
Big Data Infrastructure

Jimmy Lin
University of Maryland

Monday, February 9, 2015

Session 3: MapReduce – Basic Algorithm Design

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States���
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source: Wikipedia (The Scream)

Source: Wikipedia (Japanese rock garden)

Today’s Agenda
¢  MapReduce algorithm design

l  How do you express everything in terms of m, r, c, p?
l  Toward “design patterns”

¢  Real-world word counting: language models
l  How to break all the rules and get away with it

Source: Google

MapReduce

MapReduce: Recap
¢  Programmers must specify:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
l  All values with the same key are reduced together

¢  Optionally, also:
partition (k’, number of partitions) → partition for k’
l  Often a simple hash of the key, e.g., hash(k’) mod n
l  Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
l  Mini-reducers that run in memory after the map phase
l  Used as an optimization to reduce network traffic

¢  The execution framework handles everything else…

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

“Everything Else”
¢  The execution framework handles everything else…

l  Scheduling: assigns workers to map and reduce tasks
l  “Data distribution”: moves processes to data

l  Synchronization: gathers, sorts, and shuffles intermediate data

l  Errors and faults: detects worker failures and restarts

¢  Limited control over data and execution flow
l  All algorithms must expressed in m, r, c, p

¢  You don’t know:
l  Where mappers and reducers run

l  When a mapper or reducer begins or finishes
l  Which input a particular mapper is processing

l  Which intermediate key a particular reducer is processing

Tools for Synchronization
¢  Cleverly-constructed data structures

l  Bring partial results together

¢  Sort order of intermediate keys
l  Control order in which reducers process keys

¢  Partitioner
l  Control which reducer processes which keys

¢  Preserving state in mappers and reducers
l  Capture dependencies across multiple keys and values

Preserving State

Mapper object

setup

map

cleanup

state
one object per task

Reducer object

setup

reduce

close

state

one call per input ���
key-value pair

one call per ���
intermediate key

API initialization hook

API cleanup hook

Scalable Hadoop Algorithms: Themes
¢  Avoid object creation

l  Inherently costly operation
l  Garbage collection

¢  Avoid buffering
l  Limited heap size

l  Works for small datasets, but won’t scale!

Importance of Local Aggregation
¢  Ideal scaling characteristics:

l  Twice the data, twice the running time
l  Twice the resources, half the running time

¢  Why can’t we achieve this?
l  Synchronization requires communication

l  Communication kills performance

¢  Thus… avoid communication!
l  Reduce intermediate data via local aggregation

l  Combiners can help

Shuffle and Sort

Mapper

Reducer

other mappers

other reducers

circular buffer ���
(in memory)

spills (on disk)

merged spills ���
(on disk)

intermediate files ���
(on disk)

Combiner

Combiner

Word Count: Baseline

What’s the impact of combiners?

Word Count: Version 1

Are combiners still needed?

Word Count: Version 2

Are combiners still needed?

Design Pattern for Local Aggregation
¢  “In-mapper combining”

l  Fold the functionality of the combiner into the mapper by preserving
state across multiple map calls

¢  Advantages

l  Speed
l  Why is this faster than actual combiners?

¢  Disadvantages
l  Explicit memory management required

l  Potential for order-dependent bugs

Combiner Design
¢  Combiners and reducers share same method signature

l  Sometimes, reducers can serve as combiners
l  Often, not…

¢  Remember: combiner are optional optimizations
l  Should not affect algorithm correctness

l  May be run 0, 1, or multiple times

¢  Example: find average of integers associated with the same key

Computing the Mean: Version 1

Why can’t we use reducer as combiner?

Computing the Mean: Version 2

Why doesn’t this work?

Computing the Mean: Version 3

Fixed?

Computing the Mean: Version 4

Are combiners still needed?

Algorithm Design: Running Example
¢  Term co-occurrence matrix for a text collection

l  M = N x N matrix (N = vocabulary size)
l  Mij: number of times i and j co-occur in some context ���

(for concreteness, let’s say context = sentence)

¢  Why?
l  Distributional profiles as a way of measuring semantic distance

l  Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems
¢  Term co-occurrence matrix for a text collection���

= specific instance of a large counting problem
l  A large event space (number of terms)

l  A large number of observations (the collection itself)

l  Goal: keep track of interesting statistics about the events

¢  Basic approach
l  Mappers generate partial counts

l  Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: “Pairs”
¢  Each mapper takes a sentence:

l  Generate all co-occurring term pairs
l  For all pairs, emit (a, b) → count

¢  Reducers sum up counts associated with these pairs

¢  Use combiners!

Pairs: Pseudo-Code

“Pairs” Analysis
¢  Advantages

l  Easy to implement, easy to understand

¢  Disadvantages
l  Lots of pairs to sort and shuffle around (upper bound?)

l  Not many opportunities for combiners to work

Another Try: “Stripes”
¢  Idea: group together pairs into an associative array

¢  Each mapper takes a sentence:
l  Generate all co-occurring term pairs

l  For each term, emit a → { b: countb, c: countc, d: countd … }

¢  Reducers perform element-wise sum of associative arrays

(a, b) → 1
(a, c) → 2
(a, d) → 5
(a, e) → 3
(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }
a → { b: 1, c: 2, d: 2, f: 2 }
a → { b: 2, c: 2, d: 7, e: 3, f: 2 }

+

Key idea: cleverly-constructed data st
ructure

brings together partial
results

Stripes: Pseudo-Code

“Stripes” Analysis
¢  Advantages

l  Far less sorting and shuffling of key-value pairs
l  Can make better use of combiners

¢  Disadvantages
l  More difficult to implement

l  Underlying object more heavyweight

l  Fundamental limitation in terms of size of event space

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Relative Frequencies
¢  How do we estimate relative frequencies from counts?

¢  Why do we want to do this?

¢  How do we do this with MapReduce?

f(B|A) =
N(A,B)

N(A)
=

N(A,B)P
B0 N(A,B0)

f(B|A): “Stripes”

¢  Easy!
l  One pass to compute (a, *)

l  Another pass to directly compute f(B|A)

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

f(B|A): “Pairs”
¢  What’s the issue?

l  Computing relative frequencies requires marginal counts
l  But the marginal cannot be computed until you see all counts

l  Buffering is a bad idea!

¢  Solution:
l  What if we could get the marginal count to arrive at the reducer first?

f(B|A): “Pairs”

¢  For this to work:

l  Must emit extra (a, *) for every bn in mapper
l  Must make sure all a’s get sent to same reducer (use partitioner)

l  Must make sure (a, *) comes first (define sort order)

l  Must hold state in reducer across different key-value pairs

(a, b1) → 3
(a, b2) → 12
(a, b3) → 7
(a, b4) → 1
…

(a, *) → 32

(a, b1) → 3 / 32
(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32
…

Reducer holds this value in memory

“Order Inversion”
¢  Common design pattern:

l  Take advantage of sorted key order at reducer to sequence
computations

l  Get the marginal counts to arrive at the reducer before the joint counts

¢  Optimization:
l  Apply in-memory combining pattern to accumulate marginal counts

Synchronization: Pairs vs. Stripes
¢  Approach 1: turn synchronization into an ordering problem

l  Sort keys into correct order of computation
l  Partition key space so that each reducer gets the appropriate set of

partial results
l  Hold state in reducer across multiple key-value pairs to perform

computation
l  Illustrated by the “pairs” approach

¢  Approach 2: construct data structures that bring partial results
together
l  Each reducer receives all the data it needs to complete the computation
l  Illustrated by the “stripes” approach

Secondary Sorting
¢  MapReduce sorts input to reducers by key

l  Values may be arbitrarily ordered

¢  What if want to sort value also?
l  E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

Secondary Sorting: Solutions
¢  Solution 1:

l  Buffer values in memory, then sort
l  Why is this a bad idea?

¢  Solution 2:
l  “Value-to-key conversion” design pattern: form composite intermediate

key, (k, v1)
l  Let execution framework do the sorting

l  Preserve state across multiple key-value pairs to handle processing

l  Anything else we need to do?

Recap: Tools for Synchronization
¢  Cleverly-constructed data structures

l  Bring data together

¢  Sort order of intermediate keys
l  Control order in which reducers process keys

¢  Partitioner
l  Control which reducer processes which keys

¢  Preserving state in mappers and reducers
l  Capture dependencies across multiple keys and values

Issues and Tradeoffs
¢  Number of key-value pairs

l  Object creation overhead
l  Time for sorting and shuffling pairs across the network

¢  Size of each key-value pair
l  De/serialization overhead

¢  Local aggregation
l  Opportunities to perform local aggregation varies

l  Combiners make a big difference

l  Combiners vs. in-mapper combining

l  RAM vs. disk vs. network

Debugging at Scale
¢  Works on small datasets, won’t scale… why?

l  Memory management issues (buffering and object creation)
l  Too much intermediate data

l  Mangled input records

¢  Real-world data is messy!
l  There’s no such thing as “consistent data”

l  Watch out for corner cases

l  Isolate unexpected behavior, bring local

Today’s Agenda
¢  MapReduce algorithm design

l  How do you express everything in terms of m, r, c, p?
l  Toward “design patterns”

¢  Real-world word counting: language models
l  How to break all the rules and get away with it

The two commandments of estimating
probability distributions…

Source: Wikipedia (Moses)

Probabilities must sum up to one

Source: http://www.flickr.com/photos/37680518@N03/7746322384/

Thou shalt smooth

Source: http://www.flickr.com/photos/brettmorrison/3732910565/

Source: Warner Bros. Pictures

Count.

Source: http://www.flickr.com/photos/guvnah/7861418602/

Normalize.

Count.

What’s the non-toy application of word count?

Language Models

[chain rule]

Is this tractable?

Approximating Probabilities

Basic idea: limit history to fixed number of words N
(Markov Assumption)

N=1: Unigram Language Model

Approximating Probabilities

Basic idea: limit history to fixed number of words N
(Markov Assumption)

N=2: Bigram Language Model

Approximating Probabilities

Basic idea: limit history to fixed number of words N
(Markov Assumption)

N=3: Trigram Language Model

Building N-Gram Language Models
¢  Compute maximum likelihood estimates (MLE) for individual ���
n-gram probabilities
l  Unigram:

l  Bigram:

l  Generalizes to higher-order n-grams

¢  We already know how to do this in MapReduce!

Thou shalt smooth!
¢  Zeros are bad for any statistical estimator

l  Need better estimators because MLEs give us a lot of zeros
l  A distribution without zeros is “smoother”

¢  The Robin Hood Philosophy: Take from the rich (seen n-grams)
and give to the poor (unseen n-grams)
l  And thus also called discounting

l  Make sure you still have a valid probability distribution!

¢  Lots of techniques:
l  Laplace, Good-Turing, Katz backoff, Jelinek-Mercer

l  Kneser-Ney represents best practice

S(wi|wi�1
i�k+1) =

(
f(wi

i�k+1)

f(wi�1
i�k+1)

if f(wi
i�k+1) > 0

↵S(wi|wi�1
i�k+2) otherwise

Stupid Backoff
¢  Let’s break all the rules:

¢  But throw lots of data at the problem!

S(wi) =
f(wi)

N

Source: Brants et al. (EMNLP 2007)

Stupid Backoff Implementation
¢  Same basic idea as “pairs” approach discussed previously

¢  A few optimizations:

l  Convert words to integers, ordered by frequency���
(take advantage of VByte compression)

l  Replicate unigram counts to all shards

Stupid Backoff Implementation
¢  Straightforward approach: count each order separately

¢  More clever approach: count all orders together

A B
A B C
A B D
A B E
…

A B
A B C
A B C P
A B C Q
A B D
A B D X
A B D Y
…

remember this value

remember this value
remember this value

remember this value

State of the art smoothing (less data)

vs. Count and normalize (more data)

Source: Wikipedia (Boxing)

Source: Wikipedia (Rosetta Stone)

Statistical Machine Translation

Translation
Model

Language���
Model

Decoder

Foreign Input Sentence
maria no daba una bofetada a la bruja verde

English Output Sentence
mary did not slap the green witch

Word Alignment

Statistical Machine Translation

(vi, i saw)
(la mesa pequeña, the small table)
…

Phrase Extraction

i saw the small table
vi la mesa pequeña
Parallel Sentences

he sat at the table
the service was good

Target-Language Text

Training Data

ê1
I = argmax

e1
I

P(e1
I | f1

J)!" #$= argmax
e1
I

P(e1
I)P(f1

J | e1
I)!" #$

Maria no dio una bofetada a la bruja verde

Mary not

did not

no

did not give

give a slap to the witch green

slap

a slap

to the

to

the

green witch

the witch

by

slap

Translation as a Tiling Problem

Mary

did not

slap

the

green witch

ê1
I = argmax

e1
I

P(e1
I | f1

J)!" #$= argmax
e1
I

P(e1
I)P(f1

J | e1
I)!" #$

English
French channel

P (e|f) = P (e) · P (f |e)
P (f)

ê = argmax

e
P (e)P (f |e)

Source: http://www.flickr.com/photos/johnmueller/3814846567/in/pool-56226199@N00/

Results: Running Time

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 10 100 1000 10000 100000 1e+06

 0.1

 1

 10

 100

 1000

N
um

be
r o

f n
-g

ra
m

s

Ap
pr

ox
. L

M
 s

iz
e

in
 G

B

LM training data size in million tokens

x1.8/x2

x1.8/x2

x1.8/x2

x1.6/x2

target
+ldcnews

+webnews
+web

Figure 3: Number of n-grams (sum of unigrams to
5-grams) for varying amounts of training data.

target: The English side of Arabic-English parallel
data provided by LDC5 (237 million tokens).
ldcnews: This is a concatenation of several English
news data sets provided by LDC6 (5 billion tokens).
webnews: Data collected over several years, up to
December 2005, from web pages containing pre-
dominantly English news articles (31 billion to-
kens).
web: General web data, which was collected in Jan-
uary 2006 (2 trillion tokens).
For testing we use the “NIST” part of the 2006

Arabic-English NIST MT evaluation set, which is
not included in the training data listed above7. It
consists of 1797 sentences of newswire, broadcast
news and newsgroup texts with 4 reference transla-
tions each. The test set is used to calculate transla-
tion BLEU scores. The English side of the set is also
used to calculate perplexities and n-gram coverage.

7.2 Size of the Language Models
We measure the size of language models in total
number of n-grams, summed over all orders from
1 to 5. There is no frequency cutoff on the n-grams.

5http://www.nist.gov/speech/tests/mt/doc/
LDCLicense-mt06.pdf contains a list of parallel resources
provided by LDC.

6The bigger sets included are LDC2005T12 (Gigaword,
2.5B tokens), LDC93T3A (Tipster, 500M tokens) and
LDC2002T31 (Acquaint, 400M tokens), plus many smaller
sets.

7The test data was generated after 1-Feb-2006; all training
data was generated before that date.

target webnews web
tokens 237M 31G 1.8T
vocab size 200k 5M 16M
n-grams 257M 21G 300G
LM size (SB) 2G 89G 1.8T
time (SB) 20 min 8 hours 1 day
time (KN) 2.5 hours 2 days –
machines 100 400 1500

Table 2: Sizes and approximate training times for
3 language models with Stupid Backoff (SB) and
Kneser-Ney Smoothing (KN).

There is, however, a frequency cutoff on the vocab-
ulary. The minimum frequency for a term to be in-
cluded in the vocabulary is 2 for the target, ldcnews
and webnews data sets, and 200 for the web data set.
All terms below the threshold are mapped to a spe-
cial term UNK, representing the unknown word.
Figure 3 shows the number of n-grams for lan-

guage models trained on 13 million to 2 trillion to-
kens. Both axes are on a logarithmic scale. The
right scale shows the approximate size of the served
language models in gigabytes. The numbers above
the lines indicate the relative increase in language
model size: x1.8/x2 means that the number of n-
grams grows by a factor of 1.8 each time we double
the amount of training data. The values are simi-
lar across all data sets and data sizes, ranging from
1.6 to 1.8. The plots are very close to straight lines
in the log/log space; linear least-squares regression
finds r2 > 0.99 for all four data sets.
Theweb data set has the smallest relative increase.

This can be at least partially explained by the higher
vocabulary cutoff. The largest language model gen-
erated contains approx. 300 billion n-grams.
Table 2 shows sizes and approximate training

times when training on the full target, webnews, and
web data sets. The processes run on standard current
hardware with the Linux operating system. Gen-
erating models with Kneser-Ney Smoothing takes
6 – 7 times longer than generating models with
Stupid Backoff. We deemed generation of Kneser-
Ney models on the web data as too expensive and
therefore excluded it from our experiments. The es-
timated runtime for that is approximately one week
on 1500 machines.

864

Source: Brants et al. (EMNLP 2007)

Results: Translation Quality

Source: Brants et al. (EMNLP 2007)

Today’s Agenda
¢  MapReduce algorithm design

l  How do you express everything in terms of m, r, c, p?
l  Toward “design patterns”

¢  Real-world word counting: language models
l  How to break all the rules and get away with it

Source: Wikipedia (Japanese rock garden)

Questions?

