Big Data Infrastructure

Session 4: MapReduce — Structured and Unstructured Data

Jimmy Lin
University of Maryland
Monday, February 23, 2015

‘@ ®®©| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Today’s Agenda

O Structured data
® Processing relational data with MapReduce
O Unstructured data

e Basics of indexing and retrieval

e Inverted indexing in MapReduce

Relational Databases

O A relational database is comprised of tables

O Each table represents a relation = collection of tuples (rows)

O Each tuple consists of multiple fields

OLTP/OLAP Architecture

ETL

(Extract, Transform, and Load)

OLTP > OLAP

OLTP/OLAP/Hadoop Architecture

ETL

(Extract, Transform, and Load)

OLTP > Hadoop OLAP

Structure of Data Warehouses

-

Dim_Date
% Id O

Date
Day
Day_of _Week
et
Month_MName =s'e Date_Id
Quarter Store_Id
Quarter_Name Product_Id
Year Units_Sold

SELECT P.Brand, S.Country,
SUM(F.Units_Sold)

FROM Fact Sales F

INNER JOIN Dim_Date D ON F.Date Id =
INNER JOIN Dim_Store S ON F.Store Id = S.Id
INNER JOIN Dim_Product P ON F.Product_Id = P.Id
WHERE D.YEAR = 1997 AND P.Product Category = 'tv'

GROUP BY P.Brand, S.Country;

D.Id

Source: Wikipedia (Star Schema)

[

—

Dim_Store
% Id
Store_Number
State_Province

Country

Dim_Product
% Id
EAN_Code
Product_MName
Brand
Product_Category

OLAP Cubes

Common operations

slice and dice
roll up/drill down

pivot

product

store

Sou rce: www.flickr.com/photos/75 18432@N06/2237536651/

Desigh Pattern: Secondary Sorting

O MapReduce sorts input to reducers by key

e Values are arbitrarily ordered
O What if want to sort value also?

o Eg,k— (v,), (v3, 1), (Vg 1), (Vg T)-..

Secondary Sorting: Solutions

o Solution I:

e Buffer values in memory, then sort
e Why is this a bad idea!?

o Solution 2:

e “Value-to-key conversion” design pattern:
form composite intermediate key, (k, v)

® Let execution framework do the sorting

® Preserve state across multiple key-value pairs to handle processing
e Anything else we need to do?

Value-to-Key Conversion

Before

= (V12 1) (Var P, (Ve P (V30).
Values arrive in arbitrary order...

After
(kyvi) = (v, 1)
(k,v3) = (v, 1)
(k,vq) = (Vg 1)
(k, vg) = (vg, 1)

Values arrive in sorted order...
Process by preserving state across multiple keys
Remember to partition correctly!

Working Scenario

O Two tables:

e User demographics (gender, age, income, etc.)
e User page visits (URL, time spent, etc.)

O Analyses we might want to perform:

e Statistics on demographic characteristics
Statistics on page visits
Statistics on page visits by URL

o
O
e Statistics on page visits by demographic characteristic
o

Relational Algebra

O Primitives

Projection (i)
Selection (0)
Cartesian product (x)
Set union (V)

Set difference (-)
Rename (p)

O Other operations
e Join (X)
e Group by... aggregation

Projection

Projection in MapReduce

O Easy!

e Map over tuples, emit new tuples with appropriate attributes
® No reducers, unless for regrouping or resorting tuples

e Alternatively: perform in reducer, after some other processing

O Basically limited by HDFS streaming speeds

e Speed of encoding/decoding tuples becomes important
e Take advantage of compression when available

e Semistructured data? No problem!

Selection

IOV 2@

@O

Selection in MapReduce

O Easy!

e Map over tuples, emit only tuples that meet criteria
® No reducers, unless for regrouping or resorting tuples

e Alternatively: perform in reducer, after some other processing

O Basically limited by HDFS streaming speeds

e Speed of encoding/decoding tuples becomes important
e Take advantage of compression when available

e Semistructured data? No problem!

Group by... Aggregation

O Example: What is the average time spent per URL!?

o In SQL:
e SELECT url, AVG(time) FROM visits GROUP BY url

O In MapReduce:

e Map over tuples, emit time, keyed by url
e Framework automatically groups values by keys
e Compute average in reducer

e Optimize with combiners

Relational Jo

I g e
hHOIO.AO””nHHU:OtA’J

ice Clip Art &

Relational Joins

Types of Relationships

>

Many-to-Many One-to-Many One-to-One

/A

Join Algorithms in MapReduce

O Reduce-side join
O Map-side join

O In-memory join

e Striped variant

e Memcached variant

Reduce-side Join

O Basic idea: group by join key
e Map over both sets of tuples
e Emit tuple as value with join key as the intermediate key
e Execution framework brings together tuples sharing the same key
® Perform actual join in reducer

e Similar to a “sort-merge join” in database terminology

O Two variants

e |-to-l joins
® |-to-many and many-to-many joins

Reduce-side Join: | -to-1

Map

Reduce

keys

keys values

:II: R,
S

values

RI SZ

Note: no guarantee if R is going to come first or S

Reduce-side Join: | -to-many

Map
keys values
R, R,
S, : S
S; S3
Se S
Reduce
keys values
RI SZ SB
?
blem:
,S the pro

what

Reduce-side Join: V-to-K Conversion

In reducer...

keys values
R €< New key encountered: hold in memory
S, Cross with records from other set
S3
S, ¥

R, € New key encountered: hold in memory

S, Cross with records from other set

Reduce-side Join: many-to-many

In reducer...

keys values

R,)
Rs > Hold in memory
Rg /
S, Cross with records from other set
S3
S, ! .

me

oble
,S the pr

what

Map-side Join: Basic Idea

Assume two datasets are sorted by the join key:

R, S
R; S,
\4

A sequential scan through both datasets to join
(called a “merge join” in database terminology)

Map-side Join: Parallel Scans

O If datasets are sorted by join key, join can be accomplished by a
scan over both datasets

O How can we accomplish this in parallel?

e Partition and sort both datasets in the same manner

O In MapReduce:

e Map over one dataset, read from other corresponding partition

® No reducers necessary (unless to repartition or resort)

o Consistently partitioned datasets: realistic to expect?

In-Memory Join

O Basic idea: load one dataset into memory, stream over other
dataset

e Works if R << § and R fits into memory

e Called a “hash join” in database terminology

O MapReduce implementation

e Distribute R to all nodes

e Map over S, each mapper loads R in memory, hashed by join key
e For every tuple in S, look up join key in R

e No reducers, unless for regrouping or resorting tuples

In-Memory Join: Variants

O Striped variant:

e R too big to fit into memory!?
e Divide Rinto R, R,, R;, ... s.t. each R, fits into memory
e Perform in-memory join: Vn, R, X S

e Take the union of all join results

O Memcached join:

e Load R into memcached

e Replace in-memory hash lookup with memcached lookup

Memcached

Circa 2008 Architecture

FACEBOOK
ARCHITECTURE J

Cache
sync

San Francisco

Web

Santa Clara Virginia

= =

Memcache

proxy
N COeE

Replication

Caching servers: |5 million requests per second,
95% handled by memcache (15 TB of RAM)

Database layer: 800 eight-core Linux servers
running MySQL (40 TB user data)

Source: Technology Review (July/August, 2008)

Memcached Join

O Memcached join:

® Load R into memcached
e Replace in-memory hash lookup with memcached lookup

o Capacity and scalability?

® Memcached capacity >> RAM of individual node

e Memcached scales out with cluster

O Latency!?

® Memcached is fast (basically, speed of network)

e Batch requests to amortize latency costs

Source: See tech report by Lin et al. (2009)

Which join to use?

O In-memory join > map-side join > reduce-side join
e Why!
O Limitations of each?

® In-memory join: memory
e Map-side join: sort order and partitioning

® Reduce-side join: general purpose

Processing Relational Data: Summary

O MapReduce algorithms for processing relational data:

e Group by, sorting, partitioning are handled automatically by shuffle/sort
in MapReduce

e Selection, projection, and other computations (e.g., aggregation), are
performed either in mapper or reducer

e Multiple strategies for relational joins

O Complex operations require multiple MapReduce jobs

e Example: top ten URLs in terms of average time spent

e Opportunities for automatic optimization

Sou rce: www.flickr.com/photos/75 18432@N06/2237536651/

Today’s Agenda

O Structured data
® Processing relational data with MapReduce
O Unstructured data

e Basics of indexing and retrieval

e Inverted indexing in MapReduce

First, nomenclature...

O Information retrieval (IR)

e Focus on textual information (= text/document retrieval)

e Other possibilities include image, video, music, ...

o What do we search?

e Generically, “collections”

e Less-frequently used, “corpora”

O What do we find!?

e Generically, “documents”

e Even though we may be referring to web pages, PDFs, PowerPoint
slides, paragraphs, etc.

Information Retrieval Cycle

Source

Selection \Resource
A

Query

Formulation \Query
Search \jes”'ts
Selection Documents
System discovery
Vocabulary discovery |

Concept discovery \
Document discovery Examination \? formation

Delivery

source reselection

The Central Problem in Search

Author
Searcher
L
Concepts Concepts
Query Terms Document Terms
“tragic love story” “fateful star-crossed romance”

Do these represent the same concepts?

Abstract IR Architecture

uer Documents s
Query nt acquisitio”

. . e.-5"
1 online, offline { (

Representation
Function

Representation
Function

v

Query Representation

v

Document Representation

\ 4

v

Comparison
Function

|
1

Hits

-

Index

How do we represent text?

O Remember: computers don’t “understand” anything!

O “Bag of words”

e Treat all the words in a document as index terms

e Assign a “weight” to each term based on “importance”
(or, in simplest case, presence/absence of word)

e Disregard order, structure, meaning, etc. of the words

e Simple, yet effective!

O Assumptions

® Term occurrence is independent
e Document relevance is independent

e “Words” are well-defined

What’s a word?

REBHREERHR _HERAREFTEEERE,

=R £ H - ERFESNERER. pole ghl) - g A Jas

Jod Guuldd O = 3eduisluuld ez IED

8l e 6dsld) Buadd asdisoms Bsg)
Jé?d‘ Sdéjk b @yl Lﬁ‘;'d‘ COHC) 9
1982 alg Wlod Cp 1oE U E 2 Ssdshunddd) Lsuged) alidnd sacud)

Bbictynas B MewaHckom cyae MockBbl akc-rnaBa FOKOCa
3asiBUJ1 He coBepLuasn HU4yero NPoOTUBO3aKOHHOIO, B YeM
OOBUHSAET ero reHnpokKypatypa Poccumn.

R TIBR 1 3RATS TRABYUT # afedia @R 2005-06 7 I BIIed
afpTRT &R STATeT B BT 3MTebeT BT & 3R N FUR W AR T 3

BXESTEERRICHL... 7—T—HRIRERES

ZE 7|1xt= ME A= 252 0184} AIF0| " SHFSTAI" et sl -
=hiete SHGH 042 HEU0|E TICHE 2F ES| H S FoliC)

Sample Document

McDonald's slims down
spuds “Bag of Words”

Fast-food chain to reduce certain types of fat

in its french fries with new cooking oil. |14 X McDonalds
NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries |2 % fat

nearly in half, the fast-food chain said Tuesday as it
moves to make all its fried menu items healthier.

, . : X fri
But does that mean the popular shoestring fries won't | fl"leS
taste the same! The company says no. "It's a win-win

for our customers because they are getting the same 8 X new

great french-fry taste along with an even healthier
nutrition profile," said Mike Roberts, president of

McDonald's USA. 7 X french

But others are not so sure. McDonald's will not

specifically discuss the kind of oil it plans to use, but 6 X company said nutrition
’ ’

at least one nutrition expert says playing with the
formula could mean a different taste.

Shares of Oak Brook, lll.-based McDonald's (MCD: 5 X fOOd’ OII’ Percent’ reduce’
down $0.54 to $23.22, Research, Estimates) were taste Tuesday
’

lower Tuesday afternoon. It was unclear Tuesday
whether competitors Burger King and Wendy's
International (WEN: down $0.80 to $34.91, Research,
Estimates) would follow suit. Neither company could
immediately be reached for comment.

Counting Words...

Documents

case folding, tokenization, stopword removal, stemming

Bag of
Words sx sen%s, word k%dge, etc.

Inverted
Index

Boolean Retrieval

O Users express queries as a Boolean expression
e AND, OR, NOT
e Can be arbitrarily nested

O Retrieval is based on the notion of sets

e Any given query divides the collection into two sets:
retrieved, not-retrieved

® Pure Boolean systems do not define an ordering of the results

Inverted Index: Boolean Retrieval

Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham

I 2 3 4
blue I blue —» 2
cat I cat — 3
egg I egg — 4
fish - fish —> | —» 2
green I green — 4
ham | ham — 4
hat I hat — 3
one I one — |
red | red — 2
two I two — |

Boolean Retrieval

O To execute a Boolean query:

e Build query syntax tree

OR
/\
(blue AND fish) OR ham ham AND
® For each clause, look up postings blue fish
blue — 2
fish —> 1> 2

e Traverse postings and apply Boolean operator

O Efficiency analysis

e Postings traversal is linear (assuming sorted postings)

e Start with shortest posting first

Strengths and Weaknesses

O Strengths

Precise, if you know the right strategies
Precise, if you have an idea of what you’re looking for

Implementations are fast and efficient

O Weaknesses

Users must learn Boolean logic

Boolean logic insufficient to capture the richness of language

No control over size of result set: either too many hits or none
When do you stop reading? All documents in the result set are
considered “equally good”

What about partial matches? Documents that “don’t quite match” the
query may be useful also

Ranked Retrieval

O Order documents by how likely they are to be relevant

e Estimate relevance(q, d))
e Sort documents by relevance

e Display sorted results

o0 User model

e Present hits one screen at a time, best results first

e At any point, users can decide to stop looking

O How do we estimate relevance!?

e Assume document is relevant if it has a lot of query terms
e Replace relevance(q, d)) with sim(q, d)
e Compute similarity of vector representations

Vector Space Model

Assumption: Documents that are “close together” in vector
space “talk about” the same things

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~“closeness”)

Similarity Metric

O Use “angle” between the vectors:

dj = |wj1,wj2,wj3,. .. Wjn]
di = Wk 1, W2, Wk 3, - - - W.n]
d: - d,
cosf = —2
dj|d|
d: - d W WL
Sim(dj,dk) _ J kE Zz—O J,t Wk,1

Ailldd Y w [T,
O Or, more generally, inner products:

sim(d;,di) = d; - di, = ij,iwk,i
i=0

Term Weighting

O Term weights consist of two components

® Local: how important is the term in this document!?

e Global: how important is the term in the collection?

O Here’s the intuition:

e Terms that appear often in a document should get high weights

® Terms that appear in many documents should get low weights

O How do we capture this mathematically?

e Term frequency (local)

e Inverse document frequency (global)

TF.IDF Term Weighting

N
W, =tfi’j-log;

l

W; i weight assigned to term i in document j
tfi’j number of occurrence of term i in document j
N number of documents in entire collection

n number of documents with term i

Inverted Index: TF.IDF

Doc | Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham
tf
I 2 3 4 df
blue I I blue > | 2
cat I I cat | >3 |
egg I 1 egg ™1 ™4 M
fish 2|2 2 fish > 2> 22 2
green | | | green ™1 ™48l
ham || | ham | 4 M
hat I I hat > | = 3|
one I I one BN
red I I red | 2 |
two I I two BN RN

Positional Indexes

O Store term position in postings
O Supports richer queries (e.g., proximity)

O Naturally, leads to larger indexes...

Inverted Index: Positional Information

Doc | Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham
tf
1 2 3 4 df
blue 1 1 blue > 12 1 B3
cat 1 1 cat 1 > 3 P 1
egg 111 egg > 1—=>4 1 2
fish 2|2 2 fish > 2> 12 24> 2 2 124
green 111 green =1 >4 1 [
ham 111 ham > 1—=>4 1 B3
hat 1 1 hat »1—=>3 1 @
one 1 1 one > 1—=>1 1M
red 1 1 red =1 —>2 1 [
two 1 1 two > 1—=>1 1 @3

Retrieval in a Nutshell

O Look up postings lists corresponding to query terms
O Traverse postings for each query term
O Store partial query-document scores in accumulators

O Select top k results to return

Retrieval: Document-at-a-Time

O Evaluate documents one at a time (score all query terms)

blue 9 2 21 | 35 |

fish Il 2 9 | 21 3 34 | 35 2 80 3

Document score in top k?

Accumulators

Yes: Insert document score, extract-min if heap too large
(e.g. min heap)

No: Do nothing

O Tradeoffs

e Small memory footprint (good)
e Skipping possible to avoid reading all postings (good)

® More seeks and irregular data accesses (bad)

Retrieval: Query-At-A-Time

O Evaluate documents one query term at a time

e Usually, starting from most rare term (often with tf-sorted postings)

blue 9 2 21 | 35 |

Accumulators

Scorey,.,,(doc n) = (e.g. hash)

fish Il 2 9 1 21 3 34 | 35 2 80 3

O Tradeoffs

e Early termination heuristics (good)
e lLarge memory footprint (bad), but filtering heuristics possible

MapReduce it?

O The indexing problem

e Scalability is critical Perfect for MaPR

e Must be relatively fast, but need not be real time €duce!
e Fundamentally a batch operation

® Incremental updates may or may not be important
o

For the web, crawling is a challenge in itself
O The retrieval problem

® Must have sub-second response time

e For the web, only need relatively few results

Uh... not sO good...

Indexing: Performance Analysis

O Fundamentally, a large sorting problem

® Terms usually fit in memory
® Postings usually don’t

O How is it done on a single machine!?
O How can it be done with MapReduce!

O First, let’s characterize the problem size:

e Size of vocabulary

e Size of postings

Vocabulary Size: Heaps’ Law

b M is vocabulary size
2\ 1 — k Z T is collection size (humber of documents)
k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

O Heaps’ Law: linear in log-log space

O Vocabulary size grows unbounded!

Heaps’ Law for RCVI

k = 44
b = 0.49

log10 M

First 1,000,020 terms:
= Predicted = 38,323
Actual = 38,365

Reuters-RCV|1 collection: 806,791 newswire documents (Aug 20, 996-August 19, 1997)

Manning, Raghavan, Schiitze, Introduction to Information Retrieval (2008)

Postings Size: Zipf’s Law

Cf —_ cf is the collection frequency of i-th common term
I . c is a constant

o Zipf's Law: (also) linear in log-log space
e Specific case of Power Law distributions
O In other words:

e A few elements occur very frequently

e Many elements occur very infrequently

Zipfs Law for RCVI

log10 cf

Fit isn’t that good...
but good enough!

0 1 2 3 4 5 6 7

log10 rank

Reuters-RCV|1 collection: 806,791 newswire documents (Aug 20, 996-August 19, 1997)

Manning, Raghavan, Schiitze, Introduction to Information Retrieval (2008)

10° 10° 10° 10° 10° 10°
word frequency citations
(d)
100
10 .,
17 T N
10° 10 10° 10° ¥

0

1 10° 2 7
books sold telephone calls 1ecei\éq ecagquake magnitude
are (h) 1004 (i)

. ® ~
. . v % : N .
'e 2 10 5 *,
O 10°]
10'
10 L A R R 1 B I T
0.01 0.1 1 100 100 10t 100 1 10 100
crater diameter in km peak intensity intensity
~.. ORET ®)
100 \
\‘\ 2
10 N 10
1 ""Ig B T 100 I4l I6"
10 10 100 100 10
net worth in US dollars name frequency population of city

Figure from: Newman, M. E. J. (2005) “Power laws, Pareto
distributions and Zipf's law.” Contemporary Physics 46:323—-351.

MapReduce: Index Construction

O Map over all documents

e Emit term as key, (docno, tf) as value
e Emit other infformation as necessary (e.g., term position)

O Sort/shuffle: group postings by term

O Reduce

e Gather and sort the postings (e.g., by docno or tf)
® Write postings to disk

O MapReduce does all the heavy lifting!

Inverted Indexing with MapReduce

Doc | Doc 2 Doc 3
one fish, two fish red fish, blue fish cat in the hat
one |] red 2 | cat 3 |
M ap two || | blue |2 | hat 3]
fish | 2 fish 2 2

Shuffle and Sort: aggregate values by keys

cat 3 |
blue 2 |
Reduce fish | 22 2
hat 3 1
one |
two |

red 2 |

Inverted Indexing: Pseudo-Code

: class MAPPER
method MAP(docid n,doc d)
H < new ASSOCIATIVEARRAY > histogram to hold term frequencies
for all term ¢ € doc d do > processes the doc, e.g., tokenization and stopword removal

H{t} < H{t} +1
for all term ¢t € H do
EMIT(term t, posting (n, H{t})) > emits individual postings

class REDUCER
method REDUCE(term ¢, postings [(n1, f1)...])
P < new LIST
for all (n, f) € postings [(ni, f1)...] do
P.APPEND((n, f)) > appends postings unsorted

P.Sort() > sorts for compression
EMIT(term t, postingsList P)

Positional Indexes

Doc |

one fish, two fish

Map two
fish
Reduce

I
2]

Shuffle and Sort: aggregate values by keys

cat

fish

one

red

[l

[3]

[24]

Doc 2

red fish, blue fish

red

blue

fish

[l

24 | 2

[l

[l

21

2

|
2 [2)

2

[24]

[l

[3]

[24]

blue

hat

two

Doc 3

cat in the hat

cat

hat

w

31
|

3

[3]

[2]

[3]

[l

[2]

Inverted Indexing: Pseudo-Code

: class MAPPER
method MAP(docid n,doc d)
H < new ASSOCIATIVEARRAY > histogram to hold term frequencies
for all term ¢ € doc d do > processes the doc, e.g., tokenization and stopword removal

H{t} < H{t} +1
for all term ¢t € H do
EMIT(term t, posting (n, H{t})) > emits individual postings

class REDUCER
method REDUCE(term ¢, postings [(n1, f1)...])
P < new LIST
for all (n, f) € postings [(ni, f1)...] do
P.APPEND((n, f)) > appends postings unsorted

(\ ’}’.SORT(T) > sorts for compression
“ByE et t, postingsList P) ’
what's ©

Scalability Bottleneck

O Initial implementation: terms as keys, postings as values

e Reducers must buffer all postings associated with key (to sort)
e What if we run out of memory to buffer postings?

o Uh oh!

Another Try...

(key) (values) (keys) (values)
fish | Z [2.4] fish | | [2.4]
34 I [23] fish | 9 [9]
21 Z [1,8,22] fish | 2] [1,8,22]
35 Z [8.41] :> fish | 34 [23]
80 z [2,9,76] fish | 35 [8,41]
9 I [9] fish | 80 [2,9,76]

How is this different?

* Let the framework do the sorting
* Term frequency implicitly stored

Where have we seen this before?

Inverted Indexing: Pseudo-Code

class MAPPER
method MApr(docid n,doc d)
H < new ASSOCIATIVEARRAY

H{t} « H{t} +1
for all term ¢t € H do

1:
2
3
4: for all term ¢ € doc d do > builds a histogram of term frequencies
)
6
7

Emit(tuple (¢,n), tf H{t}) > emits individual postings, with a tuple as the key

class PARTITIONER
method PARTITION(tuple (¢, n), tf f)

A

class REDUCER
method INITIALIZE
tprev A\ @
P <+ new POSTINGSLIST
method REDUCE(tuple (t,n), tf [f])
if ¢ # tprev A tprev # () then

P.RESET()

10: tprev < 1t
11: method CLOSE

return HASH(¢) mod NumOfReducers > keys of same term are sent to same reducer

EMIT(term ¢, postings P) > emits postings list of term t,,¢,

P.APPEND((n, f)) > appends postings in sorted order

12: EMIT(term ¢, postings P) > emits last postings list from this reducer

Inverted Index (Again)

Doc | Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham
tf
I 2 3 4 df
blue I I blue > | 2
cat I I cat | >3 |
egg I 1 egg ™1 ™4 M
fish 2|2 2 fish > 2> 22 2
green | | | green ™1 ™48l
ham || | ham | 4 M
hat I I hat > | = 3|
one I I one BN
red I I red | 2 |
two I I two BN RN

Chicken and Egg?

(key)

fish

fish

fish

fish

fish

fish

21

34

35

80

(value)
[24]
[9]
[1,8,22]
[23]
[841]

[2,9,76]

v
Write postings

We'd like to store the df at the
front of the postings list

But we don’t know the df until
we’ve seen all postings!

Sound familiar?

Getting the df

O In the mapper:

e Emit “special” key-value pairs to keep track of df

O In the reducer:

e Make sure “special” key-value pairs come first: process them to
determine df

O Remember: proper partitioning!

Getting the df: Modified Mapper

Doc |
one fish, two fish Input document...
(key) (value)
fish | | [2:4] Emit normal key-value pairs...
one | | [l
two | | [3]
fish | * [1] Emit “special” key-value pairs to keep track of df...
one | % [1]

two | % [1]

Getting the df: Modified Reducer

(key)

fish

fish

fish

fish

fish

fish

fish

*

21

34

35

80

(value)

[63]

[2.4]
[9]
[1,822]
[23]
[8,41]

[2,9,76]

2 21 First, compute the df by summing contributions
from all “special” key-value pair...

Write the df...

Important: properly define sort order to
make sure “special” key-value pairs come first!

v Write postings

Where have we seen this before?

Postings Encoding

Conceptually:

fish I T

In Practice:

21

3

34

* Don’t encode docnos, encode gaps (or d-gaps)
* But it’'s not obvious that this save space...

fish | 2

12

3

35

80

45

3

Overview of Index Compression

O Byte-aligned vs. bit-aligned

O Byte-aligned technique

e VByte
e Simple9 and variants
e PForDelta

O Bit-aligned
e Unary codes
® Yy codes

e O codes

® Golomb codes (local Bernoulli model)

Want more detail? Read Managing Gigabytes by Witten, Moffat, and Bell!

VByte

O Simple idea: use only as many bytes as needed

e Need to reserve one bit per byte as the “continuation bit”

e Use remaining bits for encoding value

7 bits |0

|4 bits | | 0

21| bits | | I 0

O Works okay, easy to implement...

Inverted Indexing: IP

. class M APPER
method MApr(docid n,doc d)
H < new ASSOCIATIVEARRAY

H{t} « H{t} +1
for all term ¢t € H do

1
2
3
4: for all term ¢ € doc d do > builds a histogram of term frequencies
)
6
7

Emit(tuple (¢,n), tf H{t}) > emits individual postings, with a tuple as the key

class PARTITIONER
method PARTITION(tuple (¢, n), tf f)

A

class REDUCER
method INITIALIZE
tprev A\ @
P < new POSTINGSLIST
method REDUCE(tuple (t,n), tf [f])
if ¢ # tprev A tprev # () then
EMIT(term ¢, postings P)
- s tiont
{ PAPPEND((n f})
10 t;ezx-—-t--" s
11: method CLOSEWY‘a

return HASH(¢) mod NumOfReducers > keys of same term are sent to same reducer

> emits postings list of term tp,¢,

sump > appends postings in sorted order

12: EMIT(term ¢, postings P) > emits last postings list from this reducer

Inverted Indexing: LP

1: class MAPPER

2 method INITIALIZE

3 M <+ new ASSOCIATIVEARRAY > holds partial lists of postings
4: method Map(docid n,doc d)

5: H < new ASSOCIATIVEARRAY > builds a histogram of term frequencies
6 for all term t € doc d do

7 H{t} + H{t} +1

8 for all term t € H do

9 M{t}.App(posting (n, H{t})) > adds a posting to partial postings lists
10: if MEMORYFULL() then
11: FLUSH()
12: method FLUSH > flushes partial lists of postings as intermediate output
13: for all term t € M do
14: P <+ SORTANDENCODEPOSTINGS(M{t})
15: EMIT(term ¢, postingsList P)
16: M.CLEAR()
17: method CLOSE

18: FLUSH()

Inverted Indexing: LP

1: class REDUCER

2 method REDUCE(term t, postingsLists [Py, Pa,...])

3 Py < new LIST > temporarily stores partial lists of postings
4: R < new LIST > stores merged partial lists of postings
5: for all P € postingsLists [P, Ps,...] do

6 P;.ApD(P)

7 if MEMORYNEARLYFULL() then

8 R.ADD(MERGELISTS(FPy))

9 P;.CLEAR()

10: R.ADD(MERGELISTS(FP))
11: EMIT(term ¢, postingsList MERGELISTS(R)) > emits fully merged postings list of term ¢

MapReduce it?

O The indexing problem Just covered

Scalability is paramount
Must be relatively fast, but need not be real time

o

o

e Fundamentally a batch operation

® Incremental updates may or may not be important
o

For the web, crawling is a challenge in itself
O The retrieval problem Now

® Must have sub-second response time

e For the web, only need relatively few results

Retrieval with MapReduce?

O MapReduce is fundamentally batch-oriented

e Optimized for throughput, not latency
e Startup of mappers and reducers is expensive

O MapReduce is not suitable for real-time queries!

e Use separate infrastructure for retrieval...

Important Ideas

O Partitioning (for scalability)

O Replication (for redundancy)
O Caching (for speed)

O Routing (for load balancing)

The rest is just details!

Term vs. Document Partitioning

Term
Partitioning

Document
Partitioning

D

http://katta.sourceforge.net/

Katta Architecture

(Distributed Lucene)

hadoop cluster or
single server

create index
and copy to shared filesystem

fail over

=l
Master

.
__

\
command line
management

= |
\‘\;‘///\ javaAPI/'

assign download

shards / shards

server nodes in the
grid

multicast query

shard replication

(plug-able policy) multicast query

distributed ranking
plug-able selection

policy (custom load
balancing)

) q

\Z

java client API

HDFS, NAS or shared
local filesystem

Se— _—

