, points [ }\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots..]
            s\leftarrow InitPointSum()
            for all point p\in points do
                s\leftarrows+p
            m\leftarrowComputeCentroid(point s)
            Emit(clusterid n, centroid m)
```


MapReduce Implementation w/ IMC

```
class Mapper
    method Configure()
        \(c \leftarrow \operatorname{LoadClusters}()\)
        \(H \leftarrow \operatorname{Init} A s s o c i a t i v e A r r a y()\)
    method \(\operatorname{Map}(\mathrm{id} i\), point \(p)\)
        \(n \leftarrow\) NearestClusteriD(clusters \(c\), point \(p\) )
        \(p \leftarrow \operatorname{ExtendPoint}(\) point \(p\) )
        \(H\{n\} \leftarrow H\{n\}+p\)
        method Close()
        for all clusterid \(n \in H\) do
        Emit(clusterid n, point \(H\{n\}\) )
class Reducer
    method REDUCE(clusterid \(n\), points \(\left[p_{1}, p_{2}, \ldots\right]\) )
            \(s \leftarrow \operatorname{InitPointSum}()\)
            for all point \(p \in\) points do
            \(s \leftarrow s+p\)
            \(m \leftarrow\) ComputeCentroid (point \(s\) )
7: \(\quad \operatorname{Emit}(\) clusterid \(n\), centroid \(m\) )
```


Implementation Notes

- Standard setup of iterative MapReduce algorithms
- Driver program sets up MapReduce job
- Waits for completion
- Checks for convergence
- Repeats if necessary
- Must be able keep cluster centroids in memory
- With large k, large feature spaces, potentially an issue
- Memory requirements of centroids grow over time!
- Variant: k-medoids

Clustering w/ Gaussian Mixture Models

- Model data as a mixture of Gaussians
- Given data, recover model parameters

Gaussian Distributions

- Univariate Gaussian (i.e., Normal):

$$
p\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

- A random variable with such a distribution we write as:

$$
x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

o Multivariate Gaussian:

$$
p(\mathrm{x} ; \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathrm{x}-\mu)^{T} \Sigma^{-1}(\mathrm{x}-\mu)\right)
$$

- A vector-value random variable with such a distribution we write as:

$$
\mathrm{x} \sim \mathcal{N}(\mu, \Sigma)
$$

Univariate Gaussian

Multivariate Gaussians

$$
\mu=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
25 & 0 \\
0 & 9
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
10 & 5 \\
5 & 5
\end{array}\right]
$$

Gaussian Mixture Models

- Model parameters
- Number of components: K
- "Mixing" weight vector: π
- For each Gaussian, mean and covariance matrix: $\mu_{1: K} \quad \Sigma_{1: K}$
- Varying constraints on co-variance matrices
- Spherical vs. diagonal vs. full
- Tied vs. untied

Learning for Simple Univariate Case

- Problem setup:
- Given number of components: K
- Given points: $x_{1: N}$
- Learn parameters: $\pi, \mu_{1: K}, \sigma_{1: K}^{2}$
- Model selection criterion: maximize likelihood of data
- Introduce indicator variables:

$$
z_{n, k}= \begin{cases}1 & \text { if } x_{n} \text { is in cluster } k \\ 0 & \text { otherwise }\end{cases}
$$

- Likelihood of the data:

$$
p\left(x_{1: N}, z_{1: N, 1: K} \mid \mu_{1: K}, \sigma_{1: K}^{2}, \pi\right)
$$

EM to the Rescue!

- We're faced with this:

$$
p\left(x_{1: N}, z_{1: N, 1: K} \mid \mu_{1: K}, \sigma_{1: K}^{2}, \pi\right)
$$

- It'd be a lot easier if we knew the z 's!
- Expectation Maximization
- Guess the model parameters
- E-step: Compute posterior distribution over latent (hidden) variables given the model parameters
- M-step: Update model parameters using posterior distribution computed in the E-step
- Iterate until convergence

- I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

EM for Univariate GMMs

- Initialize: $\pi, \mu_{1: K}, \sigma_{1: K}^{2}$
- Iterate:
- E-step: compute expectation of z variables

$$
\mathbb{E}\left[z_{n, k}\right]=\frac{\mathcal{N}\left(x_{n} \mid \mu_{k}, \sigma_{k}^{2}\right) \cdot \pi_{k}}{\sum_{k^{\prime}} \mathcal{N}\left(x_{n} \mid \mu_{k^{\prime}}, \sigma_{k^{\prime}}^{2}\right) \cdot \pi_{k^{\prime}}}
$$

- M-step: compute new model parameters

$$
\begin{aligned}
\pi_{k} & =\frac{1}{N} \sum_{n} z_{n, k} \\
\mu_{k} & =\frac{1}{\sum_{n} z_{n, k}} \sum_{n} z_{n, k} \cdot x_{n} \\
\sigma_{k}^{2} & =\frac{1}{\sum_{n} z_{n, k}} \sum_{n} z_{n, k}\left\|x_{n}-\mu_{k}\right\|^{2}
\end{aligned}
$$

MapReduce Implementation

Map
$\mathbb{E}\left[z_{n, k}\right]=\frac{\mathcal{N}\left(x_{n} \mid \mu_{k}, \sigma_{k}^{2}\right) \cdot \pi_{k}}{\sum_{k^{\prime}} \mathcal{N}\left(x_{n} \mid \mu_{k^{\prime}}, \sigma_{k^{\prime}}^{2}\right) \cdot \pi_{k^{\prime}}}$

Reduce

$$
\begin{aligned}
\pi_{k} & =\frac{1}{N} \sum_{n} z_{n, k} \\
\mu_{k} & =\frac{1}{\sum_{n} z_{n, k}} \sum_{n} z_{n, k} \cdot x_{n} \\
\sigma_{k}^{2} & =\frac{1}{\sum_{n} z_{n, k}} \sum_{n} z_{n, k}\left\|x_{n}-\mu_{k}\right\|^{2}
\end{aligned}
$$

K-Means vs. GMMs

K-Means

Map
Compute distance of points to centroids

Reduce
Recompute new centroids

E-step: compute expectation of z indicator variables

M-step: update values of model parameters

Summary

- Hierarchical clustering
- Difficult to implement in MapReduce
- K-Means
- Straightforward implementation in MapReduce
- Gaussian Mixture Models
- Implementation conceptually similar to k-means, more "bookkeeping"

Supervised Machine Learning

- The generic problem of function induction given sample instances of input and output
- Classification: output draws from finite discrete labels
- Regression: output is a continuous value
- Focus here on supervised classification
- Suffices to illustrate large-scale machine learning

This is not meant to be an exhaustive treatment of machine learning!

Applications

- Spam detection
- Content (e.g., movie) classification
- POS tagging
- Friendship recommendation
- Document ranking
o Many, many more!

Supervised Binary Classification

- Restrict output label to be binary
- Yes/No
- I/O
- Binary classifiers form a primitive building block for multi-class problems
- One vs. rest classifier ensembles
- Classifier cascades

Limits of Supervised Classification?

- Why is this a big data problem?
- Isn't gathering labels a serious bottleneck?
- Solution: user behavior logs
- Learning to rank
- Computational advertising
- Link recommendation
- The virtuous cycle of data-driven products

The Task

- Given $D=\left\{\left(\mathrm{x}_{i}, \stackrel{,}{y_{i}}\right)\right\}_{i}^{n}$
(sparse) feature vector

$$
\begin{aligned}
\mathrm{x}_{i} & =\left[x_{1}, x_{2}, x_{3}, \ldots, x_{d}\right] \\
y & \in\{0,1\}
\end{aligned}
$$

- Induce $f: X \rightarrow Y$
- Such that loss is minimized

$$
\frac{1}{n} \sum_{i=0}^{n} \ell\left(f\left(\mathrm{x}_{i}\right), y_{i}\right)
$$

- Typically, consider functions of a parametric form:

$$
\arg \min _{\theta} \frac{1}{n} \sum_{i=0}^{n} \ell\left(f\left(x_{i} ; \theta\right), y_{i}\right)
$$

Key insight: machine learning as an optimization problem! (closed form solutions generally not possible)

Gradient Descent: Preliminaries

- Rewrite:

$$
\arg \min _{\theta} \frac{1}{n} \sum_{i=0}^{n} \ell\left(f\left(\mathrm{x}_{i} ; \theta\right), y_{i}\right) \quad \square \arg \min _{\theta} L(\theta)
$$

- Compute gradient:
- "Points" to fastest increasing "direction"

$$
\nabla L(\theta)=\left[\frac{\partial L(\theta)}{\partial w_{0}}, \frac{\partial L(\theta)}{\partial w_{1}}, \ldots \frac{\partial L(\theta)}{\partial w_{d}}\right]
$$

- So, at any point: *

$$
\begin{aligned}
& \mathrm{b}=\mathrm{a}-\gamma \nabla L(\mathrm{a}) \\
& L(\mathrm{a}) \geq L(\mathrm{~b})
\end{aligned}
$$

Gradient Descent: Iterative Update

- Start at an arbitrary point, iteratively update:

$$
\theta^{(t+1)} \leftarrow \theta^{(t)}-\gamma^{(t)} \nabla L\left(\theta^{(t)}\right)
$$

- We have:

$$
L\left(\theta^{(0)}\right) \geq L\left(\theta^{(1)}\right) \geq L\left(\theta^{(2)}\right) \ldots
$$

- Lots of details:
- Figuring out the step size
- Getting stuck in local minima
- Convergence rate

Gradient Descent

Repeat until convergence:

$$
\theta^{(t+1)} \leftarrow \theta^{(t)}-\gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell\left(f\left(\mathrm{x}_{i} ; \theta^{(t)}\right), y_{i}\right)
$$

Intuition behind the math...

$$
\begin{gathered}
\theta^{(t+1)} \leftarrow \theta^{(t)}-\gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell\left(f\left(\mathrm{x}_{i} ; \theta^{(t)}\right), y_{i}\right) \\
\text { Update based on gradient }
\end{gathered}
$$

Gradient Descent

$$
\theta^{(t+1)} \leftarrow \theta^{(t)}-\gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell\left(f\left(\mathrm{x}_{i} ; \theta^{(t)}\right), y_{i}\right)
$$

Lots More Details...

- Gradient descent is a "first order" optimization technique
- Often, slow convergence
- Conjugate techniques accelerate convergence
- Newton and quasi-Newton methods:
- Intuition: Taylor expansion

$$
f(x+\Delta x)=f(x)+f^{\prime}(x) \Delta x+\frac{1}{2} f^{\prime \prime}(x) \Delta x^{2}
$$

- Requires the Hessian (square matrix of second order partial derivatives): impractical to fully compute

Logistic Regression

Logistic Regression: Preliminaries

- Given $D=\left\{\left(\mathrm{x}_{i}, y_{i}\right)\right\}_{i}^{n}$

$$
\begin{aligned}
\mathrm{x}_{i} & =\left[x_{1}, x_{2}, x_{3}, \ldots, x_{d}\right] \\
y & \in\{0,1\}
\end{aligned}
$$

- Let's define:

$$
\begin{aligned}
& f(\mathrm{x} ; \mathrm{w}): \mathbb{R}^{d} \rightarrow\{0,1\} \\
& f(\mathrm{x} ; \mathrm{w})=\left\{\begin{array}{l}
1 \text { if } \mathrm{w} \cdot \mathrm{x} \geq t \\
0 \text { if } \mathrm{w} \cdot \mathrm{x}<t
\end{array}\right.
\end{aligned}
$$

- Interpretation:

$$
\begin{aligned}
& \ln \left[\frac{\operatorname{Pr}(y=1 \mid \mathrm{x})}{\operatorname{Pr}(y=0 \mid \mathrm{x})}\right]=\mathrm{w} \cdot \mathrm{x} \\
& \ln \left[\frac{\operatorname{Pr}(y=1 \mid \mathrm{x})}{1-\operatorname{Pr}(y=1 \mid \mathrm{x})}\right]=\mathrm{w} \cdot \mathrm{x}
\end{aligned}
$$

Relation to the Logistic Function

- After some algebra:

$$
\begin{aligned}
& \operatorname{Pr}(y=1 \mid x)=\frac{e^{\mathrm{w} \cdot \mathrm{x}}}{1+e^{\mathrm{w} \cdot \mathrm{x}}} \\
& \operatorname{Pr}(y=0 \mid x)=\frac{1}{1+e^{\mathrm{w} \cdot \mathrm{x}}}
\end{aligned}
$$

- The logistic function:

$$
f(z)=\frac{e^{z}}{e^{z}+1}
$$

Training an LR Classifier

- Maximize the conditional likelihood:

$$
\arg \max _{\mathrm{w}} \prod_{i=1}^{n} \operatorname{Pr}\left(y_{i} \mid \mathrm{x}_{i}, \mathrm{w}\right)
$$

- Define the objective in terms of conditional log likelihood:

$$
L(\mathrm{w})=\sum_{i=1}^{n} \ln \operatorname{Pr}\left(y_{i} \mid \mathrm{x}_{i}, \mathrm{w}\right)
$$

- We know $y \in\{0,1\}$ so:

$$
\operatorname{Pr}(y \mid \mathrm{x}, \mathrm{w})=\operatorname{Pr}(y=1 \mid \mathrm{x}, \mathrm{w})^{y}[1-\operatorname{Pr}(y=0 \mid \mathrm{x}, \mathrm{w})]^{(1-y)}
$$

- Substituting:

$$
L(\mathrm{w})=\sum_{i=1}^{n}\left(y_{i} \ln \operatorname{Pr}\left(y_{i}=1 \mid \mathrm{x}_{i}, \mathrm{w}\right)+\left(1-y_{i}\right) \ln \operatorname{Pr}\left(y_{i}=0 \mid \mathrm{x}_{i}, \mathrm{w}\right)\right)
$$

LR Classifier Update Rule

- Take the derivative:

$$
\begin{aligned}
L(\mathrm{w}) & =\sum_{i=1}^{n}\left(y_{i} \ln \operatorname{Pr}\left(y_{i}=1 \mid \mathrm{x}_{i}, \mathrm{w}\right)+\left(1-y_{i}\right) \ln \operatorname{Pr}\left(y_{i}=0 \mid \mathrm{x}_{i}, \mathrm{w}\right)\right) \\
\frac{\partial}{\partial \mathrm{w}} L(\mathrm{w}) & =\sum_{i=0}^{n} \mathrm{x}_{i}\left(y_{i}-\operatorname{Pr}\left(y_{i}=1 \mid \mathrm{x}_{i}, \mathrm{w}\right)\right)
\end{aligned}
$$

- General form for update rule:

$$
\begin{aligned}
\mathrm{w}^{(t+1)} & \leftarrow \mathrm{w}^{(t)}+\gamma^{(t)} \nabla_{\mathrm{w}} L\left(\mathrm{w}^{(t)}\right) \\
\nabla L(\mathrm{w}) & =\left[\frac{\partial L(\mathrm{w})}{\partial w_{0}}, \frac{\partial L(\mathrm{w})}{\partial w_{1}}, \ldots \frac{\partial L(\mathrm{w})}{\partial w_{d}}\right]
\end{aligned}
$$

o Final update rule:

$$
\mathrm{w}_{i}^{(t+1)} \leftarrow \mathrm{w}_{i}^{(t)}+\gamma^{(t)} \sum_{j=0}^{n} x_{j, i}\left(y_{j}-\operatorname{Pr}\left(y_{j}=1 \mid \mathrm{x}_{j}, \mathrm{w}^{(t)}\right)\right)
$$

Lots more details...

- Regularization
- Different loss functions

Want more details?
Take a real machine-learning course!

MapReduce Implementation

$$
\theta^{(t+1)} \leftarrow \theta^{(t)}-\gamma^{(t)} \frac{1}{n} \underbrace{\sum_{i=0}^{n} \nabla \ell\left(f\left(\mathrm{x}_{i} ; \theta^{(t)}\right)\right.}_{\text {single reducer }}, y_{i})
$$

Shortcomings

- Hadoop is bad at iterative algorithms
- High job startup costs
- Awkward to retain state across iterations
- High sensitivity to skew
- Iteration speed bounded by slowest task
- Potentially poor cluster utilization
- Must shuffle all data to a single reducer
- Some possible tradeoffs
- Number of iterations vs. complexity of computation per iteration
- E.g., L-BFGS: faster convergence, but more to compute

Batch vs. Online

Gradient Descent

$$
\begin{aligned}
& \theta^{(t+1)} \leftarrow \theta^{(t)}-\gamma^{(t)} \frac{1}{n} \sum_{i=0}^{n} \nabla \ell\left(f\left(\mathrm{x}_{i} ; \theta^{(t)}\right), y_{i}\right) \\
& \text { "batch" learning: update model after considering all } \\
& \text { training instances }
\end{aligned}
$$

Stochastic Gradient Descent (SGD)

$$
\theta^{(t+1)} \leftarrow \theta^{(t)}-\gamma^{(t)} \nabla \ell\left(f\left(\mathrm{x} ; \theta^{(t)}\right), y\right)
$$

"online" learning: update model after considering each (randomly-selected) training instance

In practice... just as good!

Practical Notes

- Most common implementation:
- Randomly shuffle training instances
- Stream instances through learner
- Single vs. multi-pass approaches
o "Mini-batching" as a middle ground between batch and stochastic gradient descent

We've solved the iteration problem!
What about the single reducer problem?

Ensembles

Ensemble Learning

- Learn multiple models, combine results from different models to make prediction
- Why does it work?
- If errors uncorrelated, multiple classifiers being wrong is less likely
- Reduces the variance component of error
- A variety of different techniques:
- Majority voting
- Simple weighted voting:

$$
y=\arg \max _{y \in Y} \sum_{k=1}^{n} \alpha_{k} p_{k}(y \mid \mathrm{x})
$$

- Model averaging

Practical Notes

- Common implementation:
- Train classifiers on different input partitions of the data
- Embarassingly parallel!
- Contrast with bagging
- Contrast with boosting

MapReduce Implementation

$$
\theta^{(t+1)} \leftarrow \theta^{(t)}-\gamma^{(t)} \nabla \ell\left(f\left(\mathrm{x} ; \theta^{(t)}\right), y\right)
$$

MapReduce Implementation: Details

- Shuffling/resort training instances before learning
- Two possible implementations:
- Mappers write model out as "side data"
- Mappers emit model as intermediate output

Sentiment Analysis Case Study

Lin and Kolcz, SIGMOD 2012

- Binary polarity classification: \{positive, negative\} sentiment
- Independently interesting task
- Illustrates end-to-end flow
- Use the "emoticon trick" to gather data
- Data
- Test: 500 k positive/500k negative tweets from $9 / \mathrm{I} / 20 \mathrm{II}$
- Training: $\{1 \mathrm{~m}, 10 \mathrm{~m}, 100 \mathrm{~m}\}$ instances from before ($50 / 50 \mathrm{split}$)
- Features: Sliding window byte-4grams
- Models:
- Logistic regression with SGD (L2 regularization)
- Ensembles of various sizes (simple weighted voting)

Diminishing returns...

Takeaway Lesson

- Big data "recipe" for problem solving
- Simple technique
- Simple features
- Lots of data
o Usually works very well!

Today's Agenda

- Clustering
- Classification

