
Big Data Infrastructure	

Jimmy Lin	

University of Maryland	

Monday, March 2, 2015	

Session 5: MapReduce – Graphs	

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details	

Today’s Agenda	

¢  Graph problems and representations	

¢  Parallel breadth-first search	

¢  PageRank	

¢  Beyond PageRank and other graph algorithms	

¢  Optimizing graph algorithms	

What’s a graph?	

¢  G = (V,E), where	

l  V represents the set of vertices (nodes)	

l  E represents the set of edges (links)	

l  Both vertices and edges may contain additional information	

¢  Different types of graphs:	

l  Directed vs. undirected edges	

l  Presence or absence of cycles	

¢  Graphs are everywhere:	

l  Hyperlink structure of the web	

l  Physical structure of computers on the Internet	

l  Interstate highway system	

l  Social networks	

Source: Wikipedia (Königsberg)

Source: Wikipedia (Kaliningrad)

Some Graph Problems	

¢  Finding shortest paths	

l  Routing Internet traffic and UPS trucks	

¢  Finding minimum spanning trees	

l  Telco laying down fiber	

¢  Finding Max Flow	

l  Airline scheduling	

¢  Identify “special” nodes and communities	

l  Breaking up terrorist cells, spread of avian flu	

¢  Bipartite matching	

l  Monster.com, Match.com	

¢  And of course... PageRank	

Graphs and MapReduce	

¢  A large class of graph algorithms involve:	

l  Performing computations at each node: based on node features, edge
features, and local link structure	

l  Propagating computations: “traversing” the graph	

¢  Key questions:	

l  How do you represent graph data in MapReduce?	

l  How do you traverse a graph in MapReduce?	

Representing Graphs	

¢  G = (V, E)	

¢  Two common representations	

l  Adjacency matrix	

l  Adjacency list	

Adjacency Matrices	

Represent a graph as an n x n square matrix M	

l  n = |V|	

l  Mij = 1 means a link from node i to j	

1	
 2	
 3	
 4	

1	
 0	
 1	
 0	
 1	

2	
 1	
 0	
 1	
 1	

3	
 1	
 0	
 0	
 0	

4	
 1	
 0	
 1	
 0	

1	

2	

3	

4	

Adjacency Matrices: Critique	

¢  Advantages:	

l  Amenable to mathematical manipulation	

l  Iteration over rows and columns corresponds to computations on

outlinks and inlinks	

¢  Disadvantages:	

l  Lots of zeros for sparse matrices	

l  Lots of wasted space	

Adjacency Lists	

Take adjacency matrices… and throw away all the zeros	

1: 2, 4	

2: 1, 3, 4	

3: 1	

4: 1, 3	

1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

Adjacency Lists: Critique	

¢  Advantages:	

l  Much more compact representation	

l  Easy to compute over outlinks	

¢  Disadvantages:	

l  Much more difficult to compute over inlinks	

Single-Source Shortest Path	

¢  Problem: find shortest path from a source node to one or

more target nodes	

l  Shortest might also mean lowest weight or cost	

¢  First, a refresher: Dijkstra’s Algorithm	

Dijkstra’s Algorithm Example	

0

∞

∞

∞

∞

10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm Example	

0

10

5

∞

∞

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example	

0

8

5

14

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example	

0

8

5

13

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example	

0

8

5

9

7

1

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example	

0

8

5

9

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Single-Source Shortest Path	

¢  Problem: find shortest path from a source node to one or

more target nodes	

l  Shortest might also mean lowest weight or cost	

¢  Single processor machine: Dijkstra’s Algorithm	

¢  MapReduce: parallel breadth-first search (BFS)	

Finding the Shortest Path	

¢  Consider simple case of equal edge weights	

¢  Solution to the problem can be defined inductively	

¢  Here’s the intuition:	

l  Define: b is reachable from a if b is on adjacency list of a	

	
DISTANCETO(s) = 0	

l  For all nodes p reachable from s, ���
	
DISTANCETO(p) = 1	

l  For all nodes n reachable from some other set of nodes M,
	
DISTANCETO(n) = 1 + min(DISTANCETO(m), m ∈ M)	

s	

m3	

m2	

m1	

n	

…	

…	

…	

d1	

d2	

d3	

Source: Wikipedia (Wave)

Visualizing Parallel BFS	

n0

n3
n2

n1

n7

n6

n5

n4

n9

n8

From Intuition to Algorithm	

¢  Data representation:	

l  Key: node n	

l  Value: d (distance from start), adjacency list (nodes reachable from n)	

l  Initialization: for all nodes except for start node, d = ∞	

¢  Mapper:	

l  ∀m ∈ adjacency list: emit (m, d + 1)	

l  Remember to also emit distance to yourself	

¢  Sort/Shuffle	

l  Groups distances by reachable nodes	

¢  Reducer:	

l  Selects minimum distance path for each reachable node	

l  Additional bookkeeping needed to keep track of actual path	

Multiple Iterations Needed	

¢  Each MapReduce iteration advances the “frontier” by one hop	

l  Subsequent iterations include more and more reachable nodes as
frontier expands	

l  Multiple iterations are needed to explore entire graph	

¢  Preserving graph structure:	

l  Problem: Where did the adjacency list go?	

l  Solution: mapper emits (n, adjacency list) as well	

BFS Pseudo-Code	

Stopping Criterion	

¢  How many iterations are needed in parallel BFS (equal edge

weight case)?	

¢  Convince yourself: when a node is first “discovered”, we’ve
found the shortest path	

¢  Now answer the question...	

l  Six degrees of separation?	

¢  Practicalities of implementation in MapReduce	

Comparison to Dijkstra	

¢  Dijkstra’s algorithm is more efficient 	

l  At each step, only pursues edges from minimum-cost path inside frontier	

¢  MapReduce explores all paths in parallel	

l  Lots of “waste”	

l  Useful work is only done at the “frontier”	

¢  Why can’t we do better using MapReduce?	

Single Source: Weighted Edges	

¢  Now add positive weights to the edges	

l  Why can’t edge weights be negative?	

¢  Simple change: add weight w for each edge in adjacency list	

l  In mapper, emit (m, d + wp) instead of (m, d + 1) for each node m	

¢  That’s it?	

Stopping Criterion	

¢  How many iterations are needed in parallel BFS (positive edge

weight case)?	

¢  Convince yourself: when a node is first “discovered”, we’ve
found the shortest path	

Not true!	

Additional Complexities	

s

p
q

r

search frontier

10

n1

n2
n3

n4

n5

n6 n7
n8

n9

1

1
1

1

1

1
1

1

Stopping Criterion	

¢  How many iterations are needed in parallel BFS (positive edge

weight case)?	

¢  Practicalities of implementation in MapReduce	

Application: Social Search	

Source: Wikipedia (Crowd)

Social Search	

¢  When searching, how to rank friends named “John”?	

l  Assume undirected graphs	

l  Rank matches by distance to user	

¢  Naïve implementations:	

l  Precompute all-pairs distances	

l  Compute distances at query time	

¢  Can we do better?	

All-Pairs?	

¢  Floyd-Warshall Algorithm: difficult to MapReduce-ify…	

¢  Multiple-source shortest paths in MapReduce: run multiple
parallel BFS simultaneously	

l  Assume source nodes {s0, s1, … sn}	

l  Instead of emitting a single distance, emit an array of distances, with
respect to each source	

l  Reducer selects minimum for each element in array	

¢  Does this scale?	

Landmark Approach (aka sketches)	

¢  Select n seeds {s0, s1, … sn}	

¢  Compute distances from seeds to every node:	

l  What can we conclude about distances?	

l  Insight: landmarks bound the maximum path length	

¢  Lots of details:	

l  How to more tightly bound distances	

l  How to select landmarks (random isn’t the best…)	

¢  Use multi-source parallel BFS implementation in MapReduce!	

A 	
=	
[2, 1, 1]	

B 	
=	
[1, 1, 2]	

C 	
=	
[4, 3, 1]	

D 	
=	
[1, 2, 4]	

Source: Wikipedia (Wave)

<pause/>	

Graphs and MapReduce	

¢  A large class of graph algorithms involve:	

l  Performing computations at each node: based on node features, edge
features, and local link structure	

l  Propagating computations: “traversing” the graph	

¢  Generic recipe:	

l  Represent graphs as adjacency lists	

l  Perform local computations in mapper	

l  Pass along partial results via outlinks, keyed by destination node	

l  Perform aggregation in reducer on inlinks to a node	

l  Iterate until convergence: controlled by external “driver”	

l  Don’t forget to pass the graph structure between iterations	

Random Walks Over the Web	

¢  Random surfer model:	

l  User starts at a random Web page	

l  User randomly clicks on links, surfing from page to page	

¢  PageRank	

l  Characterizes the amount of time spent on any given page	

l  Mathematically, a probability distribution over pages	

¢  PageRank captures notions of page importance	

l  Correspondence to human intuition?	

l  One of thousands of features used in web search (query-independent)	

Given page x with inlinks t1…tn, where	

l  C(t) is the out-degree of t	

l  α is probability of random jump	

l  N is the total number of nodes in the graph	

PageRank: Defined	

X	

t1	

t2	

tn	

…	

PR(x) = ↵

✓
1

N

◆
+ (1� ↵)

nX

i=1

PR(ti)

C(ti)

Computing PageRank	

¢  Properties of PageRank	

l  Can be computed iteratively	

l  Effects at each iteration are local	

¢  Sketch of algorithm:	

l  Start with seed PRi values	

l  Each page distributes PRi “credit” to all pages it links to	

l  Each target page adds up “credit” from multiple in-bound links to
compute PRi+1	

l  Iterate until values converge	

Simplified PageRank	

¢  First, tackle the simple case:	

l  No random jump factor	

l  No dangling nodes	

¢  Then, factor in these complexities…	

l  Why do we need the random jump?	

l  Where do dangling nodes come from?	

Sample PageRank Iteration (1)	

n1 (0.2)

n4 (0.2)

n3 (0.2)
n5 (0.2)

n2 (0.2)

0.1

0.1

0.2 0.2

0.1 0.1

0.066 0.066
0.066

n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166) Iteration 1

Sample PageRank Iteration (2)	

n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)

0.033

0.033

0.3 0.166

0.083 0.083

0.1 0.1
0.1

n1 (0.1)

n4 (0.2)

n3 (0.183)
n5 (0.383)

n2 (0.133) Iteration 2

PageRank in MapReduce	

n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3 n4 n5

n2 n4 n3 n5 n1 n2 n3 n4 n5

n5 [n1, n2, n3] n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce

PageRank Pseudo-Code	

PageRank vs. BFS	

Map	

Reduce	

PageRank	
 BFS	

PR/N	
 d+1	

sum	
 min	

Complete PageRank	

¢  Two additional complexities	

l  What is the proper treatment of dangling nodes?	

l  How do we factor in the random jump factor?	

¢  Solution: 	

l  Second pass to redistribute “missing PageRank mass” and account for

random jumps	

l  p is PageRank value from before, p' is updated PageRank value	

l  N is the number of nodes in the graph	

l  m is the missing PageRank mass	

¢  Additional optimization: make it a single pass!	

p0 = ↵

✓
1

N

◆
+ (1� ↵)

⇣m
N

+ p
⌘

PageRank Convergence	

¢  Alternative convergence criteria	

l  Iterate until PageRank values don’t change	

l  Iterate until PageRank rankings don’t change	

l  Fixed number of iterations	

¢  Convergence for web graphs?	

l  Not a straightforward question	

¢  Watch out for link spam:	

l  Link farms	

l  Spider traps	

l  …	

Beyond PageRank	

¢  Variations of PageRank	

l  Weighted edges	

l  Personalized PageRank	

¢  Variants on graph random walks	

l  Hubs and authorities (HITS)	

l  SALSA	

Applications	

¢  Static prior for web ranking	

¢  Identification of “special nodes” in a network	

¢  Link recommendation	

¢  Additional feature in any machine learning problem	

Other Classes of Graph Algorithms	

¢  Subgraph pattern matching	

¢  Computing simple graph statistics	

l  Degree vertex distributions	

¢  Computing more complex graph statistics	

l  Clustering coefficients	

l  Counting triangles	

General Issues for Graph Algorithms	

¢  Sparse vs. dense graphs	

¢  Graph topologies	

Source: http://www.flickr.com/photos/fusedforces/4324320625/

MapReduce Sucks	

¢  Java verbosity	

¢  Hadoop task startup time	

¢  Stragglers	

¢  Needless graph shuffling	

¢  Checkpointing at each iteration	

Iterative Algorithms	

Source: Wikipedia (Water wheel)

MapReduce sucks at iterative algorithms	

¢  Alternative programming models (later)	

¢  Easy fixes (now)	

In-Mapper Combining	

¢  Use combiners	

l  Perform local aggregation on map output	

l  Downside: intermediate data is still materialized	

¢  Better: in-mapper combining	

l  Preserve state across multiple map calls, aggregate messages in buffer,

emit buffer contents at end	

l  Downside: requires memory management	

setup	

map	

cleanup	

buffer	

Emit all key-value pairs at once	

Better Partitioning	

¢  Default: hash partitioning	

l  Randomly assign nodes to partitions	

¢  Observation: many graphs exhibit local structure	

l  E.g., communities in social networks	

l  Better partitioning creates more opportunities for local aggregation	

¢  Unfortunately, partitioning is hard!	

l  Sometimes, chick-and-egg… 	

l  But cheap heuristics sometimes available	

l  For webgraphs: range partition on domain-sorted URLs	

Schimmy Design Pattern	

¢  Basic implementation contains two dataflows:	

l  Messages (actual computations)	

l  Graph structure (“bookkeeping”)	

¢  Schimmy: separate the two dataflows, shuffle only the messages	

l  Basic idea: merge join between graph structure and messages	

S T

both relations sorted by join key

S1 T1 S2 T2 S3 T3

both relations consistently partitioned and sorted by join key

S1 T1

Do the Schimmy!	

¢  Schimmy = reduce side parallel merge join between graph

structure and messages	

l  Consistent partitioning between input and intermediate data	

l  Mappers emit only messages (actual computation)	

l  Reducers read graph structure directly from HDFS	

S2 T2 S3 T3

Reducer Reducer Reducer

intermediate data
(messages)

intermediate data
(messages)

intermediate data
(messages)

from HDFS
(graph structure)

from HDFS
(graph structure)

from HDFS
(graph structure)

Experiments	

¢  Cluster setup:	

l  10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk	

l  Hadoop 0.20.0 on RHELS 5.3	

¢  Dataset:	

l  First English segment of ClueWeb09 collection	

l  50.2m web pages (1.53 TB uncompressed, 247 GB compressed)	

l  Extracted webgraph: 1.4 billion links, 7.0 GB	

l  Dataset arranged in crawl order	

¢  Setup:	

l  Measured per-iteration running time (5 iterations)	

l  100 partitions	

Results	

“Best Practices”

Results	

+18%
1.4b

674m

Results	

+18%

-15%

1.4b

674m

Results	

+18%

-15%

-60%

1.4b

674m

86m

Results	

+18%

-15%

-60%
-69%

1.4b

674m

86m

MapReduce sucks at iterative algorithms	

¢  Alternative programming models (later)	

¢  Easy fixes (now)	

Later, the “hammer” argument…	

Today’s Agenda	

¢  Graph problems and representations	

¢  Parallel breadth-first search	

¢  PageRank	

¢  Beyond PageRank and other graph algorithms	

¢  Optimizing graph algorithms	

Source: Wikipedia (Japanese rock garden)

Questions?	

