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Today’s Agenda

O Clustering

O Classification
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Problem Setup

O Arrange items into clusters

e High similarity (low distance) between objects in the same cluster
e Low similarity (high distance) between objects in different clusters

O Cluster labeling is a separate problem



Applications

Exploratory analysis of large collections of objects

Collection pre-processing for web search

Image segmentation

Cluster hypothesis in information retrieval

O

O

O

O Recommender systems
O

O Computational biology and bioinformatics
O

Many more!



Distance Metrics
I. Non-negativity:
d(x,y) >0
2. ldentity:
d(x,y) =0 <= x=y
3. Symmetry:
d(x,y) = d(y,x)

4. Triangle Inequality

d(x,y) < d(x,2) + d(z,y)



Distance: Jaccard
o Given two sets A, B
O Jaccard similarity:

_|AnB|
- |AuU B|

d(A,B) =1 — J(A, B)

J(A, B)




Distance: Norms

o Given: x=[11,70,...7,]
y = [y1,y2: - Yn]

O Euclidean distance (L,-norm)

n

d(x,y) = \ Z (73 — yi)2

1=0

O Manhattan distance (L,-norm)

d(x,y) = ) |z —ui
1=0

O L.-norm

n 1/r
d(x,y) = [Z z; — yz”T:|
1=0



Distance: Cosine

o Given: x=[11,70,...7,]
y = [y1,y2: - Yn]

O ldea: measure distance between the vectors

cos 0 = =)
x|y
O Thus:
: Zn—o LiYi
sim(x,y) = =
\/Z?:o a;f \/Z?zo yz2

d(x,y) =1 —sim(x,y)



Distance: Hamming

o Given two bit vectors

O Hamming distance: number of elements which differ



Representations: Text

O Unigrams (i.e., words)

O Shingles = n-grams

e At the word level
e At the character level

O Feature weights

e boolean
o tf.idf

e BM25
o



Representations: Beyond Text

O For recommender systems:

e |tems as features for users

e Users as features for items

O For graphs:

e Adjacency lists as features for vertices

O With log data:

e Behaviors (clicks) as features



Source: www.flickr.com/photos/rheinitz/615883



Near-Duplicate Detection of Webpages

O What's the source of the problem!?
e Mirror pages (legit)
e Spam farms (non-legit)
e Additional complications (e.g., nav bars)

O Naive algorithm:

e Compute cryptographic hash for webpage (e.g., MD5)
e Insert hash values into a big hash table

e Compute hash for new webpage: collision implies duplicate

O What’s the issue?

O Intuition:

e Hash function needs to be tolerant of minor differences

e High similarity implies higher probability of hash collision



Minhash

O Seminal algorithm for near-duplicate detection of webpages

e Used by AltaVista
e For details see Broder et al. (1997)

O Setup:

e Documents (HTML pages) represented by shingles (n-grams)

® Jaccard similarity: dups are pairs with high similarity



Preliminaries: Representation

O Sets:

o A={e), &3 €5}
° B={e; e5 ¢}

O Can be equivalently expressed as matrices:

Element A B
e, I 0
e, 0 0
€; I I
e, 0 0
e 0 I
€ 0 0

I I



Preliminaries: Jaccard

Element A B
e, I 0
e, 0 0
€; I
e, 0 0
e 0 I
€ 0 0
e, I I
J(A7 B) —

Let:

My, = # rows where both elements are 0
M, = # rows where both elements are |
M,, = # rows where A=0, B=1
M,, = # rows where A=, B=0

My

Moy + Mo + My



Minhash

O Computing minhash

e Start with the matrix representation of the set
e Randomly permute the rows of the matrix

e minhash is the first row with a “one”

o Example: h(A) = e; h(B) = es
Element A B Element A B
e, I 0 € 0 0
e, 0 0 e, 0 0
€3 I I e; 0 I
ey 0 0 e; I I
e; 0 I ey I I
€ 0 0 e, 0 0



Minhash and Jaccard

Element A

0
0
e 0
I
I
0
I

o O - — — O O

M11 Mll

Moy + Myo + M4 Moy + Myo + My,



To Permute or Not to Permute?

O Permutations are expensive

O Interpret the hash value as the permutation

O Only need to keep track of the minimum hash value

e Can keep track of multiple minhash values at once



Extracting Similar Pairs (LSH)

O We know: P[h(A) = h(B)]=J(A, B)
O Task: discover all pairs with similarity greater than s

O Algorithm:

® For each object, compute its minhash value
e Group objects by their hash values
e Output all pairs within each group

O Analysis:
e Probability we will discovered all pairs is s

e Probability that any pair is invalid is (I —s)

O What’s the fundamental issue?



Two Minhash Sighatures

O Task: discover all pairs with similarity greater than s

O Algorithm:

® For each object, compute two minhash values and concatenate together
into a signature
e Group objects by their signatures

e Output all pairs within each group

O Analysis:

e Probability we will discovered all pairs is s?

e Probability that any pair is invalid is (I — s)?



k Minhash Signatures

O Task: discover all pairs with similarity greater than s

O Algorithm:

® For each object, compute k minhash values and concatenate together
into a signature

e Group objects by their signatures
e Output all pairs within each group

O Analysis:
e Probability we will discovered all pairs is s

e Probability that any pair is invalid is (I — s)*

O What’s the issue now!



n different k Minhash Sighatures

O Task: discover all pairs with similarity greater than s

O Algorithm:

® For each object, compute n sets k minhash values
e For each set, concatenate k minhash values together
e W/ithin each set:

* Group objects by their signatures
* Output all pairs within each group
e De-dup pairs

O Analysis:
e Probability we will miss a pair is (I —s¢)"

e Probability that any pair is invalid is n(1 — s)



Practical Notes

O In some cases, checking all candidate pairs may be possible

e Time cost is small relative to everything else

e Easy method to discard false positives

O Most common practical implementation:

e Generate M minhash values, randomly select k of them n times

e Reduces amount of hash computations needed

O Determining “authoritative” version is non-trivial



MapReduce Implementation

O Map over objects:

e Generate M minhash values, randomly select k of them n times
e Each draw yields a signature: emit as intermediate key, value is object id

o Shuffle/sort:

O Reduce:

e Receive all object ids with same signature, emit clusters

O Second pass to de-dup and group clusters



General Clustering Approaches

O Hierarchical

O K-Means

O Gaussian Mixture Models



Hierarchical Agglomerative Clustering

o Start with each document in its own cluster

O Until there is only one cluster:

® Find the two clusters ¢; and ¢, that are most similar
® Replace ¢; and ¢; with a single cluster ¢; U ¢

O The history of merges forms the hierarchy



HAC in Action




Cluster Merging

O Which two clusters do we merge!?

O What's the similarity between two clusters!?

e Single Link: similarity of two most similar members
e Complete Link: similarity of two least similar members

e Group Average: average similarity between members



Link Functions

O Single link:
e Uses maximum similarity of pairs:
sim(ci,c;) = max sim(z,y)
TEC;,YEeC;

e Can result in “straggly” (long and thin) clusters due to chaining effect
o Complete link:
e Use minimum similarity of pairs:

sim(c;, ¢j) = melgmynec sim(z, y)
x J

e Makes more “tight” spherical clusters



MapReduce Implementation

O What's the inherent challenge?



K-Means Algorithm

O Let d be the distance between documents

O Define the centroid of a cluster to be:

u(C)Z‘%ZX

XEC

O Select k random instances {s, s,,... S} as seeds.

O Until clusters converge:

® Assign each instance x; to the cluster ¢ such that d(x, s;) is minimal
e Update the seeds to the centroid of each cluster

e For each cluster ¢, s; = u(c)



K-Means Clustering Example

Pick seeds

Reassign clusters
Compute centroids
Reassign clusters
Compute centroids

Reassign clusters

Converged!



Basic MapReduce Implementation

class MAPPER
method CONFIGURE()
¢ < LOADCLUSTERS()
method MAP(id i, point p)
n <— NEARESTCLUSTERID (clusters ¢, point p)

p < EXTENDPOINT(point p
EmIT(clusterid n p(gint p) ) S——___ (Just a clever way to keep
’ track of denominator)

class REDUCER
method REDUCE(clusterid n, points [p1, p2, - ..])
s < INITPOINTSUM()
for all point p € points do
S S+ p
m <— COMPUTECENTROID(point s)
EMiT(clusterid n, centroid m)



MapReduce Implementation w/ IMC

class MAPPER

method CONFIGURE()
¢ < LOADCLUSTERS()
H < INITASSOCIATIVEARRAY()

method MAaPr(id ¢, point p)
n <— NEARESTCLUSTERID (clusters ¢, point p)
p < EXTENDPOINT(point p)
Hin} < Hin} +p

method CLOSE()
for all clusterid n € H do

EMIT(clusterid n, point H{n})

: class REDUCER
method REDUCE(clusterid n, points [p1, p2, . ..])
s <— INITPOINTSUM()
for all point p € points do
S S+ p
m <— COMPUTECENTROID(point s)
EMmIT (clusterid n, centroid m)

—_



Implementation Notes

O Standard setup of iterative MapReduce algorithms

® Driver program sets up MapReduce job
e Waits for completion
e Checks for convergence

® Repeats if necessary

O Must be able keep cluster centroids in memory

e W/ith large k, large feature spaces, potentially an issue

e Memory requirements of centroids grow over time!

O Variant: k-medoids



Clustering w/ Gaussian Mixture Models

O Model data as a mixture of Gaussians

O Given data, recover model parameters

1

03

Source: Wikipedia (Cluster analysis)



Gaussian Distributions

O Univariate Gaussian (i.e., Normal):

1 1
° 2 p— I — 2
plaip,0?) = —— exp ( sz —p) )

e A random variable with such a distribution we write as:

z ~N(p,0%)

O Multivariate Gaussian:

p(X; Hy E) — (27’(’)”’/12‘2‘1/2 exXp (_%(X o M)Tz_l(x o M))

e A vector-value random variable with such a distribution we write as:

x ~ N(p, ¥)



Univariate Gaussian

1.0

0.0

0.8

0.2

Source: Wikipedia (Normal Distribution)




Multivariate Gaussians

Source: Lecture notes by Chuong B. Do (IIT Delhi)



Gaussian Mixture Models

O Model parameters

e Number of components: K
e “Mixing” weight vector: 7

e For each Gaussian, mean and covariance matrix: H1:K 2i{.x

O Varying constraints on co-variance matrices

e Spherical vs. diagonal vs. full

e Tied vs. untied



Learning for Simple Univariate Case

O Problem setup:

e Given number of components: K
e Given points: 1.

2
® Learn parameters: T, 41:K,071.

O Model selection criterion: maximize likelihood of data

® Introduce indicator variables:
1 if z,, is in cluster k
“n.k —

0 otherwise

e Likelihood of the data:

p(xlzNa Zl:N,l:K‘,LleK7 U%:Ka 7T)



EM to the Rescue!

O We're faced with this:
p(CL‘LN, Zl:N,l:K|M1:K7 U%;Ka 7T)
e |t’d be a lot easier if we knew the Z’s!

O Expectation Maximization

e Guess the model parameters

e E-step: Compute posterior distribution over latent (hidden) variables
given the model parameters

e M-step: Update model parameters using posterior distribution computed
in the E-step

® [terate until convergence



*T TINK Nou SHOULD & MORE
EXYLIUT HERZE N STEP TWOM



EM for Univariate GMMs

o 2
O Initialize: 7, p1.x,07. %

O lIterate:

e E-step: compute expectation of z variables

T Y N (@, o) - e

e M-step: compute new model parameters




MapReduce Implementation

Map

E[Zn,k] =

N<:Un|;uk7 0-]%) * T

2 N(@nlpwr, 03)) - s
k k

Z Z2 . Zk

Z; Z, Z;k

Z; Z;3 Z;k

ZN | ZN 2 ZNK
Reduce




K-Means vs. GMMs

Map

Reduce

K-Means

Compute distance of
points to centroids

Recompute new centroids

GMM

E-step: compute expectation
of z indicator variables

M-step: update values of
model parameters



sSummary

O Hierarchical clustering
e Difficult to implement in MapReduce
O K-Means

e Straightforward implementation in MapReduce

O Gaussian Mixture Models

e Implementation conceptually similar to k-means, more “bookkeeping”






Supervised Machine Learning

O The generic problem of function induction given sample
instances of input and output

e Classification: output draws from finite discrete labels

® Regression: output is a continuous value

O Focus here on supervised classification

e Suffices to illustrate large-scale machine learning

This is not meant to be an exhaustive
treatment of machine learning!



Applications

Spam detection

Content (e.g., movie) classification
POS tagging

Friendship recommendation

Document ranking

O O O O O O

Many, many more!



Supervised Binary Classification

O Restrict output label to be binary
e Yes/No
e |/0
O Binary classifiers form a primitive building block for multi-class
problems

e One vs. rest classifier ensembles

e Classifier cascades



Limits of Supervised Classification?

O Why is this a big data problem!?
e Isn’t gathering labels a serious bottleneck?

O Solution: user behavior logs

® Learning to rank
e Computational advertising

e Link recommendation

O The virtuous cycle of data-driven products



The Task

J label
o Given D = {(x;,y:)}"
? (sparse) feature vector
X = [xla L2, X3,y ... axd]

y €{0,1}

O Induce f: X =Y

e Such that loss is minimized

_Z€ Xz yz
1= OT

O Typically, consider functions of a parametric form:

argmm - Z€ (i;0), ;)

Tj model parameters

loss function



Key insight: machine learning as an optimization problem!
(closed form solutions generally not possible)



Gradient Descent: Preliminaries

O Rewrite:
1 .
= y | L(6
arg meln n ;f(f(xz, 0),v:) arg meln (0)
0 Compute gradient:

e “Points” to fastest increasing “direction”

" [OL(O) OL(B)  OL(0)
VL) = [ e
o So, at any point: *
b=a—~VL(a)
L(a) > L(b)

* caveats



Gradient Descent: Iterative Update

O Start at an arbitrary point, iteratively update:
D) ) _ Ay e

O We have:
LOW) > LW) > L@ ...

O Lots of details:

Figuring out the step size
Getting stuck in local minima

o
o
e Convergence rate
o



Gradient Descent

Repeat until convergence:

1 n
P 60 — 3OS T8( £ (xi:00)), )
1=0



Intuition behind the math...

\W4

1 n
U o) — W(t)ﬁ ng(f(Xi; 0, y:)

New weights Old weights 1=0
Update based on gradient
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Lots More Details...

O Gradient descent is a “first order” optimization technique

e Often, slow convergence

e Conjugate techniques accelerate convergence

O Newton and quasi-Newton methods:

e Intuition: Taylor expansion
1
flz+Ax) = f(2) + f'(2) Az + S f" (@) Ax?

e Requires the Hessian (square matrix of second order partial derivatives):
impractical to fully compute



ogistic Regression s




Logistic Regression: Preliminaries

o Given D = {(x;,y:)}"

X; = [X1, T2, T3, ..., Tq]
y € {0,1}

O Let’s define:
fx;w) : R* = {0,1}

if w-x
f(X;W):{l -

Oif w-x<t
O Interpretation:

Priy=1x)] _
" Pry = om] -
Priy=1x) | _
g g ey ux)] B



Relation to the Logistic Function

O After some algebra:

eW'X
Pr(y = 1) = T—
1
Pr(y = 0f) = 1

O The logistic function:

ez

0.

0.

0.

0.

0.

0.4 |-

0.

0.

0.

9 -

8 -

7

6 -

5 -

3 -

2

1L

0

4

—

//

y

8 7 -6 5 -4 3 2 -

|
0

1

| | | | |
2 3 4 5 6 7 8



Training an LR Classifier

O Maximize the conditional likelihood:

arg max H Pr(y;|x;, w)
i=1
O Define the objective in terms of conditional log likelihood:

= Zln Pr(y;|x;, w
i=1
e Weknow ¥y € {0,1} so:
Pr(ylx, w) = Pr(y = 1|x,w)? [1 — Pr(y = 0fx,w)|"" ¥

e Substituting:

Z (yZ InPr(y; = 1|x;,w) + (1 — y;) In Pr(y; = O’XZ',W))

1=1



LR Classifier Update Rule

O Take the derivative:

n

L(w) = Z (yZ InPr(y; = 1|x;, w) + (1 — ;) InPr(y; = O’XZ',W))

1=1
a mn
a—WL(W) = iz:;xi (yz — Pr(yi — 1|Xi7w))

O General form for update rule:

WD ) A Oy L (w®)

’ IR

VL(w) = [8L(w) IL(w) aL(W)]

Jwg w1 owy

O Final update rule:

W 03 (g~ Prlys = L)
=0



Lots more details...

O Regularization
o Different loss functions

O ...

Want more details?
Take a real machine-learning course!



MapReduce Implementation

1 n
Ot 00—y = ) Ve(f(xi:0), i)

1=0
— _
—

ma

o ppers »
——
single reducer
compute partial gradient
mapper mapper mapper mapper

| | |
l

reducer

iterate until convergence
update model



Shortcomings

O Hadoop is bad at iterative algorithms

e High job startup costs
e Awkward to retain state across iterations

O High sensitivity to skew

® [teration speed bounded by slowest task

O Potentially poor cluster utilization

e Must shuffle all data to a single reducer

O Some possible tradeoffs

e Number of iterations vs. complexity of computation per iteration

e E.g., L-BFGS: faster convergence, but more to compute
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Batch vs. Online

Gradient Descent

n
R CRCE S SN
n 1=0
“batch” learning: update model after considering all
training instances

Stochastic Gradient Descent (SGD)
00D = 0% =y OVU(f(x07), )

“online” learning: update model after considering each
(randomly-selected) training instance

In practice... just as good!



Practical Notes

O Most common implementation:

e Randomly shuffle training instances

e Stream instances through learner

O Single vs. multi-pass approaches

O “Mini-batching” as a middle ground between batch and
stochastic gradient descent

WVe've solved the iteration problem!

What about the single reducer problem!?
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Source: Wlklpedla




Ensemble Learning

O Learn multiple models, combine results from different models
to make prediction

O Why does it work!?

e If errors uncorrelated, multiple classifiers being wrong is less likely

e Reduces the variance component of error

O A variety of different techniques:
e Majority voting

e Simple weighted voting:

n
y = arg rgleaizc ]; arpr (y|x)
e Model averaging



Practical Notes

0 Common implementation:

e Train classifiers on different input partitions of the data
e Embarassingly parallel!

o Contrast with bagging

O Contrast with boosting



MapReduce Implementation

9D 91 — OV f(x;00), )

training data training data training data training data

mapper mapper mapper mapper

model model model model



MapReduce Implementation: Details

O Shuffling/resort training instances before learning

O Two possible implementations:

e Mappers write model out as “side data”
e Mappers emit model as intermediate output



Sentiment Analysis Case Study

Lin and Kolcz, SIGMOD 2012

O Binary polarity classification: {positive, negative} sentiment

e Independently interesting task
® lllustrates end-to-end flow

e Use the “emoticon trick” to gather data

o0 Data

e Test: 500k positive/500k negative tweets from 9/1/201 |
e Training: {Im, 10m, 100m} instances from before (50/50 split)

O Features: Sliding window byte-4grams

O Models:

e Logistic regression with SGD (L2 regularization)

e Ensembles of various sizes (simple weighted voting)



Accuracy

Diminishing returns...

0.82 I T I I I I I I L I I I I I I I I I I
iminstances —— Ensembles with 10m examples
10m instances 1 . .
oy | 100 instances mmmm better than |00m single classifier!
0.8 )
(13 9
for free
0.79
0.78
T
0.77
0.76
0.75 '
1 1 1 3 5 7 9 11 13 15 17 19 3 5 11 21 31 41
Number of Classifiers in Ensemble
R/_/ _ NG v
YT YT

single classifier |Om ensembles

|00m ensembles



Takeaway Lesson

O Big data “recipe” for problem solving

e Simple technique
e Simple features
e Lots of data

O Usually works very well!



Today’s Agenda

O Clustering

O Classification






