
Big Data Infrastructure

Jimmy Lin
University of Maryland

Monday, February 23, 2015

Session 4: MapReduce – Structured and Unstructured Data

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Today’s Agenda
¢  Structured data

l  Processing relational data with MapReduce

¢  Unstructured data
l  Basics of indexing and retrieval

l  Inverted indexing in MapReduce

Relational Databases
¢  A relational database is comprised of tables

¢  Each table represents a relation = collection of tuples (rows)

¢  Each tuple consists of multiple fields

OLTP/OLAP Architecture

OLTP OLAP
ETL���

(Extract, Transform, and Load)

OLTP/OLAP/Hadoop Architecture

OLTP OLAP
ETL���

(Extract, Transform, and Load)

Hadoop

Structure of Data Warehouses

SELECT P.Brand, S.Country,
 SUM(F.Units_Sold)
FROM Fact_Sales F
INNER JOIN Dim_Date D ON F.Date_Id = D.Id
INNER JOIN Dim_Store S ON F.Store_Id = S.Id
INNER JOIN Dim_Product P ON F.Product_Id = P.Id
WHERE D.YEAR = 1997 AND P.Product_Category = 'tv'
GROUP BY P.Brand, S.Country;

Source: Wikipedia (Star Schema)

OLAP Cubes

store

pr
od

uc
t

slice and dice

Common operations

roll up/drill down

pivot

MapReduce algorithms ���
for processing relational data

Source: www.flickr.com/photos/stikatphotography/1590190676/

Source: www.flickr.com/photos/7518432@N06/2237536651/

Design Pattern: Secondary Sorting
¢  MapReduce sorts input to reducers by key

l  Values are arbitrarily ordered

¢  What if want to sort value also?
l  E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

Secondary Sorting: Solutions
¢  Solution 1:

l  Buffer values in memory, then sort
l  Why is this a bad idea?

¢  Solution 2:
l  “Value-to-key conversion” design pattern: ���

form composite intermediate key, (k, v1)
l  Let execution framework do the sorting

l  Preserve state across multiple key-value pairs to handle processing

l  Anything else we need to do?

Value-to-Key Conversion

k → (v1, r), (v4, r), (v8, r), (v3, r)…

(k, v1) → (v1, r)

Before

After

(k, v3) → (v3, r)
(k, v4) → (v4, r)
(k, v8) → (v8, r)

Values arrive in arbitrary order…

…

Values arrive in sorted order…
Process by preserving state across multiple keys
Remember to partition correctly!

Working Scenario
¢  Two tables:

l  User demographics (gender, age, income, etc.)
l  User page visits (URL, time spent, etc.)

¢  Analyses we might want to perform:
l  Statistics on demographic characteristics

l  Statistics on page visits

l  Statistics on page visits by URL

l  Statistics on page visits by demographic characteristic
l  …

Relational Algebra
¢  Primitives

l  Projection (π)
l  Selection (σ)

l  Cartesian product (×)

l  Set union (∪)

l  Set difference (-)
l  Rename (ρ)

¢  Other operations
l  Join (⋈)

l  Group by… aggregation

l  …

Projection

R1

π

R2

R3

R4

R5

R1

R2

R3

R4

R5

Projection in MapReduce
¢  Easy!

l  Map over tuples, emit new tuples with appropriate attributes
l  No reducers, unless for regrouping or resorting tuples

l  Alternatively: perform in reducer, after some other processing

¢  Basically limited by HDFS streaming speeds
l  Speed of encoding/decoding tuples becomes important

l  Take advantage of compression when available

l  Semistructured data? No problem!

Selection

R1

σ

R2

R3

R4

R5

R1

R3

Selection in MapReduce
¢  Easy!

l  Map over tuples, emit only tuples that meet criteria
l  No reducers, unless for regrouping or resorting tuples

l  Alternatively: perform in reducer, after some other processing

¢  Basically limited by HDFS streaming speeds
l  Speed of encoding/decoding tuples becomes important

l  Take advantage of compression when available

l  Semistructured data? No problem!

Group by… Aggregation
¢  Example: What is the average time spent per URL?

¢  In SQL:

l  SELECT url, AVG(time) FROM visits GROUP BY url

¢  In MapReduce:
l  Map over tuples, emit time, keyed by url
l  Framework automatically groups values by keys

l  Compute average in reducer

l  Optimize with combiners

Relational Joins

Source: Microsoft Office Clip Art

Relational Joins

R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

Types of Relationships

One-to-One One-to-Many Many-to-Many

Join Algorithms in MapReduce
¢  Reduce-side join

¢  Map-side join

¢  In-memory join
l  Striped variant

l  Memcached variant

Reduce-side Join
¢  Basic idea: group by join key

l  Map over both sets of tuples
l  Emit tuple as value with join key as the intermediate key

l  Execution framework brings together tuples sharing the same key

l  Perform actual join in reducer

l  Similar to a “sort-merge join” in database terminology

¢  Two variants

l  1-to-1 joins
l  1-to-many and many-to-many joins

Reduce-side Join: 1-to-1

R1

R4

S2

S3

R1

R4

S2

S3

keys values
Map

R1

R4

S2

S3

keys values

Reduce

Note: no guarantee if R is going to come first or S

Reduce-side Join: 1-to-many

R1

S2

S3

R1

S2

S3

S9

keys values
Map

R1 S2

keys values

Reduce

S9

S3 …

What’s the problem?

Reduce-side Join: V-to-K Conversion

R1

keys values

In reducer…

S2

S3

S9

R4

S3

S7

New key encountered: hold in memory

Cross with records from other set

New key encountered: hold in memory

Cross with records from other set

Reduce-side Join: many-to-many

R1

keys values

In reducer…

S2

S3

S9

Hold in memory

Cross with records from other set

R5

R8

What’s the problem?

Map-side Join: Basic Idea
Assume two datasets are sorted by the join key:

R1

R2

R3

R4

S1

S2

S3

S4

A sequential scan through both datasets to join���
(called a “merge join” in database terminology)

Map-side Join: Parallel Scans
¢  If datasets are sorted by join key, join can be accomplished by a

scan over both datasets

¢  How can we accomplish this in parallel?
l  Partition and sort both datasets in the same manner

¢  In MapReduce:
l  Map over one dataset, read from other corresponding partition

l  No reducers necessary (unless to repartition or resort)

¢  Consistently partitioned datasets: realistic to expect?

In-Memory Join
¢  Basic idea: load one dataset into memory, stream over other

dataset
l  Works if R << S and R fits into memory

l  Called a “hash join” in database terminology

¢  MapReduce implementation
l  Distribute R to all nodes

l  Map over S, each mapper loads R in memory, hashed by join key

l  For every tuple in S, look up join key in R
l  No reducers, unless for regrouping or resorting tuples

In-Memory Join: Variants
¢  Striped variant:

l  R too big to fit into memory?
l  Divide R into R1, R2, R3, … s.t. each Rn fits into memory

l  Perform in-memory join: ∀n, Rn ⋈ S

l  Take the union of all join results

¢  Memcached join:
l  Load R into memcached

l  Replace in-memory hash lookup with memcached lookup

Memcached

Database layer: 800 eight-core Linux servers
running MySQL (40 TB user data)

Caching servers: 15 million requests per second,
95% handled by memcache (15 TB of RAM)

Source: Technology Review (July/August, 2008)

Circa 2008 Architecture

Memcached Join
¢  Memcached join:

l  Load R into memcached
l  Replace in-memory hash lookup with memcached lookup

¢  Capacity and scalability?
l  Memcached capacity >> RAM of individual node

l  Memcached scales out with cluster

¢  Latency?
l  Memcached is fast (basically, speed of network)

l  Batch requests to amortize latency costs

Source: See tech report by Lin et al. (2009)

Which join to use?
¢  In-memory join > map-side join > reduce-side join

l  Why?

¢  Limitations of each?
l  In-memory join: memory

l  Map-side join: sort order and partitioning

l  Reduce-side join: general purpose

Processing Relational Data: Summary
¢  MapReduce algorithms for processing relational data:

l  Group by, sorting, partitioning are handled automatically by shuffle/sort
in MapReduce

l  Selection, projection, and other computations (e.g., aggregation), are
performed either in mapper or reducer

l  Multiple strategies for relational joins

¢  Complex operations require multiple MapReduce jobs
l  Example: top ten URLs in terms of average time spent

l  Opportunities for automatic optimization

Source: www.flickr.com/photos/7518432@N06/2237536651/

Today’s Agenda
¢  Structured data

l  Processing relational data with MapReduce

¢  Unstructured data
l  Basics of indexing and retrieval

l  Inverted indexing in MapReduce

First, nomenclature…
¢  Information retrieval (IR)

l  Focus on textual information (= text/document retrieval)
l  Other possibilities include image, video, music, …

¢  What do we search?
l  Generically, “collections”

l  Less-frequently used, “corpora”

¢  What do we find?
l  Generically, “documents”

l  Even though we may be referring to web pages, PDFs, PowerPoint
slides, paragraphs, etc.

Information Retrieval Cycle

Source
Selection

Search

Query

Selection

Results

Examination

Documents

Delivery

Information

Query
Formulation

Resource

source reselection

System discovery
Vocabulary discovery
Concept discovery
Document discovery

The Central Problem in Search

Do these represent the same concepts?

Author
Searcher

“tragic love story” “fateful star-crossed romance”

Concepts

Query Terms

Concepts

Document Terms

Abstract IR Architecture

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

offlineonline
document acquisition ���

(e.g., web crawling)

How do we represent text?
¢  Remember: computers don’t “understand” anything!

¢  “Bag of words”

l  Treat all the words in a document as index terms
l  Assign a “weight” to each term based on “importance” ���

(or, in simplest case, presence/absence of word)
l  Disregard order, structure, meaning, etc. of the words

l  Simple, yet effective!

¢  Assumptions
l  Term occurrence is independent

l  Document relevance is independent

l  “Words” are well-defined

What’s a word?

天主教教宗若望保祿二世因感冒再度住進醫院。
這是他今年第二度因同樣的病因住院。 ووققاالل مماارركك ررييججييفف - االلننااططقق ببااسسمم

االلخخااررججييةة االلإإسسرراائئييللييةة - إإنن ششاارروونن ققببلل
االلددععووةة ووسسييققوومم للللممررةة االلأأووللىى ببززييااررةة

تتووننسس٬، االلتتيي ككااننتت للففتتررةة ططووييللةة االلممققرر
االلررسسمميي للممننظظممةة االلتتححررييرر االلففللسسططييننييةة ببععدد خخررووججههاا ممنن للببنناانن ععاامم 1982.

Выступая в Мещанском суде Москвы экс-глава ЮКОСа
заявил не совершал ничего противозаконного, в чем
обвиняет его генпрокуратура России.

भारत सरकार ने आर्थिक सर्वेक्षण में वित्तीय वर्ष 2005-06 मे ंसात फ़ीसदी
विकास दर हासिल करने का आकलन किया है और कर सुधार पर ज़ोर दिया है

日米連合で台頭中国に対処…アーミテージ前副長官提言

조재영 기자= 서울시는 25일 이명박 시장이 `행정중심복합도시'' 건설안에 대해 `
군대라도 동원해 막고싶은 심정''이라고 말했다는 일부 언론의 보도를 부인했다.

Sample Document
McDonald's slims down
spuds
Fast-food chain to reduce certain types of fat
in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as it
moves to make all its fried menu items healthier.

But does that mean the popular shoestring fries won't
taste the same? The company says no. "It's a win-win
for our customers because they are getting the same
great french-fry taste along with an even healthier
nutrition profile," said Mike Roberts, president of
McDonald's USA.

But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use, but
at least one nutrition expert says playing with the
formula could mean a different taste.

Shares of Oak Brook, Ill.-based McDonald's (MCD:
down $0.54 to $23.22, Research, Estimates) were
lower Tuesday afternoon. It was unclear Tuesday
whether competitors Burger King and Wendy's
International (WEN: down $0.80 to $34.91, Research,
Estimates) would follow suit. Neither company could
immediately be reached for comment.

…

14 × McDonalds

12 × fat

11 × fries

8 × new

7 × french

6 × company, said, nutrition

5 × food, oil, percent, reduce,
taste, Tuesday

…

“Bag of Words”

Counting Words…

Documents

Inverted
Index

Bag of
Words

case folding, tokenization, stopword removal, stemming

syntax, semantics, word knowledge, etc.

Boolean Retrieval
¢  Users express queries as a Boolean expression

l  AND, OR, NOT
l  Can be arbitrarily nested

¢  Retrieval is based on the notion of sets
l  Any given query divides the collection into two sets: ���

retrieved, not-retrieved
l  Pure Boolean systems do not define an ordering of the results

Inverted Index: Boolean Retrieval

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

3

4

1

4

4

3

2

1

blue

cat

egg

fish

green

ham

hat

one

2

green eggs and ham
Doc 4

1red

1two

2red

1two

Boolean Retrieval
¢  To execute a Boolean query:

l  Build query syntax tree

l  For each clause, look up postings

l  Traverse postings and apply Boolean operator

¢  Efficiency analysis
l  Postings traversal is linear (assuming sorted postings)

l  Start with shortest posting first

(blue AND fish) OR ham

blue fish

AND ham

OR

1

2 blue

fish 2

Strengths and Weaknesses
¢  Strengths

l  Precise, if you know the right strategies
l  Precise, if you have an idea of what you’re looking for

l  Implementations are fast and efficient

¢  Weaknesses
l  Users must learn Boolean logic

l  Boolean logic insufficient to capture the richness of language

l  No control over size of result set: either too many hits or none
l  When do you stop reading? All documents in the result set are

considered “equally good”
l  What about partial matches? Documents that “don’t quite match” the

query may be useful also

Ranked Retrieval
¢  Order documents by how likely they are to be relevant

l  Estimate relevance(q, di)
l  Sort documents by relevance

l  Display sorted results

¢  User model
l  Present hits one screen at a time, best results first

l  At any point, users can decide to stop looking

¢  How do we estimate relevance?
l  Assume document is relevant if it has a lot of query terms

l  Replace relevance(q, di) with sim(q, di)
l  Compute similarity of vector representations

Vector Space Model

Assumption: Documents that are “close together” in vector
space “talk about” the same things

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~ “closeness”)

Similarity Metric
¢  Use “angle” between the vectors:

¢  Or, more generally, inner products:

dj = [wj,1, wj,2, wj,3, . . . wj,n]
dk = [wk,1, wk,2, wk,3, . . . wk,n]

cos ✓ =

dj · dk
|dj ||dk|

sim(dj , dk) =
dj · dk
|dj ||dk|

=

Pn
i=0 wj,iwk,iqPn

i=0 w
2
j,i

qPn
i=0 w

2
k,i

sim(dj , dk) = dj · dk =
nX

i=0

wj,iwk,i

Term Weighting
¢  Term weights consist of two components

l  Local: how important is the term in this document?
l  Global: how important is the term in the collection?

¢  Here’s the intuition:
l  Terms that appear often in a document should get high weights

l  Terms that appear in many documents should get low weights

¢  How do we capture this mathematically?
l  Term frequency (local)

l  Inverse document frequency (global)

TF.IDF Term Weighting

i
jiji n

Nw logtf ,, ⋅=

jiw ,

ji ,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

2

1

1

2

1

1

1

1

1

1

1

Inverted Index: TF.IDF

2

1

2

1

1

1

1 2 3

1

1

1

4

1

1

1

1

1

1

2

1

tf
df

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1red

1 1two

1red

1two

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

green eggs and ham
Doc 4

3

4

1

4

4

3

2

1

2

2

1

Positional Indexes
¢  Store term position in postings

¢  Supports richer queries (e.g., proximity)

¢  Naturally, leads to larger indexes…

[2,4]

[3]

[2,4]

[2]

[1]

[1]

[3]

[2]

[1]

[1]

[3]

2

1

1

2

1

1

1

1

1

1

1

Inverted Index: Positional Information

2

1

2

1

1

1

1 2 3

1

1

1

4

1

1

1

1

1

1

2

1

tf
df

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1 red

1 1 two

1 red

1 two

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

green eggs and ham
Doc 4

3

4

1

4

4

3

2

1

2

2

1

Retrieval in a Nutshell
¢  Look up postings lists corresponding to query terms

¢  Traverse postings for each query term

¢  Store partial query-document scores in accumulators

¢  Select top k results to return

Retrieval: Document-at-a-Time
¢  Evaluate documents one at a time (score all query terms)

¢  Tradeoffs
l  Small memory footprint (good)

l  Skipping possible to avoid reading all postings (good)

l  More seeks and irregular data accesses (bad)

fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …

Accumulators
(e.g. min heap)

Document score in top k?

Yes: Insert document score, extract-min if heap too large
No: Do nothing

Retrieval: Query-At-A-Time
¢  Evaluate documents one query term at a time

l  Usually, starting from most rare term (often with tf-sorted postings)

¢  Tradeoffs

l  Early termination heuristics (good)
l  Large memory footprint (bad), but filtering heuristics possible

fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …
Accumulators���

(e.g., hash)
Score{q=x}(doc n) = s

MapReduce it?
¢  The indexing problem

l  Scalability is critical
l  Must be relatively fast, but need not be real time

l  Fundamentally a batch operation

l  Incremental updates may or may not be important

l  For the web, crawling is a challenge in itself

¢  The retrieval problem

l  Must have sub-second response time
l  For the web, only need relatively few results

Perfect for MapReduce!

Uh… not so good…

Indexing: Performance Analysis
¢  Fundamentally, a large sorting problem

l  Terms usually fit in memory
l  Postings usually don’t

¢  How is it done on a single machine?

¢  How can it be done with MapReduce?

¢  First, let’s characterize the problem size:
l  Size of vocabulary

l  Size of postings

Vocabulary Size: Heaps’ Law

¢  Heaps’ Law: linear in log-log space

¢  Vocabulary size grows unbounded!

bkTM =
M is vocabulary size
T is collection size (number of documents)
k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

Heaps’ Law for RCV1

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

k = 44
b = 0.49

First 1,000,020 terms:
 Predicted = 38,323
 Actual = 38,365

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

Postings Size: Zipf’s Law

¢  Zipf’s Law: (also) linear in log-log space

l  Specific case of Power Law distributions

¢  In other words:

l  A few elements occur very frequently
l  Many elements occur very infrequently

i
c

i =cf cf is the collection frequency of i-th common term
c is a constant

Zipf’s Law for RCV1

Fit isn’t that good…
but good enough!

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Figure from: Newman, M. E. J. (2005) “Power laws, Pareto
distributions and Zipf's law.” Contemporary Physics 46:323–351.

Power Laws are
 everywhere!

MapReduce: Index Construction
¢  Map over all documents

l  Emit term as key, (docno, tf) as value
l  Emit other information as necessary (e.g., term position)

¢  Sort/shuffle: group postings by term

¢  Reduce

l  Gather and sort the postings (e.g., by docno or tf)
l  Write postings to disk

¢  MapReduce does all the heavy lifting!

1

1

2

1

1

2 2

1
1

1

1
1

1

1

1

2

Inverted Indexing with MapReduce

1one

1two

1fish

one fish, two fish
Doc 1

2red

2blue

2fish

red fish, blue fish
Doc 2

3cat

3hat

cat in the hat
Doc 3

1fish 2

1one
1two

2red

3cat
2blue

3hat

Shuffle and Sort: aggregate values by keys

Map

Reduce

Inverted Indexing: Pseudo-Code

1: class Mapper
2: method Map(docid n, doc d)
3: H new AssociativeArray . histogram to hold term frequencies
4: for all term t 2 doc d do . processes the doc, e.g., tokenization and stopword removal
5: H{t} H{t}+ 1

6: for all term t 2 H do

7: Emit(term t, posting hn,H{t}i) . emits individual postings

1: class Reducer
2: method Reduce(term t, postings [hn1, f1i . . .])
3: P new List
4: for all hn, fi 2 postings [hn1, f1i . . .] do
5: P.Append(hn, fi) . appends postings unsorted

6: P.Sort() . sorts for compression
7: Emit(term t, postingsList P)

Figure 2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce.

Given an existing single-machine indexer, one simple way to take advantage of MapReduce is to
leverage reducers to merge indexes built on local disk. This might proceed as follows: an existing
indexer is embedded inside the mapper, and mappers are applied over the entire document collection.
Each indexer operates independently and builds an index on local disk for the documents it encounters.
Once the local indexes have been built, compressed postings are emitted as values, keyed by the term.
In the reducer, postings from each locally-built index are merged into a final index.3

Another relatively straightforward adaptation of a single-machine indexer is demonstrated by
Nutch.4 Its algorithm processes documents in the map phase, and emits pairs consisting of docids
and analyzed document contents. The sort and shu✏e phase in MapReduce is used essentially for doc-
ument partitioning, and the reducers build each individual index partition independently. In contrast
with the above approach, Nutch basically embeds a traditional indexer in the reducers, instead of the
mappers. With this approach, the number of reducers specifies the number of document partitions—
which limits the degree of parallelization that can be achieved.

We decided not to pursue the two approaches discussed above since they seemed like incremental
improvements over existing indexing methods. Instead, we implemented and evaluated two distinct
algorithms that make fuller use of the MapReduce programming model. The first is a scalable variant of
the baseline inverted indexing algorithm in MapReduce, in which the mappers emit individual postings.
The second is an algorithm in which the mappers emit partial lists of postings. The algorithms primarily
di↵er in how postings are sorted: by the execution framework (in the first algorithm) or by the indexing
code itself (in the second algorithm). Detailed descriptions of both are provided below, followed by a
general discussion of their relative merits.

3.2 Emitting Individual Postings

The starting point of our first algorithm, based on mappers emitting individual postings, is an obser-
vation about a significant bottleneck in the baseline algorithm in Figure 2: it assumes that there is
su�cient memory to hold all postings associated with the same term before sorting them. Since the
MapReduce execution framework makes no guarantees about the ordering of values associated with
the same key, the reducer must first bu↵er all postings and then perform an in-memory sort before the

3Indri is capable of distributed indexing using exactly this approach, albeit outside of the MapReduce framework.
4http://lucene.apache.org/nutch/

5

[2,4]

[1]

[3]

[1]

[2]

[1]

[1]

[3]

[2]

[3]
[2,4]

[1]

[2,4]

[2,4]

[1]

[3]

1

1

2

1

1

2

1

1

2 2

1
1

1

1
1

1

Positional Indexes

1one

1two

1fish

2red

2blue

2fish

3cat

3hat

1fish 2

1one
1two

2red

3cat
2blue

3hat

Shuffle and Sort: aggregate values by keys

Map

Reduce

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

Inverted Indexing: Pseudo-Code

1: class Mapper
2: method Map(docid n, doc d)
3: H new AssociativeArray . histogram to hold term frequencies
4: for all term t 2 doc d do . processes the doc, e.g., tokenization and stopword removal
5: H{t} H{t}+ 1

6: for all term t 2 H do

7: Emit(term t, posting hn,H{t}i) . emits individual postings

1: class Reducer
2: method Reduce(term t, postings [hn1, f1i . . .])
3: P new List
4: for all hn, fi 2 postings [hn1, f1i . . .] do
5: P.Append(hn, fi) . appends postings unsorted

6: P.Sort() . sorts for compression
7: Emit(term t, postingsList P)

Figure 2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce.

Given an existing single-machine indexer, one simple way to take advantage of MapReduce is to
leverage reducers to merge indexes built on local disk. This might proceed as follows: an existing
indexer is embedded inside the mapper, and mappers are applied over the entire document collection.
Each indexer operates independently and builds an index on local disk for the documents it encounters.
Once the local indexes have been built, compressed postings are emitted as values, keyed by the term.
In the reducer, postings from each locally-built index are merged into a final index.3

Another relatively straightforward adaptation of a single-machine indexer is demonstrated by
Nutch.4 Its algorithm processes documents in the map phase, and emits pairs consisting of docids
and analyzed document contents. The sort and shu✏e phase in MapReduce is used essentially for doc-
ument partitioning, and the reducers build each individual index partition independently. In contrast
with the above approach, Nutch basically embeds a traditional indexer in the reducers, instead of the
mappers. With this approach, the number of reducers specifies the number of document partitions—
which limits the degree of parallelization that can be achieved.

We decided not to pursue the two approaches discussed above since they seemed like incremental
improvements over existing indexing methods. Instead, we implemented and evaluated two distinct
algorithms that make fuller use of the MapReduce programming model. The first is a scalable variant of
the baseline inverted indexing algorithm in MapReduce, in which the mappers emit individual postings.
The second is an algorithm in which the mappers emit partial lists of postings. The algorithms primarily
di↵er in how postings are sorted: by the execution framework (in the first algorithm) or by the indexing
code itself (in the second algorithm). Detailed descriptions of both are provided below, followed by a
general discussion of their relative merits.

3.2 Emitting Individual Postings

The starting point of our first algorithm, based on mappers emitting individual postings, is an obser-
vation about a significant bottleneck in the baseline algorithm in Figure 2: it assumes that there is
su�cient memory to hold all postings associated with the same term before sorting them. Since the
MapReduce execution framework makes no guarantees about the ordering of values associated with
the same key, the reducer must first bu↵er all postings and then perform an in-memory sort before the

3Indri is capable of distributed indexing using exactly this approach, albeit outside of the MapReduce framework.
4http://lucene.apache.org/nutch/

5

What’s the problem?

Scalability Bottleneck
¢  Initial implementation: terms as keys, postings as values

l  Reducers must buffer all postings associated with key (to sort)
l  What if we run out of memory to buffer postings?

¢  Uh oh!

[2,4]

[9]

[1,8,22]

[23]

[8,41]

[2,9,76]

[2,4]

[9]

[1,8,22]

[23]

[8,41]

[2,9,76]

2

1

3

1

2

3

Another Try…

1fish

9

21

(values)(key)

34

35

80

1fish

9

21

(values)(keys)

34

35

80

fish

fish

fish

fish

fish

How is this different?
•  Let the framework do the sorting
•  Term frequency implicitly stored

Where have we seen this before?

Inverted Indexing: Pseudo-Code
1: class Mapper
2: method Map(docid n, doc d)
3: H new AssociativeArray
4: for all term t 2 doc d do . builds a histogram of term frequencies
5: H{t} H{t}+ 1

6: for all term t 2 H do

7: Emit(tuple ht, ni, tf H{t}) . emits individual postings, with a tuple as the key

1: class Partitioner
2: method Partition(tuple ht, ni, tf f)
3: return Hash(t) mod NumOfReducers . keys of same term are sent to same reducer

1: class Reducer
2: method Initialize
3: tprev ;
4: P new PostingsList
5: method Reduce(tuple ht, ni, tf [f])
6: if t 6= tprev ^ tprev 6= ; then
7: Emit(term t, postings P) . emits postings list of term tprev
8: P.Reset()

9: P.Append(hn, fi) . appends postings in sorted order
10: tprev t

11: method Close
12: Emit(term t, postings P) . emits last postings list from this reducer

Figure 3: Pseudo-code of the inverted indexing algorithm based on emitting individual postings (IP).

postings can be written out to disk. Of course, as collections grow in size there may not be su�cient
memory to perform this sort (bound by the term with the largest df).

Since the MapReduce programming model guarantees that keys arrive at each reducer in sorted
order, we can overcome the scalability bottleneck by letting the execution framework do the sorting.
Instead of emitting key-value pairs of the form:

(term t, posting hdocid, fi)

we emit intermediate key-value pairs of the form:

(tuple ht, docidi, tf f)

In other words, the key is a tuple containing the term and the document number, while the value is
the term frequency. We need to redefine the sort order so that keys are sorted first by term t, and then
by docid n. Additionally, we need a custom partitioner to ensure that all tuples with the same term
are shu✏ed to the same reducer. Having implemented these two changes, the MapReduce execution
framework ensures that the postings arrive in the correct order. This, combined with the fact that
reducers can hold state across multiple keys, allows compressed postings to be written with minimal
memory usage.

The revised MapReduce inverted indexing algorithm is shown in Figure 3. The mapper remains
unchanged for the most part, other than di↵erences in the intermediate key-value pairs. The key space
of the intermediate output is partitioned by term; that is, all keys with the same term are sent to the
same reducer. This is guaranteed by the partitioner. The reducer contains two additional methods:

6

2

1

1

2

1

1

1

1

1

1

1

Inverted Index (Again)

2

1

2

1

1

1

1 2 3

1

1

1

4

1

1

1

1

1

1

2

1

tf
df

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1red

1 1two

1red

1two

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

green eggs and ham
Doc 4

3

4

1

4

4

3

2

1

2

2

1

Chicken and Egg?

1fish

9

[2,4]

[9]

21 [1,8,22]

(value)(key)

34 [23]

35 [8,41]

80 [2,9,76]

fish

fish

fish

fish

fish

Write postings

We’d like to store the df at the
front of the postings list

But we don’t know the df until
we’ve seen all postings!

…

Sound familiar?

Getting the df
¢  In the mapper:

l  Emit “special” key-value pairs to keep track of df

¢  In the reducer:
l  Make sure “special” key-value pairs come first: process them to

determine df

¢  Remember: proper partitioning!

Getting the df: Modified Mapper

one fish, two fish
Doc 1

1fish [2,4]

(value)(key)

1one [1]

1two [3]

«fish [1]

«one [1]

«two [1]

Input document…

Emit normal key-value pairs…

Emit “special” key-value pairs to keep track of df…

Getting the df: Modified Reducer

1fish

9

[2,4]

[9]

21 [1,8,22]

(value)(key)

34 [23]

35 [8,41]

80 [2,9,76]

fish

fish

fish

fish

fish
Write postings

«fish [63] [82] [27] …

…

First, compute the df by summing contributions
from all “special” key-value pair…

Write the df…

Important: properly define sort order to
make sure “special” key-value pairs come first!

Where have we seen this before?

2 1 3 1 2 3

2 1 3 1 2 3

Postings Encoding

1fish 9 21 34 35 80 …

1fish 8 12 13 1 45 …

Conceptually:

In Practice:

•  Don’t encode docnos, encode gaps (or d-gaps)
•  But it’s not obvious that this save space…

Overview of Index Compression
¢  Byte-aligned vs. bit-aligned

¢  Byte-aligned technique

l  VByte
l  Simple9 and variants

l  PForDelta

¢  Bit-aligned
l  Unary codes

l  γ codes

l  δ codes

l  Golomb codes (local Bernoulli model)

Want more detail? Read Managing Gigabytes by Witten, Moffat, and Bell!

VByte
¢  Simple idea: use only as many bytes as needed

l  Need to reserve one bit per byte as the “continuation bit”
l  Use remaining bits for encoding value

¢  Works okay, easy to implement…

0

1 0

1 1 0

7 bits

14 bits

21 bits

Inverted Indexing: IP
1: class Mapper
2: method Map(docid n, doc d)
3: H new AssociativeArray
4: for all term t 2 doc d do . builds a histogram of term frequencies
5: H{t} H{t}+ 1

6: for all term t 2 H do

7: Emit(tuple ht, ni, tf H{t}) . emits individual postings, with a tuple as the key

1: class Partitioner
2: method Partition(tuple ht, ni, tf f)
3: return Hash(t) mod NumOfReducers . keys of same term are sent to same reducer

1: class Reducer
2: method Initialize
3: tprev ;
4: P new PostingsList
5: method Reduce(tuple ht, ni, tf [f])
6: if t 6= tprev ^ tprev 6= ; then
7: Emit(term t, postings P) . emits postings list of term tprev
8: P.Reset()

9: P.Append(hn, fi) . appends postings in sorted order
10: tprev t

11: method Close
12: Emit(term t, postings P) . emits last postings list from this reducer

Figure 3: Pseudo-code of the inverted indexing algorithm based on emitting individual postings (IP).

postings can be written out to disk. Of course, as collections grow in size there may not be su�cient
memory to perform this sort (bound by the term with the largest df).

Since the MapReduce programming model guarantees that keys arrive at each reducer in sorted
order, we can overcome the scalability bottleneck by letting the execution framework do the sorting.
Instead of emitting key-value pairs of the form:

(term t, posting hdocid, fi)

we emit intermediate key-value pairs of the form:

(tuple ht, docidi, tf f)

In other words, the key is a tuple containing the term and the document number, while the value is
the term frequency. We need to redefine the sort order so that keys are sorted first by term t, and then
by docid n. Additionally, we need a custom partitioner to ensure that all tuples with the same term
are shu✏ed to the same reducer. Having implemented these two changes, the MapReduce execution
framework ensures that the postings arrive in the correct order. This, combined with the fact that
reducers can hold state across multiple keys, allows compressed postings to be written with minimal
memory usage.

The revised MapReduce inverted indexing algorithm is shown in Figure 3. The mapper remains
unchanged for the most part, other than di↵erences in the intermediate key-value pairs. The key space
of the intermediate output is partitioned by term; that is, all keys with the same term are sent to the
same reducer. This is guaranteed by the partitioner. The reducer contains two additional methods:

6

What’s the assumption?

Inverted Indexing: LP

1: class Mapper
2: method Initialize
3: M new AssociativeArray . holds partial lists of postings

4: method Map(docid n, doc d)
5: H new AssociativeArray . builds a histogram of term frequencies
6: for all term t 2 doc d do

7: H{t} H{t}+ 1

8: for all term t 2 H do

9: M{t}.Add(posting hn,H{t}i) . adds a posting to partial postings lists

10: if MemoryFull() then
11: Flush()

12: method Flush . flushes partial lists of postings as intermediate output
13: for all term t 2M do

14: P SortAndEncodePostings(M{t})
15: Emit(term t, postingsList P)

16: M.Clear()

17: method Close
18: Flush()

1: class Reducer
2: method Reduce(term t, postingsLists [P1, P2, . . .])
3: Pf new List . temporarily stores partial lists of postings
4: R new List . stores merged partial lists of postings
5: for all P 2 postingsLists [P1, P2, . . .] do
6: Pf .Add(P)
7: if MemoryNearlyFull() then
8: R.Add(MergeLists(Pf))
9: Pf .Clear()

10: R.Add(MergeLists(Pf))
11: Emit(term t, postingsList MergeLists(R)) . emits fully merged postings list of term t

Figure 4: Pseudo-code of the inverted indexing algorithm based on emitting lists of postings (LP).

documents). These partial postings lists are emitted as values, keyed by the terms. In our actual
implementation, positional information is also encoded in the postings lists, but this detail is omitted
from the pseudo-code for presentation purposes.

In the reduce phase, all partial postings lists associated with the same term are brought together by
the execution framework. The reducer must then merge all these partial lists (arbitrarily ordered) into
a final postings list. For this, we adopted a two-pass approach. In the first pass, the algorithm reads
postings lists (let’s call them p1, p2, . . .) into memory until memory is nearly exhausted. These are then
merged to create a new postings list (let’s call this pa). The partial postings lists are in compressed
form, which means we can store quite a few of them in memory. The memory needed for merging
is relatively modest for two reasons: First, we know how many postings are in p1, p2, . . ., so we can
compress pa incrementally—very few postings are actually materialized. Second, the d-gaps in pa are
smaller post-merging, so compression becomes more e�cient. At the end of the first pass, we obtain a
smaller number of partial postings lists (pa, pb, . . . in R), which are then merged in a second pass into
a single postings list. This is emitted as the final value, keyed by the term, and written to disk. As
in the previous algorithm, the key space is partitioned by term. The final index will be split across r

8

Inverted Indexing: LP

1: class Mapper
2: method Initialize
3: M new AssociativeArray . holds partial lists of postings

4: method Map(docid n, doc d)
5: H new AssociativeArray . builds a histogram of term frequencies
6: for all term t 2 doc d do

7: H{t} H{t}+ 1

8: for all term t 2 H do

9: M{t}.Add(posting hn,H{t}i) . adds a posting to partial postings lists

10: if MemoryFull() then
11: Flush()

12: method Flush . flushes partial lists of postings as intermediate output
13: for all term t 2M do

14: P SortAndEncodePostings(M{t})
15: Emit(term t, postingsList P)

16: M.Clear()

17: method Close
18: Flush()

1: class Reducer
2: method Reduce(term t, postingsLists [P1, P2, . . .])
3: Pf new List . temporarily stores partial lists of postings
4: R new List . stores merged partial lists of postings
5: for all P 2 postingsLists [P1, P2, . . .] do
6: Pf .Add(P)
7: if MemoryNearlyFull() then
8: R.Add(MergeLists(Pf))
9: Pf .Clear()

10: R.Add(MergeLists(Pf))
11: Emit(term t, postingsList MergeLists(R)) . emits fully merged postings list of term t

Figure 4: Pseudo-code of the inverted indexing algorithm based on emitting lists of postings (LP).

documents). These partial postings lists are emitted as values, keyed by the terms. In our actual
implementation, positional information is also encoded in the postings lists, but this detail is omitted
from the pseudo-code for presentation purposes.

In the reduce phase, all partial postings lists associated with the same term are brought together by
the execution framework. The reducer must then merge all these partial lists (arbitrarily ordered) into
a final postings list. For this, we adopted a two-pass approach. In the first pass, the algorithm reads
postings lists (let’s call them p1, p2, . . .) into memory until memory is nearly exhausted. These are then
merged to create a new postings list (let’s call this pa). The partial postings lists are in compressed
form, which means we can store quite a few of them in memory. The memory needed for merging
is relatively modest for two reasons: First, we know how many postings are in p1, p2, . . ., so we can
compress pa incrementally—very few postings are actually materialized. Second, the d-gaps in pa are
smaller post-merging, so compression becomes more e�cient. At the end of the first pass, we obtain a
smaller number of partial postings lists (pa, pb, . . . in R), which are then merged in a second pass into
a single postings list. This is emitted as the final value, keyed by the term, and written to disk. As
in the previous algorithm, the key space is partitioned by term. The final index will be split across r

8

MapReduce it?
¢  The indexing problem

l  Scalability is paramount
l  Must be relatively fast, but need not be real time

l  Fundamentally a batch operation

l  Incremental updates may or may not be important

l  For the web, crawling is a challenge in itself

¢  The retrieval problem

l  Must have sub-second response time
l  For the web, only need relatively few results

Just covered

Now

Retrieval with MapReduce?
¢  MapReduce is fundamentally batch-oriented

l  Optimized for throughput, not latency
l  Startup of mappers and reducers is expensive

¢  MapReduce is not suitable for real-time queries!
l  Use separate infrastructure for retrieval…

Important Ideas
¢  Partitioning (for scalability)

¢  Replication (for redundancy)

¢  Caching (for speed)

¢  Routing (for load balancing)

The rest is just details!

Term vs. Document Partitioning

…

T

D

T1

T2

T3

D

T…

D1 D2 D3

Term ���
Partitioning

Document���
Partitioning

Katta Architecture ���
(Distributed Lucene)

http://katta.sourceforge.net/

Source: Wikipedia (Japanese rock garden)

Questions?

