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What is this course about?	

¢  What is big data?	


¢  Why big data?	


¢  Infrastructure for big data	




Source: Wikipedia (All Souls College, Oxford) 

From the Ivory Tower…	




Source: Wikipedia (Factory) 

… to building sh*t that works	




Source: Wikipedia (All Souls College, Oxford) 

… and back.	




Source: Wikipedia (Hard disk drive) 

Big Data	




How much data?	


Hadoop: 10K nodes, 150K 
cores, 150 PB (4/2014)	


Processes 20 PB a day (2008)	

Crawls 20B web pages a day (2012)	

Search index is 100+ PB (5/2014)	

Bigtable serves 2+ EB, 600M QPS (5/2014)	


300 PB data in Hive + ���
600 TB/day (4/2014)	


400B pages, 10+ 
PB (2/2014)	


LHC: ~15 PB a year���
	


LSST: 6-10 PB a year ���
(~2020)	
640K ought to be 

enough for anybody.	


150 PB on 50k+ servers ���
running 15k apps (6/2011)	


S3: 2T objects, 1.1M request/
second (4/2013)	


SKA: 0.3 – 1.5 EB ���
per year (~2020)	


Hadoop: 365 PB, 330K 
nodes (6/2014)	




Source: Wikipedia (Everest) 

Why big data?	
 Science	

Engineering	

Commerce	




Emergence of the 4th Paradigm	


Data-intensive e-Science	

Maximilien Brice, © CERN 

Science	




Engineering	

The unreasonable effectiveness of data	


Count and normalize!	


Source: Wikipedia (Three Gorges Dam) 



Commerce	


Know thy customers	


Data → Insights → Competitive advantages 	


Source: Wikiedia (Shinjuku, Tokyo) 



Infrastructure for big data	

Why big data?	


Source: Wikipedia (Noctilucent cloud) 



Course Administrivia	


Source: http://www.flickr.com/photos/artmind_etcetera/6336693594/ 



My Expectations	

¢  You’re already a good Java programmer	


l  This course does not teach programming	

l  You’re expected to pick up Hadoop with minimal help	


¢  You’re good at debugging	

l  Your own code	


l  Compiling, patching, and installing open source software	


¢  You have basic knowledge of:	

l  Probability and statistics, discrete math	


l  Computer architecture	




How will I actually learn Hadoop?	

¢  Hadoop: The Definitive Guide	


¢  RTFM	


¢  RTFC(!)	




This course is not for you…	

¢  If you’re not genuinely interested in the topic	


¢  If you can’t put in the time	


¢  If you’re uncomfortable with the uncertainty, unpredictability, 
etc. that comes with immature software	


Otherwise, this will be a rewarding and fun course!	




Details, Details…	

¢  Make sure you’re on the mailing list!	


¢  Textbooks	


¢  Components of the final grade:	

l  Assignments	


l  Final exam	

l  Final project	


¢  I am unlikely to accept the following excuses:	

l  “Too busy”	


l  “It took longer than I thought it would take”	


l  “It was harder than I initially thought”	


l  “My dog ate my homework” and modern variants thereof	




Hadoop Resources	

¢  Hadoop on your local machine	


¢  Hadoop in a virtual machine on your local machine	


¢  Hadoop on a UMIACS cluster	




Be Prepared…	


Source: Wikipedia (The Scream) 



“Hadoop Zen”	

¢  Parts of the ecosystem are still immature	


l  We’ve come a long way since 2007, but still far to go…	

l  Bugs, undocumented “features”, inexplicable behavior, etc.	


¢  Don’t get frustrated (take a deep breath)…	

l  Those W$*#T@F! moments	


¢  Be patient… 	

l  We will inevitably encounter “situations” along the way	


¢  Be flexible…	

l  We will have to be creative in workarounds	


¢  Be constructive…	

l  Tell me how I can make everyone’s experience better	




Source: Wikipedia (Japanese rock garden) 

“Hadoop Zen”	




Source: Wikipedia (Clouds) 

Interlude: Cloud Computing	




The best thing since sliced bread?	

¢  Before clouds…	


l  Grids	

l  Connection machine	


l  Vector supercomputers	


l  …	


¢  Cloud computing means many different things:	

l  Big data	


l  Rebranding of web 2.0	

l  Utility computing	


l  Everything as a service	




Rebranding of web 2.0	

¢  Rich, interactive web applications	


l  Clouds refer to the servers that run them	

l  AJAX as the de facto standard (for better or worse)	


l  Examples: Facebook, YouTube, Gmail, …	


¢  “The network is the computer”: take two	

l  User data is stored “in the clouds”	


l  Rise of the netbook, smartphones, etc.	


l  Browser is the OS	




Source: Wikipedia (Electricity meter) 



Utility Computing	

¢  What?	


l  Computing resources as a metered service (“pay as you go”)	

l  Ability to dynamically provision virtual machines	


¢  Why?	

l  Cost: capital vs. operating expenses	


l  Scalability: “infinite” capacity	


l  Elasticity: scale up or down on demand	


¢  Does it make sense?	

l  Benefits to cloud users	


l  Business case for cloud providers	


I think there is a world 
market for about five 
computers.	




Enabling Technology: Virtualization	


Hardware	


Operating System	


App	
 App	
 App	


Traditional Stack	


Hardware	


OS	


App	
 App	
 App	


Hypervisor	


OS	
 OS	


Virtualized Stack	




Everything as a Service	

¢  Utility computing = Infrastructure as a Service (IaaS)	


l  Why buy machines when you can rent cycles?	

l  Examples: Amazon’s EC2, Rackspace	


¢  Platform as a Service (PaaS)	

l  Give me nice API and take care of the maintenance, upgrades, …	


l  Example: Google App Engine	


¢  Software as a Service (SaaS)	

l  Just run it for me!	


l  Example: Gmail, Salesforce	




Who cares?	

¢  A source of problems…	


l  Cloud-based services generate big data	

l  Clouds make it easier to start companies that generate big data	


¢  As well as a solution…	

l  Ability to provision analytics clusters on-demand in the cloud	


l  Commoditization and democratization of big data capabilities 	




Source: Google 

Tackling Big Data	




Divide and Conquer	


“Work”	


w1	
 w2	
 w3	


r1	
 r2	
 r3	


“Result”	


worker	
 worker	
 worker	


Partition	


Combine	




Parallelization Challenges	

¢  How do we assign work units to workers?	


¢  What if we have more work units than workers?	


¢  What if workers need to share partial results?	


¢  How do we aggregate partial results?	


¢  How do we know all the workers have finished?	


¢  What if workers die?	


What’s the common theme of all of these problems?	




Common Theme?	

¢  Parallelization problems arise from:	


l  Communication between workers (e.g., to exchange state)	

l  Access to shared resources (e.g., data)	


¢  Thus, we need a synchronization mechanism	




Source: Ricardo Guimarães Herrmann 



Managing Multiple Workers	

¢  Difficult because	


l  We don’t know the order in which workers run	

l  We don’t know when workers interrupt each other	


l  We don’t know when workers need to communicate partial results	


l  We don’t know the order in which workers access shared data	


¢  Thus, we need:	

l  Semaphores (lock, unlock)	


l  Conditional variables (wait, notify, broadcast)	

l  Barriers	


¢  Still, lots of problems:	

l  Deadlock, livelock, race conditions...	


l  Dining philosophers, sleeping barbers, cigarette smokers...	


¢  Moral of the story: be careful!	




Current Tools	

¢  Programming models	


l  Shared memory (pthreads)	

l  Message passing (MPI)	


¢  Design Patterns	

l  Master-slaves	


l  Producer-consumer flows	


l  Shared work queues	


Message Passing 

P1 P2 P3 P4 P5 

Shared Memory 

P1 P2 P3 P4 P5 

M
em

or
y 

master 

slaves 

producer consumer 

producer consumer 

work queue 



Where the rubber meets the road	

¢  Concurrency is difficult to reason about	


¢  Concurrency is even more difficult to reason about	


l  At the scale of datacenters and across datacenters	

l  In the presence of failures	


l  In terms of multiple interacting services	


¢  Not to mention debugging…	


¢  The reality:	

l  Lots of one-off solutions, custom code	


l  Write you own dedicated library, then program with it	


l  Burden on the programmer to explicitly manage everything	




Source: Wikipedia (Flat Tire) 



Source: MIT Open Courseware 



Source: MIT Open Courseware 



Source: Google 

The datacenter is the computer!	




Source: Wikipedia (The Dalles, Oregon) 



Source: Google 



Source: Google 



Source: Bonneville Power Administration 



Building Blocks	


Source: Barroso and Urs Hölzle (2009) 



Source: Google 



Source: Google 



Source: Facebook 



Storage Hierarchy	


Source: Barroso and Urs Hölzle (2013) 



Storage Hierarchy	


Source: Barroso and Urs Hölzle (2013) 



Storage Hierarchy	


Source: Barroso and Urs Hölzle (2013) 



Anatomy of a Datacenter	


Source: Barroso and Urs Hölzle (2013) 



Anatomy of a Datacenter	


Source: Barroso and Urs Hölzle (2013) 



Source: Google 



Source: Google 



Source: CumminsPower 



Source: Google 



Source: Google 

Aside: How much is 30 MW?	




The datacenter is the computer	

¢  It’s all about the right level of abstraction	


l  Moving beyond the von Neumann architecture	

l  What’s the “instruction set” of the datacenter computer?	


¢  Hide system-level details from the developers	

l  No more race conditions, lock contention, etc.	


l  No need to explicitly worry about reliability, fault tolerance, etc.	


¢  Separating the what from the how	

l  Developer specifies the computation that needs to be performed	


l  Execution framework (“runtime”) handles actual execution	




“Big Ideas”	

¢  Scale “out”, not “up”	


l  Limits of SMP and large shared-memory machines	


¢  Move processing to the data	

l  Cluster have limited bandwidth	


¢  Process data sequentially, avoid random access	

l  Seeks are expensive, disk throughput is reasonable	


¢  Seamless scalability	

l  From the mythical man-month to the tradable machine-hour	




Scaling “up” vs. “out”	

¢  No single machine is large enough	


l  Smaller cluster of large SMP machines vs. larger cluster of commodity 
machines (e.g., 16 128-core machines vs. 128 16-core machines)	


¢  Nodes need to talk to each other!	


l  Intra-node latencies: ~100 ns	

l  Inter-node latencies: ~100 µs	


¢  Let’s model communication overhead…	


Source: analysis on this an subsequent slides from Barroso and Urs Hölzle (2009) 



Modeling Communication Costs	

¢  Simple execution cost model:	


l  Total cost = cost of computation + cost to access global data	

l  Fraction of local access inversely proportional to size of cluster	


l  n nodes (ignore cores for now)	


•  Light communication: f =1	

•  Medium communication: f =10	

•  Heavy communication: f =100	


¢  What are the costs in parallelization?	


1 ms + f × [100 ns × (1/n) + 100 µs × (1 - 1/n)] 



Cost of Parallelization	




Advantages of scaling “up”	


So why not?	

Why does commodity beat exotic?	




Moving Data Around	


Source: Barroso and Urs Hölzle (2013) 



Seeks vs. Scans	

¢  Consider a 1 TB database with 100 byte records	


l  We want to update 1 percent of the records	


¢  Scenario 1: random access	

l  Each update takes ~30 ms (seek, read, write)	


l  108 updates = ~35 days	


¢  Scenario 2: rewrite all records	

l  Assume 100 MB/s throughput	


l  Time = 5.6 hours(!)	


¢  Lesson: avoid random seeks!	


Source: Ted Dunning, on Hadoop mailing list 



Justifying the “Big Ideas”	

¢  Scale “out”, not “up”	


l  Limits of SMP and large shared-memory machines	


¢  Move processing to the data	

l  Cluster have limited bandwidth	


¢  Process data sequentially, avoid random access	

l  Seeks are expensive, disk throughput is reasonable	


¢  Seamless scalability	

l  From the mythical man-month to the tradable machine-hour	




Source: Google 

MapReduce	




Typical Big Data Problem	

¢  Iterate over a large number of records	


¢  Extract something of interest from each	


¢  Shuffle and sort intermediate results	


¢  Aggregate intermediate results	


¢  Generate final output	


Key idea: provide a functional 
abstraction for these two operations	


Map	


Reduce	


(Dean and Ghemawat, OSDI 2004) 



g g g g g 

f f f f f Map	


Fold	


Roots in Functional Programming	




MapReduce	

¢  Programmers specify two functions:	


map (k1, v1) → [<k2, v2>]	

reduce (k2, [v2]) → [<k3, v3>]	

l  All values with the same key are sent to the same reducer	


¢  The execution framework handles everything else…	




map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 



MapReduce	

¢  Programmers specify two functions:	


map (k, v) → <k’, v’>*	

reduce (k’, v’) → <k’, v’>*	

l  All values with the same key are sent to the same reducer	


¢  The execution framework handles everything else…	


What’s “everything else”?	




MapReduce “Runtime”	

¢  Handles scheduling	


l  Assigns workers to map and reduce tasks	


¢  Handles “data distribution”	

l  Moves processes to data	


¢  Handles synchronization	

l  Gathers, sorts, and shuffles intermediate data	


¢  Handles errors and faults	

l  Detects worker failures and restarts	


¢  Everything happens on top of a distributed FS (later)	




MapReduce	

¢  Programmers specify two functions:	


map (k, v) → <k’, v’>*	

reduce (k’, v’) → <k’, v’>*	

l  All values with the same key are reduced together	


¢  The execution framework handles everything else…	


¢  Not quite…usually, programmers also specify:	

partition (k’, number of partitions) → partition for k’	

l  Often a simple hash of the key, e.g., hash(k’) mod n	

l  Divides up key space for parallel reduce operations	

combine (k’, v’) → <k’, v’>*	

l  Mini-reducers that run in memory after the map phase	

l  Used as an optimization to reduce network traffic	




combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 

c 2 3 6 8 



Two more details…	

¢  Barrier between map and reduce phases	


l  But we can begin copying intermediate data earlier	


¢  Keys arrive at each reducer in sorted order	

l  No enforced ordering across reducers	




“Hello World”: Word Count	


Map(String docid, String text):	

     for each word w in text:	

          Emit(w, 1);	

	

Reduce(String term, Iterator<Int> values):	

     int sum = 0;	

     for each v in values:	

          sum += v;	

          Emit(term, value);	

	




MapReduce can refer to…	

¢  The programming model	


¢  The execution framework (aka “runtime”)	


¢  The specific implementation	


Usage is usually clear from context!	




MapReduce Implementations	

¢  Google has a proprietary implementation in C++	


l  Bindings in Java, Python	


¢  Hadoop is an open-source implementation in Java	

l  Development led by Yahoo, now an Apache project	


l  Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, …	


l  The de facto big data processing platform	


l  Large and expanding software ecosystem	


¢  Lots of custom research implementations	

l  For GPUs, cell processors, etc.	




split 0 
split 1 
split 2 
split 3 
split 4 

worker 

worker 

worker 

worker 

worker 

Master 

User 
Program 

output 
file 0 

output 
file 1 

(1) submit 

(2) schedule map (2) schedule reduce 

(3) read 
(4) local write 

(5) remote read 
(6) write 

Input 
files 

Map 
phase 

Intermediate files 
(on local disk) 

Reduce 
phase 

Output 
files 

Adapted from (Dean and Ghemawat, OSDI 2004) 



How do we get data to the workers?	


Compute Nodes	


NAS	


SAN	


What’s the problem here?	




Distributed File System	

¢  Don’t move data to workers… move workers to the data!	


l  Store data on the local disks of nodes in the cluster	

l  Start up the workers on the node that has the data local	


¢  Why?	

l  (Perhaps) not enough RAM to hold all the data in memory	


l  Disk access is slow, but disk throughput is reasonable	


¢  A distributed file system is the answer	

l  GFS (Google File System) for Google’s MapReduce	


l  HDFS (Hadoop Distributed File System) for Hadoop	




GFS: Assumptions	

¢  Commodity hardware over “exotic” hardware	


l  Scale “out”, not “up”	


¢  High component failure rates	

l  Inexpensive commodity components fail all the time	


¢  “Modest” number of huge files	

l  Multi-gigabyte files are common, if not encouraged	


¢  Files are write-once, mostly appended to	

l  Perhaps concurrently	


¢  Large streaming reads over random access	

l  High sustained throughput over low latency	


GFS slides adapted from material by (Ghemawat et al., SOSP 2003) 



GFS: Design Decisions	

¢  Files stored as chunks	


l  Fixed size (64MB)	


¢  Reliability through replication	

l  Each chunk replicated across 3+ chunkservers	


¢  Single master to coordinate access, keep metadata	

l  Simple centralized management	


¢  No data caching	

l  Little benefit due to large datasets, streaming reads	


¢  Simplify the API	

l  Push some of the issues onto the client (e.g., data layout)	


HDFS = GFS clone (same basic ideas)	




From GFS to HDFS	

¢  Terminology differences:	


l  GFS master = Hadoop namenode	

l  GFS chunkservers = Hadoop datanodes	


¢  Differences:	

l  Different consistency model for file appends	


l  Implementation	


l  Performance	


For the most part, we’ll use Hadoop terminology…	




Adapted from (Ghemawat et al., SOSP 2003) 

(file name, block id) 

(block id, block location) 

instructions to datanode 

datanode state 
(block id, byte range) 

block data 

HDFS namenode 

HDFS datanode 

Linux file system 

… 

HDFS datanode 

Linux file system 

… 

File namespace 
/foo/bar 

block 3df2 

Application 

HDFS Client 

HDFS Architecture	




Namenode Responsibilities	

¢  Managing the file system namespace:	


l  Holds file/directory structure, metadata, file-to-block mapping, access 
permissions, etc.	


¢  Coordinating file operations:	


l  Directs clients to datanodes for reads and writes	

l  No data is moved through the namenode	


¢  Maintaining overall health:	

l  Periodic communication with the datanodes	


l  Block re-replication and rebalancing	


l  Garbage collection	




Putting everything together…	


datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 

(Not Quite… We’ll come back to YARN later)	




Sequoia	

16.32 PFLOPS	

98,304 nodes with 1,572,864 million cores���
1.6 petabytes of memory	

7.9 MWatts total power	




Source: LLNL 



Source: Wikipedia (Japanese rock garden) 

Questions?	



