Big Data Infrastructure

Session I: Introduction

Jimmy Lin University of Maryland Monday, January 26, 2015

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

What is this course about?

- What is big data?
- Why big data?
- Infrastructure for big data

From the Ivory Tower...

Source: Wikipedia (All Souls College, Oxford)

... to building sh*t that works

... and back.

Source: Wikipedia (All Souls College, Oxford)

Big Data

Source: Wikipedia (Hard disk drive)

Google "Processes 20 PB a day (2008) Crawls 20B web pages a day (2012) Search index is 100+ PB (5/2014) Bigtable serves 2+ EB, 600M QPS (5/2014)

JPMorganChase 🚺

400B pages, 10+ PB (2/2014)

Hadoop: 365 PB, 330K nodes (6/2014)

YAHO

Hadoop: 10K nodes, 150K cores, 150 PB (4/2014)

300 PB data in Hive + 600 TB/day (4/2014)

facebook.

amazon web services[™]

S3: 2T objects, I.IM request/ second (4/2013)

640K ought to be enough for anybody. LHC: ~15 PB a year

150 PB on 50k+ servers

running 15k apps (6/2011)

LSST: 6-10 PB a year (~2020)

SKA: 0.3 – 1.5 EB per year (~2020)

How much data?

Why big data? Science Engineering Commerce

Science

Emergence of the 4th Paradigm Data-intensive e-Science

Engineering

The unreasonable effectiveness of data

Count and normalize!

an at 200 character thanks in

Know thy customers

L.

PEARLBAR

3855-108

 $Data \rightarrow Insights \rightarrow Competitive advantages$

Commerce

EPSON

1 201 101 101 101

Source: Wikiedia (Shinjuku, Tokyo)

Why big data? Infrastructure for big data

Source: Wikipedia (Noctilucent cloud)

Course Administrivia

Source: http://www.flickr.com/photos/artmind_etcetera/6336693594/

My Expectations

- You're *already* a good Java programmer
 - This course does not teach programming
 - You're expected to pick up Hadoop with minimal help
- You're good at debugging
 - Your own code
 - Compiling, patching, and installing open source software
- You have basic knowledge of:
 - Probability and statistics, discrete math
 - Computer architecture

How will I actually learn Hadoop?

- Hadoop: The Definitive Guide
- RTFM
- RTFC(!)

This course is not for you...

- If you're not genuinely interested in the topic
- If you can't put in the time
- If you're uncomfortable with the uncertainty, unpredictability, etc. that comes with immature software

Otherwise, this will be a rewarding and fun course!

Details, Details...

- Make sure you're on the mailing list!
- Textbooks
- Components of the final grade:
 - Assignments
 - Final exam
 - Final project
- I am unlikely to accept the following excuses:
 - "Too busy"
 - "It took longer than I thought it would take"
 - "It was harder than I initially thought"
 - "My dog ate my homework" and modern variants thereof

Hadoop Resources

- Hadoop on your local machine
- Hadoop in a virtual machine on your local machine
- Hadoop on a UMIACS cluster

Be Prepared...

"Hadoop Zen"

- Parts of the ecosystem are still immature
 - We've come a long way since 2007, but still far to go...
 - Bugs, undocumented "features", inexplicable behavior, etc.
- Don't get frustrated (take a deep breath)...
 - Those W\$*#T@F! moments
- Be patient...
 - We will inevitably encounter "situations" along the way
- Be flexible...
 - We will have to be creative in workarounds
- Be constructive...
 - Tell me how I can make everyone's experience better

"Hadoop Zen"

Source: Wikipedia (Japanese rock garden)

Interlude: Cloud Computing

the states of the

The best thing since sliced bread?

- Before clouds...
 - Grids
 - Connection machine
 - Vector supercomputers
 - ...
- Cloud computing means many different things:
 - Big data
 - Rebranding of web 2.0
 - Utility computing
 - Everything as a service

Rebranding of web 2.0

- Rich, interactive web applications
 - Clouds refer to the servers that run them
 - AJAX as the de facto standard (for better or worse)
 - Examples: Facebook, YouTube, Gmail, ...
- "The network is the computer": take two
 - User data is stored "in the clouds"
 - Rise of the netbook, smartphones, etc.
 - Browser is the OS

Utility Computing

- What?
 - Computing resources as a metered service ("pay as you go")
 - Ability to dynamically provision virtual machines
- Why?
 - Cost: capital vs. operating expenses
 - Scalability: "infinite" capacity
 - Elasticity: scale up or down on demand
- Does it make sense?
 - Benefits to cloud users
 - Business case for cloud providers

I think there is a world market for about five computers.

Enabling Technology: Virtualization

Traditional Stack

AppAppAppOSOSOSHypervisorHardware

Virtualized Stack

Everything as a Service

- Utility computing = Infrastructure as a Service (IaaS)
 - Why buy machines when you can rent cycles?
 - Examples: Amazon's EC2, Rackspace
- Platform as a Service (PaaS)
 - Give me nice API and take care of the maintenance, upgrades, ...
 - Example: Google App Engine
- Software as a Service (SaaS)
 - Just run it for me!
 - Example: Gmail, Salesforce

Who cares?

- A source of problems...
 - Cloud-based services generate big data
 - Clouds make it easier to start companies that generate big data
- As well as a solution...
 - Ability to provision analytics clusters on-demand in the cloud
 - Commoditization and democratization of big data capabilities

Tackling Big Data

Source: Google

Divide and Conquer

Parallelization Challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

What's the common theme of all of these problems?

Common Theme?

- Parallelization problems arise from:
 - Communication between workers (e.g., to exchange state)
 - Access to shared resources (e.g., data)
- Thus, we need a synchronization mechanism

Source: Ricardo Guimarães Herrmann

Managing Multiple Workers

• Difficult because

- We don't know the order in which workers run
- We don't know when workers interrupt each other
- We don't know when workers need to communicate partial results
- We don't know the order in which workers access shared data

• Thus, we need:

- Semaphores (lock, unlock)
- Conditional variables (wait, notify, broadcast)
- Barriers
- Still, lots of problems:
 - Deadlock, livelock, race conditions...
 - Dining philosophers, sleeping barbers, cigarette smokers...
- Moral of the story: be careful!

Current Tools

- Programming models
 - Shared memory (pthreads)
 - Message passing (MPI)
- Design Patterns
 - Master-slaves
 - Producer-consumer flows
 - Shared work queues

Where the rubber meets the road

- Concurrency is difficult to reason about
- Concurrency is even more difficult to reason about
 - At the scale of datacenters and across datacenters
 - In the presence of failures
 - In terms of multiple interacting services
- Not to mention debugging...
- The reality:
 - Lots of one-off solutions, custom code
 - Write you own dedicated library, then program with it
 - Burden on the programmer to explicitly manage everything

Source: MIT Open Courseware

Source: MIT Open Courseware

-The datacenter is the computer!

C.R.S.S.

Source: Wikipedia (The Dalles, Oregon)

Building Blocks

WARDAREET THEFT WARANTES

rrrrrrrrr.

7777777

Storage Hierarchy

Storage Hierarchy

Source: Barroso and Urs Hölzle (2013)

Storage Hierarchy

Source: Barroso and Urs Hölzle (2013)

Anatomy of a Datacenter

Anatomy of a Datacenter

Source: CumminsPower

10

0

-

Aside: How much is 30 MW?

The datacenter is the computer

- It's all about the right level of abstraction
 - Moving beyond the von Neumann architecture
 - What's the "instruction set" of the datacenter computer?
- Hide system-level details from the developers
 - No more race conditions, lock contention, etc.
 - No need to explicitly worry about reliability, fault tolerance, etc.
- Separating the *what* from the *how*
 - Developer specifies the computation that needs to be performed
 - Execution framework ("runtime") handles actual execution

"Big Ideas"

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

Scaling "up" vs. "out"

- No single machine is large enough
 - Smaller cluster of large SMP machines vs. larger cluster of commodity machines (e.g., 16 128-core machines vs. 128 16-core machines)
- Nodes need to talk to each other!
 - Intra-node latencies: ~100 ns
 - Inter-node latencies: ~100 μs
- Let's model communication overhead...

Modeling Communication Costs

• Simple execution cost model:

- Total cost = cost of computation + cost to access global data
- Fraction of local access inversely proportional to size of cluster
- *n* nodes (ignore cores for now)

 $1 \text{ ms} + f \times [100 \text{ ns} \times (1/n) + 100 \mu \text{s} \times (1 - 1/n)]$

- Light communication: f = I
- Medium communication: f = 10
- Heavy communication: *f* = 100
- What are the costs in parallelization?

Cost of Parallelization

number of nodes

Advantages of scaling "up"

Cluster size (number of cores)

So why not? Why does commodity beat exotic?

Moving Data Around

Seeks vs. Scans

- Consider a I TB database with 100 byte records
 - We want to update I percent of the records
- Scenario I: random access
 - Each update takes ~30 ms (seek, read, write)
 - I0⁸ updates = ~35 days
- Scenario 2: rewrite all records
 - Assume 100 MB/s throughput
 - Time = 5.6 hours(!)
- Lesson: avoid random seeks!

Justifying the "Big Ideas"

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

MapReduce

Typical Big Data Problem

• Iterate over a large number of records

Mapxtract something of interest from each

• Shuffle and sort intermediate results

• Aggregate intermediate results Reduce

• Generate final output

Key idea: provide a functional abstraction for these two operations

Roots in Functional Programming

MapReduce

- Programmers specify two functions:
 - map $(k_1, v_1) \rightarrow [\langle k_2, v_2 \rangle]$ reduce $(k_2, [v_2]) \rightarrow [\langle k_3, v_3 \rangle]$
 - All values with the same key are sent to the same reducer
- The execution framework handles everything else...

MapReduce

• Programmers specify two functions:

map (k, v) \rightarrow <k', v'>* reduce (k', v') \rightarrow <k', v'>*

- All values with the same key are sent to the same reducer
- The execution framework handles everything else...

What's "everything else"?

MapReduce "Runtime"

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed FS (later)

MapReduce

• Programmers specify two functions:

map (k, v) \rightarrow <k', v'>* reduce (k', v') \rightarrow <k', v'>*

- All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify:
 partition (k', number of partitions) → partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations combine $(k', v') \rightarrow \langle k', v' \rangle^*$
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic

Two more details...

- Barrier between map and reduce phases
 - But we can begin copying intermediate data earlier
- Keys arrive at each reducer in sorted order
 - No enforced ordering across reducers

"Hello World": Word Count

Map(String docid, String text):

for each word w in text: Emit(w, I);

Reduce(String term, Iterator<Int> values):

int sum = 0; for each v in values: sum += v; Emit(term, value);

MapReduce can refer to...

- The programming model
- The execution framework (aka "runtime")
- The specific implementation

Usage is usually clear from context!

MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, now an Apache project
 - Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, ...
 - The de facto big data processing platform
 - Large and expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, cell processors, etc.

How do we get data to the workers?

Distributed File System

• Don't move data to workers... move workers to the data!

- Store data on the local disks of nodes in the cluster
- Start up the workers on the node that has the data local
- Why?
 - (Perhaps) not enough RAM to hold all the data in memory
 - Disk access is slow, but disk throughput is reasonable
- A distributed file system is the answer
 - GFS (Google File System) for Google's MapReduce
 - HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions

- Commodity hardware over "exotic" hardware
 - Scale "out", not "up"
- High component failure rates
 - Inexpensive commodity components fail all the time
- "Modest" number of huge files
 - Multi-gigabyte files are common, if not encouraged
- Files are write-once, mostly appended to
 - Perhaps concurrently
- Large streaming reads over random access
 - High sustained throughput over low latency

GFS: Design Decisions

- Files stored as chunks
 - Fixed size (64MB)
- Reliability through replication
 - Each chunk replicated across 3+ chunkservers
- Single master to coordinate access, keep metadata
 - Simple centralized management
- No data caching
 - Little benefit due to large datasets, streaming reads
- Simplify the API
 - Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

From GFS to HDFS

- Terminology differences:
 - GFS master = Hadoop namenode
 - GFS chunkservers = Hadoop datanodes
- Differences:
 - Different consistency model for file appends
 - Implementation
 - Performance

For the most part, we'll use Hadoop terminology...

HDFS Architecture

Namenode Responsibilities

- Managing the file system namespace:
 - Holds file/directory structure, metadata, file-to-block mapping, access permissions, etc.
- Coordinating file operations:
 - Directs clients to datanodes for reads and writes
 - No data is moved through the namenode
- Maintaining overall health:
 - Periodic communication with the datanodes
 - Block re-replication and rebalancing
 - Garbage collection

Putting everything together...

(Not Quite... We'll come back to YARN later)

Sequoia

16.32 PFLOPS98,304 nodes with 1,572,864 million cores1.6 petabytes of memory7.9 MWatts total power

Gene 💿 supercomputer

BN

Questions?

Source: Wikipedia (Japanese rock garden)