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Today’s Agenda	


¢  Graph problems and representations	



¢  Parallel breadth-first search	



¢  PageRank	



¢  Beyond PageRank and other graph algorithms	



¢  Optimizing graph algorithms	





What’s a graph?	


¢  G = (V,E), where	



l  V represents the set of vertices (nodes)	


l  E represents the set of edges (links)	



l  Both vertices and edges may contain additional information	



¢  Different types of graphs:	


l  Directed vs. undirected edges	



l  Presence or absence of cycles	



¢  Graphs are everywhere:	


l  Hyperlink structure of the web	



l  Physical structure of computers on the Internet	


l  Interstate highway system	



l  Social networks	





Source: Wikipedia (Königsberg) 



Source: Wikipedia (Kaliningrad) 



Some Graph Problems	


¢  Finding shortest paths	



l  Routing Internet traffic and UPS trucks	



¢  Finding minimum spanning trees	


l  Telco laying down fiber	



¢  Finding Max Flow	


l  Airline scheduling	



¢  Identify “special” nodes and communities	


l  Breaking up terrorist cells, spread of avian flu	



¢  Bipartite matching	


l  Monster.com, Match.com	



¢  And of course... PageRank	





Graphs and MapReduce	


¢  A large class of graph algorithms involve:	



l  Performing computations at each node: based on node features, edge 
features, and local link structure	



l  Propagating computations: “traversing” the graph	



¢  Key questions:	


l  How do you represent graph data in MapReduce?	



l  How do you traverse a graph in MapReduce?	





Representing Graphs	


¢  G = (V, E)	



¢  Two common representations	



l  Adjacency matrix	


l  Adjacency list	





Adjacency Matrices	


Represent a graph as an n x n square matrix M	



l  n = |V|	


l  Mij = 1 means a link from node i to j	
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Adjacency Matrices: Critique	


¢  Advantages:	



l  Amenable to mathematical manipulation	


l  Iteration over rows and columns corresponds to computations on 

outlinks and inlinks	



¢  Disadvantages:	


l  Lots of zeros for sparse matrices	



l  Lots of wasted space	





Adjacency Lists	


Take adjacency matrices… and throw away all the zeros	



1: 2, 4	


2: 1, 3, 4	


3: 1	


4: 1, 3	



1 2 3 4 
1 0 1 0 1 
2 1 0 1 1 
3 1 0 0 0 
4 1 0 1 0 



Adjacency Lists: Critique	


¢  Advantages:	



l  Much more compact representation	


l  Easy to compute over outlinks	



¢  Disadvantages:	


l  Much more difficult to compute over inlinks	





Single-Source Shortest Path	


¢  Problem: find shortest path from a source node to one or 

more target nodes	


l  Shortest might also mean lowest weight or cost	



¢  First, a refresher: Dijkstra’s Algorithm	





Dijkstra’s Algorithm Example	
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Dijkstra’s Algorithm Example	
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Dijkstra’s Algorithm Example	
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Dijkstra’s Algorithm Example	
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Dijkstra’s Algorithm Example	
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Single-Source Shortest Path	


¢  Problem: find shortest path from a source node to one or 

more target nodes	


l  Shortest might also mean lowest weight or cost	



¢  Single processor machine: Dijkstra’s Algorithm	



¢  MapReduce: parallel breadth-first search (BFS)	





Finding the Shortest Path	


¢  Consider simple case of equal edge weights	



¢  Solution to the problem can be defined inductively	



¢  Here’s the intuition:	


l  Define: b is reachable from a if b is on adjacency list of a	



	

DISTANCETO(s) = 0	


l  For all nodes p reachable from s, ���
	

DISTANCETO(p) = 1	



l  For all nodes n reachable from some other set of nodes M, 
	

DISTANCETO(n) = 1 + min(DISTANCETO(m), m ∈ M)	
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Source: Wikipedia (Wave) 



Visualizing Parallel BFS	
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From Intuition to Algorithm	


¢  Data representation:	



l  Key: node n	


l  Value: d (distance from start), adjacency list (nodes reachable from n)	



l  Initialization: for all nodes except for start node, d = ∞	



¢  Mapper:	


l  ∀m ∈ adjacency list: emit (m, d + 1)	



l  Remember to also emit distance to yourself	



¢  Sort/Shuffle	


l  Groups distances by reachable nodes	



¢  Reducer:	


l  Selects minimum distance path for each reachable node	



l  Additional bookkeeping needed to keep track of actual path	





Multiple Iterations Needed	


¢  Each MapReduce iteration advances the “frontier” by one hop	



l  Subsequent iterations include more and more reachable nodes as 
frontier expands	



l  Multiple iterations are needed to explore entire graph	



¢  Preserving graph structure:	


l  Problem: Where did the adjacency list go?	



l  Solution: mapper emits (n, adjacency list) as well	





BFS Pseudo-Code	





Stopping Criterion	


¢  How many iterations are needed in parallel BFS (equal edge 

weight case)?	



¢  Convince yourself: when a node is first “discovered”, we’ve 
found the shortest path	



¢  Now answer the question...	



l  Six degrees of separation?	



¢  Practicalities of implementation in MapReduce	





Comparison to Dijkstra	


¢  Dijkstra’s algorithm is more efficient 	



l  At each step, only pursues edges from minimum-cost path inside frontier	



¢  MapReduce explores all paths in parallel	


l  Lots of “waste”	



l  Useful work is only done at the “frontier”	



¢  Why can’t we do better using MapReduce?	





Single Source: Weighted Edges	


¢  Now add positive weights to the edges	



l  Why can’t edge weights be negative?	



¢  Simple change: add weight w for each edge in adjacency list	


l  In mapper, emit (m, d + wp) instead of (m, d + 1) for each node m	



¢  That’s it?	





Stopping Criterion	


¢  How many iterations are needed in parallel BFS (positive edge 

weight case)?	



¢  Convince yourself: when a node is first “discovered”, we’ve 
found the shortest path	



Not true!	





Additional Complexities	
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Stopping Criterion	


¢  How many iterations are needed in parallel BFS (positive edge 

weight case)?	



¢  Practicalities of implementation in MapReduce	





Application: Social Search	



Source: Wikipedia (Crowd) 



Social Search	


¢  When searching, how to rank friends named “John”?	



l  Assume undirected graphs	


l  Rank matches by distance to user	



¢  Naïve implementations:	


l  Precompute all-pairs distances	



l  Compute distances at query time	



¢  Can we do better?	





All-Pairs?	


¢  Floyd-Warshall Algorithm: difficult to MapReduce-ify…	



¢  Multiple-source shortest paths in MapReduce: run multiple 
parallel BFS simultaneously	


l  Assume source nodes {s0, s1, … sn}	



l  Instead of emitting a single distance, emit an array of distances, with 
respect to each source	



l  Reducer selects minimum for each element in array	



¢  Does this scale?	





Landmark Approach (aka sketches)	


¢  Select n seeds {s0, s1, … sn}	



¢  Compute distances from seeds to every node:	



l  What can we conclude about distances?	



l  Insight: landmarks bound the maximum path length	



¢  Lots of details:	



l  How to more tightly bound distances	


l  How to select landmarks (random isn’t the best…)	



¢  Use multi-source parallel BFS implementation in MapReduce!	
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Source: Wikipedia (Wave) 

<pause/>	





Graphs and MapReduce	


¢  A large class of graph algorithms involve:	



l  Performing computations at each node: based on node features, edge 
features, and local link structure	



l  Propagating computations: “traversing” the graph	



¢  Generic recipe:	


l  Represent graphs as adjacency lists	



l  Perform local computations in mapper	



l  Pass along partial results via outlinks, keyed by destination node	



l  Perform aggregation in reducer on inlinks to a node	


l  Iterate until convergence: controlled by external “driver”	



l  Don’t forget to pass the graph structure between iterations	





Random Walks Over the Web	


¢  Random surfer model:	



l  User starts at a random Web page	


l  User randomly clicks on links, surfing from page to page	



¢  PageRank	


l  Characterizes the amount of time spent on any given page	



l  Mathematically, a probability distribution over pages	



¢  PageRank captures notions of page importance	


l  Correspondence to human intuition?	



l  One of thousands of features used in web search (query-independent)	





Given page x with inlinks t1…tn, where	


l  C(t) is the out-degree of t	


l  α is probability of random jump	



l  N is the total number of nodes in the graph	



PageRank: Defined	
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Computing PageRank	


¢  Properties of PageRank	



l  Can be computed iteratively	


l  Effects at each iteration are local	



¢  Sketch of algorithm:	


l  Start with seed PRi values	



l  Each page distributes PRi “credit” to all pages it links to	



l  Each target page adds up “credit” from multiple in-bound links to 
compute PRi+1	



l  Iterate until values converge	





Simplified PageRank	


¢  First, tackle the simple case:	



l  No random jump factor	


l  No dangling nodes	



¢  Then, factor in these complexities…	


l  Why do we need the random jump?	



l  Where do dangling nodes come from?	





Sample PageRank Iteration (1)	
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Sample PageRank Iteration (2)	
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PageRank in MapReduce	
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PageRank Pseudo-Code	





PageRank vs. BFS	
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Complete PageRank	


¢  Two additional complexities	



l  What is the proper treatment of dangling nodes?	


l  How do we factor in the random jump factor?	



¢  Solution: 	


l  Second pass to redistribute “missing PageRank mass” and account for 

random jumps	



l  p is PageRank value from before, p' is updated PageRank value	


l  N is the number of nodes in the graph	



l  m is the missing PageRank mass	



¢  Additional optimization: make it a single pass!	
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PageRank Convergence	


¢  Alternative convergence criteria	



l  Iterate until PageRank values don’t change	


l  Iterate until PageRank rankings don’t change	



l  Fixed number of iterations	



¢  Convergence for web graphs?	


l  Not a straightforward question	



¢  Watch out for link spam:	


l  Link farms	



l  Spider traps	



l  …	





Beyond PageRank	


¢  Variations of PageRank	



l  Weighted edges	


l  Personalized PageRank	



¢  Variants on graph random walks	


l  Hubs and authorities (HITS)	



l  SALSA	





Applications	


¢  Static prior for web ranking	



¢  Identification of “special nodes” in a network	



¢  Link recommendation	



¢  Additional feature in any machine learning problem	





Other Classes of Graph Algorithms	


¢  Subgraph pattern matching	



¢  Computing simple graph statistics	



l  Degree vertex distributions	



¢  Computing more complex graph statistics	


l  Clustering coefficients	


l  Counting triangles	





General Issues for Graph Algorithms	


¢  Sparse vs. dense graphs	



¢  Graph topologies	





Source: http://www.flickr.com/photos/fusedforces/4324320625/ 



MapReduce Sucks	


¢  Java verbosity	



¢  Hadoop task startup time	



¢  Stragglers	



¢  Needless graph shuffling	



¢  Checkpointing at each iteration	





Iterative Algorithms	



Source: Wikipedia (Water wheel) 



MapReduce sucks at iterative algorithms	


¢  Alternative programming models (later)	



¢  Easy fixes (now)	





In-Mapper Combining	


¢  Use combiners	



l  Perform local aggregation on map output	


l  Downside: intermediate data is still materialized	



¢  Better: in-mapper combining	


l  Preserve state across multiple map calls, aggregate messages in buffer, 

emit buffer contents at end	


l  Downside: requires memory management	



setup	



map	



cleanup	



buffer	



Emit all key-value pairs at once	





Better Partitioning	


¢  Default: hash partitioning	



l  Randomly assign nodes to partitions	



¢  Observation: many graphs exhibit local structure	


l  E.g., communities in social networks	



l  Better partitioning creates more opportunities for local aggregation	



¢  Unfortunately, partitioning is hard!	


l  Sometimes, chick-and-egg… 	



l  But cheap heuristics sometimes available	



l  For webgraphs: range partition on domain-sorted URLs	





Schimmy Design Pattern	


¢  Basic implementation contains two dataflows:	



l  Messages (actual computations)	


l  Graph structure (“bookkeeping”)	



¢  Schimmy: separate the two dataflows, shuffle only the messages	


l  Basic idea: merge join between graph structure and messages	



S T 

both relations sorted by join key 

S1 T1 S2 T2 S3 T3 

both relations consistently partitioned and sorted by join key 



S1 T1 

Do the Schimmy!	


¢  Schimmy = reduce side parallel merge join between graph 

structure and messages	


l  Consistent partitioning between input and intermediate data	



l  Mappers emit only messages (actual computation)	



l  Reducers read graph structure directly from HDFS	



S2 T2 S3 T3 
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intermediate data 
(messages) 

intermediate data 
(messages) 

intermediate data 
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(graph structure) 



Experiments	


¢  Cluster setup:	



l  10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk	


l  Hadoop 0.20.0 on RHELS 5.3	



¢  Dataset:	


l  First English segment of ClueWeb09 collection	



l  50.2m web pages (1.53 TB uncompressed, 247 GB compressed)	



l  Extracted webgraph: 1.4 billion links, 7.0 GB	



l  Dataset arranged in crawl order	



¢  Setup:	



l  Measured per-iteration running time (5 iterations)	


l  100 partitions	





Results	



“Best Practices” 
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MapReduce sucks at iterative algorithms	


¢  Alternative programming models (later)	



¢  Easy fixes (now)	



Later, the “hammer” argument…	





Today’s Agenda	


¢  Graph problems and representations	



¢  Parallel breadth-first search	



¢  PageRank	



¢  Beyond PageRank and other graph algorithms	



¢  Optimizing graph algorithms	





Source: Wikipedia (Japanese rock garden) 

Questions?	




