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ABSTRACT
From social networks to language modeling, the growing scale and
importance of graph data has driven the development of numer-
ous new graph-parallel systems (e.g., Pregel, GraphLab). By re-
stricting the computation that can be expressed and introducing
new techniques to partition and distribute the graph, these systems
can efficiently execute iterative graph algorithms orders of magni-
tude faster than more general data-parallel systems. However, the
same restrictions that enable the performance gains also make it
difficult to express many of the important stages in a typical graph-
analytics pipeline: constructing the graph, modifying its structure,
or expressing computation that spans multiple graphs. As a conse-
quence, existing graph analytics pipelines compose graph-parallel
and data-parallel systems using external storage systems, leading
to extensive data movement and complicated programming model.

To address these challenges we introduce GraphX, a distributed
graph computation framework that unifies graph-parallel and
data-parallel computation. GraphX provides a small, core set
of graph-parallel operators expressive enough to implement the
Pregel and PowerGraph abstractions, yet simple enough to be
cast in relational algebra. GraphX uses a collection of query
optimization techniques such as automatic join rewrites to effi-
ciently implement these graph-parallel operators. We evaluate
GraphX on real-world graphs and workloads and demonstrate that
GraphX achieves comparable performance as specialized graph
computation systems, while outperforming them in end-to-end
graph pipelines. Moreover, GraphX achieves a balance between
expressiveness, performance, and ease of use.

1. INTRODUCTION
From social networks to language modeling, graphs capture the

structure in data and play a central role in the recent advances in
machine learning and data mining. The growing scale and im-
portance of graph data has driven the development of numerous
specialized systems for graph analytics (e.g., Pregel [14], Power-
Graph [10], and others [7, 5, 21]). Each system presents a new
restricted programming abstraction to compactly express iterative
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Figure 1: Graph Analytics Pipeline: Graph analytics is the pro-
cess of going from raw data, to a graph, to the relevant subgraph,
applying graph algorithms, analyzing the result, and then poten-
tially repeating the process with a different subgraph. Currently,
these pipelines compose data-parallel and graph-parallel systems
through a distributed file interface. The goal of the GraphX system
is to unify the data-parallel and graph-parallel views of computa-
tion into a single system and to accelerate the entire pipeline.

graph algorithms (e.g., PageRank and connected components). By
leveraging the restricted abstraction in conjunction with the static
graph structure, these systems are able to optimize the data lay-
out and distribute the execution of complex iterative algorithms on
graphs with tens of billions of vertices and edges.

By restricting the types of computation they express to iter-
ative vertex-centric algorithms on a single static graph, these
graph-parallel systems are able to achieve orders-of-magnitude
performance gains over contemporary data-parallel systems such
as Hadoop MapReduce. However, these same restrictions make
it difficult to express many of the operations found in a typical
graph analytics pipeline (e.g., Figure 1). These operations include
constructing the graph from external sources, modifying the graph
structure (e.g., collapsing groups of vertices), and expressing
computation that spans multiple graphs (e.g., merging two graphs).
For example, while the PowerGraph system can compactly express
and execute algorithms like PageRank several orders of magnitude
faster than contemporary data-parallel systems, it is not well suited
for extracting graphs from a collection of databases, collapsing
vertices within the same domain (i.e., constructing a domain
graph), or comparing the PageRank across several web graphs.
Fundamentally, operations that move information outside of the
graph topology or require a more global view are not well suited
for graph-parallel systems.

In contrast, data-parallel systems like MapReduce [8] and
Spark [23] are well suited for these tasks as they place minimal
constraints on data movement and operate at a more global
view. By exploiting data-parallelism, these systems are highly
scalable; more recent systems like Spark even enable interactive
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data processing. However, directly implementing iterative graph
algorithms in these data-parallel abstractions can be challenging
and typically leads to complex joins and excessive data movement
due to the failure to exploit the graph structure or take advantage
of any of the recent developments [5, 6, 10] in distributed graph
partitioning and representation.

As a consequence, existing graph analytics pipelines
(e.g., GraphBuilder [11]) resort to composing graph-parallel
graph analytics and data-parallel systems for graph loading
through external storage systems such as HDFS. The resulting
APIs are tailored to specific tasks and do not enable users to easily
and efficiently compose graph-parallel and data-parallel operations
on their data.

To address these challenges we introduce GraphX, a distributed
graph computation framework which unifies graph-parallel and
data-parallel computation in a single system. GraphX presents a
unified abstraction which allows the same data to be viewed both
as a graph and as tables without data movement or duplication. In
addition to the standard data-parallel operators (e.g., map, reduce,
filter, join, etc.), GraphX introduces a small set of graph-parallel
operators including subgraph and mrTriplets, which transform
graphs through a highly parallel edge-centric API. We demonstrate
that these operators are expressive enough to implement the Pregel
and PowerGraph abstractions but also simple enough to be cast in
relational algebra.

The GraphX system is inspired by the realization that (i) graphs
can be encoded efficiently as tables of edges and vertices with some
simple auxiliary indexing data structures, and (ii) graph computa-
tions can be cast as a sequence of relational operators including
joins and aggregations on these tables. The contributions of this
paper are:

1. a data model that unifies graphs and collections as compos-
able first-class objects and enables both data-parallel and
graph-parallel operations.

2. identifying a “narrow-waist” for graph computation, consist-
ing of a small, core set of graph-operators cast in classic re-
lational algebra; we believe these operators can express all
graph computations in previous graph parallel systems, in-
cluding Pregel and GraphLab.

3. an efficient distributed graph representation embedded
in horizontally partitioned collections and indices, and
a collection of execution strategies that achieve efficient
graph computations by exploiting properties of graph
computations.

2. GRAPH PROCESSING SYSTEMS
In contrast to general data processing systems (e.g., MapReduce,

Dryad, and Spark) which compose data-parallel operators to trans-
form collections and are capable of expressing a wide range of
computation, graph processing systems apply vertex-centric logic
to transform data on a graph and exploit the graph structure to
achieve more efficient distributed execution. In this section we in-
troduce the key ideas behind graph-parallel systems and how they
enable substantial performance gains. We then describe how the
same restrictions that enable substantial performance gains limit
the applicability of these systems to many important tasks in graph
analytics.

2.1 Property Graphs
Graph data comes in many forms. The graph can be explicit

(e.g., social networks, web graphs, and financial transaction net-

works) or imposed through modeling assumptions (e.g., collabo-
rative filtering, language modeling, deep learning, and computer
vision). We denote the structure of a graph G = (V,E) by a set
of vertices1 V = {1, . . . , n} and a set of m directed edges E. The
directed edge (i, j) ∈ E connects the source vertex i ∈ V with the
target vertex j ∈ V . The resulting graphs can have tens of billions
of vertices and edges and are often highly sparse with complex,
irregular, and often power-law structure.

In most cases attributes (properties) are associated with each ver-
tex and edge. The properties can be both observed (e.g., user pro-
files, time stamps, and weights) as well as model parameters and
algorithm state (e.g., PageRank, latent factors, and messages). We
denote the vertex properties as PV (i) for vertex i ∈ V , the edge
properties as PE(i, j) for edge (i, j) ∈ E, and the collection of all
properties as P = (PV , PE). Note that properties can consist of
arbitrary data (e.g., images, text, and objects).

The combination of graph structure and properties forms a prop-
erty graph [19] G(P ) = (V,E, P ) which is the basic represen-
tation of graph data and a core part of the GraphX data model.
The property graph is a flexible model of graph data in that it im-
poses no constraints on the properties and allows the composition
of different property collections with the same graph structure. For
example, in parsing raw graph data we might begin with G(P ) and
then transform the properties f(P ) → P ′, yielding the new prop-
erty graph G(P ′) which retains the original structure. This separa-
tion of structure and properties is an important part of the GraphX
system.

2.2 Graph-Parallel Computation
The recursive nature of graph data (e.g., my interests are a func-

tion of my profile and the interests of my friends) necessitates the
ability to calculate recursive properties on a graph. Algorithms
ranging from PageRank and connected components to label propa-
gation and collaborative filtering recursively define transformations
on vertex and edge properties in terms of functions on the properties
of adjacent vertices and edges. For example, the PageRank of each
vertex may be computed by iteratively recomputing the PageRank
of each vertex as a function of the PageRank of its neighboring ver-
tices. The corresponding algorithms iteratively propagate informa-
tion along the graph structure by transforming intermediate vertex
and edge properties and solving for the fixed-point assignments.
This common pattern of iterative local updates forms the basis of
graph-parallel computation.

Graph-parallel computation is the analogue of data-parallel
computation applied to graph data (i.e., property graphs). Just
as data-parallel computation adopts a record-centric view of
collections, graph-parallel computation adopts a vertex-centric
view of graphs. In contrast to data-parallel computation which
derives parallelism by processing independent data on separate
resources, graph-parallel computation derives parallelism by
partitioning the graph (dependent) data across processing resources
and then resolving dependencies (along edges) through iterative
computation and communication. More precisely, graph-parallel
computation recursively defines the transformations of properties
in terms of functions on neighboring properties and achieves
parallelism by executing those transformations in parallel.

2.3 Graph-Parallel Systems
The increasing scale and importance of graph-structured data has

led to the emergence of a range of graph-parallel systems [13, 14,
12, 10, 5, 7, 21]. Each system is built around a variation of the
1In practice we do not constrain vertex identifiers to the consecutive
integers {1, . . . , n}.



def PageRank(v: Id, msgs: List[Double]) {
// Compute the message sum
var msgSum = 0
for (m <- msgs) { msgSum = msgSum + m }
// Update the PageRank (PR)
A(v).PR = 0.15 + 0.85 * msgSum
// Broadcast messages with new PR
for (j <- OutNbrs(v)) {

msg = A(v).PR / A(v).NumLinks
send_msg(to=j, msg)

}
// Check for termination
if (converged(A(v).PR)) voteToHalt(v)

}

Listing 1: PageRank in Pregel

graph-parallel abstraction [10], which consists of an property graph
G = (V,E, P ) and a vertex-program Q that is instantiated concur-
rently as Q(v) for each vertex v ∈ V and can interact with adja-
cent vertex-programs through messages (e.g., Pregel [14]) or shared
state (e.g., GraphLab [12] and PowerGraph [10]). The instantiation
of the vertex-program Q(v) can read and modify the vertex prop-
erty P (v) as well as the properties on adjacent edges P (v, j) for
{v, j} ∈ E and in some cases [12, 10] even the properties on adja-
cent vertices P (j).

The extent to which vertex-programs run concurrently differs
across systems. Most systems (e.g., [14, 5, 10]) adopt the bulk
synchronous execution model, in which all vertex-programs run
concurrently in a sequence of super-steps operating on the adjacent
vertex-program state or on messages from the previous super-step.
Others (e.g., [13, 12, 21, 10]) adopt an asynchronous execution
model in which vertex-programs run as resources become available
and impose constraints on whether neighboring vertex-programs
can run concurrently. While [13] demonstrated significant gains
from prioritized asynchronous scheduling, these gains are often off-
set by the additional complexity of highly asynchronous systems.
The GraphX system adopts the bulk-synchronous model of compu-
tation because it ensures deterministic execution, simplifies debug-
ging, and enables fault tolerance.

We will use the PageRank algorithm as a concrete running ex-
ample to illustrate graph-parallel computation. In Listing 1 we ex-
press the PageRank algorithm as a simple Pregel vertex-program.
The vertex-program for the vertex v begins by receiving the mes-
sages (weighted PageRank of neighboring vertices) from the previ-
ous iteration and computing the sum. The PageRank is then recom-
puted using the message sum (with reset probability 0.15). Then
the vertex-program broadcasts its new PageRank value (weighted
by the number of links on that page) to its neighbors. Finally,
the vertex-program assesses whether it has converged (locally) and
then votes to halt. If all vertex-programs vote to halt on the same it-
eration the program terminates. Notice that vertex-programs com-
municate with neighboring vertex-programs by passing messages
along edges and that the vertex program iterates over its neighbor-
ing vertices.

More recently, Gonzalez et al. [10] observed that many vertex-
programs factor along edges both when receiving messages
and when computing messages to neighboring vertices. As a
consequence they proposed the gather-apply-scatter (GAS) decom-
position that breaks the vertex-program into purely edge-parallel
and vertex-parallel stages, eliminating the ability to directly iterate
over the neighborhood of a vertex. In Listing 2 we decompose
the vertex-program in Listing 1 into Gather, Apply, and Scatter
functions. The commutative associative gather function is respon-

def Gather(a: Double, b: Double) = a + b
def Apply(v, msgSum) {
A(v).PR = 0.15 + 0.85 * msgSum
if (converged(A(v).PR)) voteToHalt(v)

}
def Scatter(v, j) = A(v).PR / A(v).NumLinks

Listing 2: PageRank in PowerGraph

sible for accumulating the inbound messages, the apply function
operates only on the vertex, and the scatter function computes
the message for each edge and can be safely executed in parallel.
The GAS decomposition enables vertices to be split across
machines, increasing parallelism and addressing the challenge
of the high-degree vertices common to many real-world graphs.
The GraphX system adopts this more edge-centric perspective,
enabling high-degree vertices to be split across machines.

The graph-parallel abstraction is sufficiently expressive to sup-
port a wide range of algorithms and at the same time sufficiently re-
strictive to enable the corresponding systems to efficiently execute
these algorithms in parallel on large clusters. The static graph struc-
ture constrains data movement (communication) to the static topol-
ogy of the graph, enabling the system to optimize the distributed
execution. By leveraging advances in graph partitioning and rep-
resentation, these systems are able to reduce communication and
storage overhead. For example, [10] uses a range of vertex-based
partitioning heuristics to efficiently split large power-law graphs
across the cluster and vertex-replication and pre-aggregation to re-
duce communication. Given the result of the previous iteration,
vertex-programs are independent and can be executed in any order,
providing opportunities for better cache efficiency [20] and on-disk
computation. As graph algorithms proceed, vertex-programs con-
verge at different rates, leading to active sets (the collection of ac-
tive vertex-programs) that shrink quickly. For example, when com-
puting PageRank, vertices with no in-links will converge in the first
iteration. Recent systems [14, 9, 12, 10] track active vertices and
eliminate data movement and additional computation for vertices
that have converged. Through GraphX we demonstrate that many
of these same optimizations can be integrated into a data-parallel
platform to support scalable graph computation.

2.4 Limitations of Graph-Parallel Systems
The same restrictions that enable graph-parallel systems to

outperform contemporary data-parallel systems when applied to
graph computation also limit their applicability to many of the
operations found in a typical graph analytics pipeline (e.g., Fig-
ure 1). For example, while graph-parallel systems can efficiently
compute PageRank or label diffusion, they are not well suited to
building graphs from multiple data sources, coarsening the graph
(e.g., building a domain graph), or comparing properties across
multiple graphs. More precisely, the narrow view of computation
provided by the graph-parallel abstraction is unable to express
operations that build and transform the graph structure or span
multiple independent graphs. Instead, these operations require
data movement beyond the topology of the graph and a view of
computation at the level of graphs rather than individual vertices
and edges. For example, we might want to take an existing
graph (e.g., customer relationships) and merge external data
(e.g., sales information) prior to applying a graph-parallel diffusion
algorithm (e.g., for ad targeting). Furthermore, we might want
to restrict our analysis to several subgraphs based on (e.g., user
demographics or time) and compare the results requiring both
structural modifications as well as the ability to define computation



spanning multiple graphs (e.g., changes in predicted interests).
In this example, the graph-parallel system is well suited for
applying the computationally expensive diffusion algorithm but
not the remaining operations which are fundamental to real-world
analytics tasks.

To address the lack of support for these essential operations,
existing graph-parallel systems either rely on additional graph
ETL support tools (e.g., GraphBuilder [11]) or have special
internal functions for specific ETL tasks (e.g., parsing a text file
into a property graph). These solutions are limited in the range
of operations they support and use external storage systems for
sharing data across framework boundaries, incurring extensive
data copying and movement. Finally, these systems do not address
the challenge of computation that spans multiple graphs.

3. THE GraphX LOGICAL ABSTRACTION
The GraphX abstraction unifies the data-parallel and graph-

parallel computation through a data model that presents graphs and
collections as first class objects and a set of primitive operators that
enables their composition. By unifying graphs and collections as
first class composable objects, the GraphX data model is capable
of spanning the entire graph analytics pipeline. By presenting
a set of data-parallel and graph-parallel operators that can be
composed in any order, GraphX allows users to leverage the
programming model best suited for the current task without having
to sacrifice performance or flexibility of future operations. We now
describe the its data model and operators and demonstrate their
composability and expressiveness through example applications.

3.1 The GraphX Data Model
The GraphX data model consists of immutable collections and

property graphs. The immutability constraint simplifies the ab-
straction and enables data reuse and fault tolerance. Collections
in GraphX consist of unordered tuples (i.e., key-value pairs) and
represent unstructured data. The key can be null and does not need
to be unique, and the value can be an arbitrary object. The un-
ordered collection view of data is essential for processing raw in-
put, evaluating the results of graph computation, and certain graph
transformations. For example, when loading data from a file we
might begin with a collection of strings (with null keys) and then
apply relational operators to obtain a collection of edge properties
(keyed by edge), construct a graph and run PageRank, and finally
view the resulting PageRank values (keyed by vertex identifier) as
a collection for additional analytics.

The property graph G(P ) = (V,E, P ) combines structural in-
formation, V and E, with properties P = (PV , PE) describing
the vertices and edges. The vertex identifiers i ∈ V can be arbi-
trary, but the GraphX system currently uses 64-bit integers (without
consecutive ordering constraints). These identifiers may be derived
externally (e.g., user ids) or by applying a hash function to a vertex
property (e.g., page URL). Logically the property graph combines
the vertex and edge property collections consisting of key-value
pairs (i, PV (i)) and ((i, j), PE(i, j)) respectively. We introduce
the property graph as a first class object in the data model to en-
able graph specific optimizations which span the vertex and edge
property collections and to present a more natural graph-oriented
API.

3.2 The Operators
Computation in the GraphX abstraction is achieved by compos-

ing graph-parallel and data-parallel operators that take graphs and
collections as input and produce new graphs and collections. In
selecting the core set of operators we try to balance the desire for

class Col[K,V] {
def filter(pred: (K,V) => Boolean): Col[K,V]
def map(f: (K,V) => (K2,V2)): Col[K2,V2]
def reduceByKey(reduce: (V, V) => V): Col[K,V]
def leftJoin(a: Col[K, U]): Col[K, (T, U)]
...

}

Listing 3: Collection operators. The map function takes a collec-
tion of key-value paris of type (K,V) and a UDF which maps to a
new key-value pair of type (K2,V2). Collections are special case
of relational tables, and each collection operator has its relational
counterpart (map vs project, reduceByKey vs aggregates, etc).

class Graph[V,E] {
def Graph(v: Col[(Id,V)], e: Col[(Id,Id,E)],

mergeV: (V, V) => V,
defaultV: V): Graph[V,E]

def vertices: Col[Id, V]
def edges: Col[(Id, Id), E]
def triplets: Col[(Id, Id), (V, E, V)]

def mapV(m: (Id, V) => V2): Graph[V2,E]
def mapE(m: Triplet[V,E] => E2): Graph[V,E2]

def leftJoin(t: Col[Id, U]): Graph[(V,U), E]

def subgraph(vPred: (Id, V) => Boolean,
ePred: Triplet[V,E] => Boolean):

Graph[V, E]

def mrTriplets(m: Trplt[V,E] => (M, M),
r: (M, M) => M,
skipStale: Direction = None):

Col[Id, M]
}

Listing 4: Graph operators: The mapE operator takes a Graph
over vertex and edge properties of type V and E and a map UDF
from triplets to a new edge property and returns the graph with the
new edge properties.

parsimony with the ability to exploit specific lower-level optimiza-
tions. As a consequence these operators form a narrow interface
to the underlying system, enabling the GraphX abstraction to be
expressive and yet feasible to implement and execute efficiently
on a wide range of data-parallel systems. To simplify graph an-
alytics, GraphX exposes a rich API of more complex graph oper-
ators (e.g., coarsening, neighborhood aggregation) and even other
abstractions (e.g., Pregel) by composing the basic set of primitive
operators.

The GraphX system exposes the standard data-parallel operators
(Listing 3) found in contemporary data-flow systems. The unary
operators filter, map, and reduceByKey each takes a single col-
lection and produces a new collection with the records removed,
transformed, or aggregated. The binary operator leftJoin performs
a standard left outer equi-join by key. Both the map and filter opera-
tors are entirely data-parallel without requiring any data movement
or communication. On the other hand, the reduceByKey and left-
Join operators may require substantial data movement depending
on how the data is partitioned.

In Listing 4 we describe the set of graph-parallel operators that
produce new graphs and collections. These operators join ver-
tex and edge collections, apply transformations on the properties
and structure, and move data along edges in the graph. In all
cases, these operators express local transformations on the graph



(i.e., UDFs have access to at most a single triplet at a time).
The Graph operator constructs a property graph from vertex and

edge collections. In many applications the vertex collection may
contain duplicate vertex properties or may not contain properties
for vertices in the edge collection. For example when working with
web data, web-links may point to missing pages or pages may have
been crawled multiple times. By applying the merge UDF to du-
plicate vertices and substituting the default property for missing
vertices, the Graph operator ensures that the resulting graph is con-
sistent: without missing or duplicate vertices.

While the Graph operator produces a graph-oriented view of
collections, the vertices, edges, and triplets produce collection-
oriented views of a graph. The vertices and edges operators decon-
struct the property graph into the corresponding vertex and edge
collections. The collection views are used when computing aggre-
gates, analyzing the results of graph computation, or when saving
graphs to external data stores. The triplets operator is logically
a three-way join to form a new collection consisting of key-value
pairs of the form ((i, j), (Pv(i), PE(i, j), PV (j))). This essential
graph operator can be concisely cast in terms of relational opera-
tors:

SELECT s.Id, t.Id, s.P, e.P, t.P
FROM edges AS e
JOIN vertices AS s, vertices AS t
ON e.srcId = s.Id AND e.dstId = d.Id

By joining properties along edges, the triplets operator enables a
wide range of graph computation. For example, the composition
of the triplets and data-parallel filter operators can be used to ex-
tract edges that span two domains or connect users with different
interests. Furthermore, the triplets operator is used to construct the
other graph-parallel operators (e.g., subgraph and mrTriplets).

The mapV and mapE operators transform the vertex and edge
properties respectively and return the transformed graph. The map
UDF provided to mapV and mapE can only return a new attribute
value and cannot modify the structure (i.e., change the vertex iden-
tifiers for the vertex or edge). As a consequence, the resulting graph
is guaranteed to be consistent and can reuse the underlying struc-
tural representation.

In many cases it is necessary to merge external vertex properties
(e.g., merging user profile data with a social network) stored in a
vertex property collection with an existing graph. This can be ac-
complished in GraphX using the leftJoin graph operator. leftJoin
takes a collection of vertex properties and returns a new graph that
incorporates the properties into all matching vertices in the graph.
The leftJoin preserves the original graph structure and is logically
equivalent to a left outer equi-join of the vertices with the input
vertex property collection.

Comparing the results of graph computation (e.g., PageRank) on
different slices (i.e., subgraphs) of a graph based on vertex and edge
properties (e.g., time) often reveals trends in the data. To support
this type of analysis we need to be able to efficiently construct sub-
graphs and compare properties and structural changes across sub-
graphs. The subgraph operator restricts the graph to the vertices
and edges that satisfy the respective predicates. To ensure that the
graph is consistent, all retained edges must satisfy both the source
and target vertex predicate as well as the edge predicate.

The mrTriplets (i.e., Map Reduce Triplets) operator is logically
the composition of the triplets graph-parallel operator with the map
and reduceByKey data-parallel operators. More precisely, the mr-
Triplets operator applies the map UDF to each triplet in the output
of the triplets operator. The map UDF optionally constructs “mes-
sages” (of arbitrary type) to send to the source and target vertices
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val graph: Graph[User, Double]
def mapF(t: Triplet[User, Double])
: Iterator[Vid, Int] = {
if (t.src.age > t.dst.age) (t.dstId, 1)
else (t.src.age < t.dst.age) (t.srcId, 1)
else Iterator.empty

}
def reduceUDF(a: Int, b: Int): Int = a + b
val seniors = graph.mrTriplets(mapUDF, reduceUDF)

Figure 2: Example use of mrTriplets: The mrTriplets operator
is used to compute the number of more senior neighbors of each
vertex. Note that vertex E does not have a more senior neighbor
and therefore does not appear in the collection.

(or both). All messages destined for the same vertex are aggregated
using the commutative associative reduce UDF and the resulting
aggregates are returned as a collection keyed by the destination ver-
tex. This can be expressed in the following SQL query:

SELECT t.dstId, r(m(t)) AS sum
FROM triplets AS t GROUPBY t.dstId
WHERE sum IS NOT null

The constraint that the map UDF only emits messages to the source
or target vertex ensures that data movement remains along edges
in the graph, preserving the graph dependency semantics. By ex-
pressing message computation as an edge-parallel map operation
followed by a commutative associative aggregation, we eliminate
the effect of high degree vertices on communication and parallel
scalability. The mrTriplets operator is the primary building block of
graph-parallel algorithms. For example, in Figure 2 we use the mr-
Triplets operator to compute the number of more senior neighbors
for each user in a social network. In the next section we show how
to compose these basic operators to express more complex tasks
like graph coarsening and even implement existing graph-parallel
abstractions.

When solving recursive properties on a graph, vertices typically
only communicate when their values change. As a consequence,
executing the mrTriplets function on all edges can be wasteful es-
pecially only a few vertices have changed. While it is possible to
implement such logic within message calculation, the system must
still invoke the message calculation on all edges. Therefore, mr-
Triplets has an optional argument skipStale which by default is dis-
abled. However, if the skipStale flag is set to Out, for example,
then edges originating from vertices that haven’t changed since mr-
Triplets was last invoked are automatically skipped. In Section 4
we will see how this flag in conjunction with internal change track-
ing can efficiently skip a large fraction of the edges.

3.3 Composing Operators
The GraphX operators can express efficient versions of some of

the most widely adopted graph-parallel abstractions. We have cur-
rently implemented enhanced versions of Pregel and the Power-



def pregel(g: Graph[V,E],
vprog: (V, M) => V,
sendMsg: Triplet[V, E] => M,
gather: (M, M) => M):

Graph[V, E] = {
def send(t: Triplet[V, E]) = {
Iterator(t.dstId, sendMsg(t))

}
var live = g.vertices.count
// Loop until convergence
while (live > 0) {

// Compute the messages
val msgs = g.mrTriplets(send, gather, Out)
// Receive the messages and run vertex program
g = g.leftJoin(msgs).mapV(vprog)
// Count the vertices that don’t want to halt
live = g.vertices.filter(v=>!v.halt).count

}
return g

}

Listing 5: Enhanced Pregel: We implemented a version of Pregel
built around the GAS decomposition to enable degree indepen-
dence and at the same allow message computation to read the re-
mote vertex attributes.

def ConnectedComp(g: Graph[V,E]): Graph[Id, E] = {
// Initialize the vertex properties
g = g.mapV(v => v.id)
def vProg(v: Id, m: Id): Id = {

if (v == m) voteToHalt(v)
return min(v, m)

}
def sendMsg(e: Triplet): Id =
if(e.src.cc > e.dst.cc) (e.dst.cc, None)
else if(e.src.cc < e.dst.cc) (None, e.src.cc)
else (None, None)

def gatherMsg(a: Id, b: Id): Id = min(a, b)
return Pregel(g, vProg, sendMsg, gatherMsg)

}

Listing 6: Connected Components: We implement the connected
components algorithm using the enhance version of Pregel.

Graph abstractions. In Listing 5 we construct an enhanced version
of Pregel built around the more efficient GAS decomposition. The
Pregel abstraction iteratively computes the messages on the active
subgraph using the mrTriplets operator and then applies the mapV
operator to execute the vertex program UDF. In this example we
use change tracking option in mrTriplets to restrict execution to
out-edges of vertices that changed in the previous round. In Sec-
tion 4 we show that allowing mrTriplets to track changes enables
several important system optimizations. Unlike the original for-
mulation of Pregel, our version exposes both the source and tar-
get vertex properties during message calculation. In Section 4.5.2
we demonstrate how through UDF bytecode inspection in the mr-
Triplets operator we can eliminate extra data movement if only one
of the source or target attribute is accessed when computing the
message (e.g., PageRank).

In Listing 6 we used our version of Pregel to implement con-
nected components. The connected components algorithm com-
putes for each vertex its lowest reachable vertex id. We first ini-
tialize the vertex properties using the vMap operator and then de-
fine the three functions required to use the GAS version of Pregel.
The sendMsg function leverages the triplet view of the edge to only
send a message to neighboring vertices when their component id is
larger.

Often groups of connected vertices are better modeled as a sin-

def coarsen(g: Graph[V, E],
pred: Triplet[V, E] => Boolean,
reduce: (V,V) => V): Graph[V,E] = {

// Restrict graph to contractable edges
val subG = g.subgraph(v => True, pred)
// Compute connected component id for all V
val cc: Col[Id, Id] = ConnectedComp(subG).vertices
// Merge all vertices in same component
val superVerts = g.vertices.leftJoin(cc).map {

(vId, (vProp, cc)) => (cc, vProp))
}.reduceByKey(reduce)

// Link remaining edges between components
val invG = g.subgraph(v=>True, !pred)
val remainingEdges =
invG.leftJoin(cc).triplets.map {

e => ((e.src.cc, e.dst.cc), e.attr)
}

// Return the final graph
Graph(superVerts, remainingEdges)

}

Listing 7: Coarsen: The coarsening operator merges vertices con-
nected by edges that satisfy an edge predicate UDF.

gle vertex. In these cases it is desirable to coarsen the graph by
aggregating connected vertices that share a common characteristic
(e.g., web domain) to derive a new graph (e.g., the domain graph).
We use the GraphX abstraction to implement a coarsening in List-
ing 7. The coarsening operation takes an edge predicate and a
vertex aggregation function and collapses all edges that satisfy the
predicate, merging their respective vertices. The edge predicate
is used to first construct the subgraph of edges that are to be col-
lapsed. Then the graph-parallel connected components algorithm
is run on the subgraph. Each connected component corresponds to
a super-vertex in the new coarsened graph with the component id
being the lowest vertex id in the component. The super-vertices are
constructed by aggregating all the vertices with the same compo-
nent id. Finally, we update the edges to link together super-vertices
and generate the new graph. The coarsen operator demonstrates
the power of a unified abstraction by combining both data-parallel
and graph-parallel operators in a single graph-analytics task.

4. THE GraphX SYSTEM
The scalability and performance of GraphX is derived from the

design decisions and optimizations made in the physical execu-
tion layer. The design of the physical representation and execution
model is heavily influenced by three characteristics of graph com-
putation. First, in Section 3 we demonstrated that graph computa-
tion can be modeled as a series of joins and aggregations. Main-
taining the proper indexes can substantially speed up local join and
aggregation performance. Second, as outlined in [10], we can min-
imize communication in real-world graphs by using vertex-cut par-
titioning, in which edges are partitioned evenly across a cluster and
vertices are replicated to machines with adjacent edges. Finally,
graph computations are typically iterative and therefore we can af-
ford to construct indexes. Furthermore, as computation proceeds,
the active set of vertices – those changing between iterations – of-
ten decreases.

In the remainder of this section, we introduce Apache Spark, the
open source data-parallel engine on which GraphX was built. We
then describe the physical representation of data and the execution
strategies adopted by GraphX. Along the way, we quantify the ef-
fectiveness of each optimization technique. Readers are referred to
Section 5 for details on datasets and experimental setup.

4.1 Apache Spark



GraphX is implemented on top of Spark [23], a widely used
data-parallel engine. Similar to Hadoop MapReduce, a Spark clus-
ter consists of a single driver node and multiple worker nodes.
The driver node is responsible for task scheduling and dispatching,
while the worker nodes are responsible for the actual computation
and physical data storage. However, Spark also has several fea-
tures that differentiate it from traditional MapReduce engines and
are important to the design of GraphX.

In-Memory Caching: Spark provides the Resilient Distributed
Dataset (RDD) in-memory storage abstraction. RDDs are collec-
tions of objects that are partitioned across a cluster. GraphX uses
RDDs as the foundation for distributed collections and graphs.

Computation DAGs: In contrast to the two-stage MapReduce
topology, Spark supports general computation DAGs by composing
multiple data-parallel operators on RDDs, making it more suitable
for expressing complex data flows. GraphX uses and extends Spark
operators to achieve the unified programming abstraction.

Lineage-Based Fault Tolerance: RDDs and the data-parallel
computations on RDDs are fault-tolerant. Spark can automatically
reconstruct any data or execute tasks lost during failures.

Programmable Partitioning: RDDs can be co-partitioned and
co-located. When joining two RDDs that are co-partitioned and
co-located, GraphX can exploit this property to avoid any network
communication.

Interactive Shell: Spark allows users to interactively execute
Spark commands in a Scala or Python shell. We have extended the
Spark shell to support interactive graph analytics.

4.2 Distributed Graph Representation
GraphX represents graphs internally using two Spark distributed

collections (RDDs) – an edge collection and a vertex collection. By
default, the edges are partitioned according to their configuration in
the input collection (e.g., original placement on HDFS). However,
they can be repartitioned by their source and target vertex ids us-
ing a user-defined partition function. GraphX provides a range of
built-in partitioning functions, including a 2D hash partitioner that
provides an upper bound on communication for the mrTriplets op-
erator that is O

(
n
√
p
)

for p partitions and n vertices. For efficient
lookup of edges by their source and target vertices, the edges within
a partition are clustered by source vertex id, and there is an unclus-
tered index on target vertex id. The clustered index on source ver-
tex id is a compressed sparse row (CSR) representation that maps
a vertex id to the block of its out-edges. Section 4.6 discusses how
these indexes are used to accelerate iterative computation.

The vertices are hash partitioned by their vertex ids, and on each
partition, they are stored in a hash index (i.e., clustered by the hash
index). Each vertex partition also contains a bitmask and routing ta-
ble. The bitmask enables the set intersection and filtering required
by the subgraph and join operators. Vertices hidden by the bit-
mask do not participate in the graph operations. The routing table
contains the join sites for each vertex in the partition and is used
when broadcasting vertices to construct triplets. The routing table
is logically a map from a vertex id to the set of edge partitions that
contain adjacent edges and is derived from the edge table by col-
lecting the source and target vertex ids for each edge partitions and
aggregating the result by vertex id. The routing table is stored as a
compressed bitmap (i.e., for each edge partition, which vertices are
present).

4.3 Structural Index Reuse
Because the collections and graphs are immutable they can share

the structural indexes associated within each vertex and edge par-
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Figure 3: Distributed representation of a graph: The graph on
the left is represented using distributed collections. It is partitioned
into three edge partitions. The vertices are partitioned by id. Within
each vertex partition, the routing table stores for each edge partition
the set of vertices present. Vertex 6 and adjacent edges (shown
with dotted lines) have been restricted from the graph, so they are
removed from the edges and the routing table. Vertex 6 remains in
the vertex partitions, but it is hidden by the bitmask.

tition to both reduce memory overhead and accelerate local graph
operations. For example, within a vertex partition, we can use the
hash index to perform fast aggregations and the resulting aggre-
gates would share the same index as the vertices. This shared in-
dex enables very efficient joining of the original vertices and the
aggregates by converting the join into coordinated sequential scans
(similar to a merge join). In our benchmarks, index reuse brings
down the runtime of PageRank on the Twitter graph from 27 sec-
onds per iteration to 16 seconds per iteration. Index reuse has the
added benefit of reducing memory allocation, because the indexes
are reused in memory from one collection and graph to the next,
and only the properties are changed.

Most of the GraphX operators preserve the structural indexes
to maximize index reuse. Operators that do not modify the graph
structure (e.g., mapV, mapE, leftJoin, and mrTriplets) directly pre-
serve the indexes. To reuse indexes for operations that restrict
the graph structure (e.g., subgraph and innerJoin), GraphX relies
on the bitmask to construct the restricted graph view. Some of
the collections operations (e.g., g.vertices.map) enable more gen-
eral transformations (e.g., renumbering vertices) that destroy the
index but have more restrictive analogues that preserve the index
(e.g., g.mapV). Finally, in some cases extensive index reuse could
lead to decreased efficiency, such as for graphs that are highly fil-
tered. GraphX therefore provides a reindex operator for graphs
which rebuilds the index over the visible vertices.

4.4 Graph Operator Execution Strategies
The GraphX abstraction consists of both data-parallel and graph-

parallel operators. For the data-parallel operators we adopt the
standard well-established execution strategies, using indexes when
available. Therefore, in this section we focus on execution strate-
gies for the graph-parallel operators outlined in Section 3.

The graph-parallel operators defined in Listing 4 are imple-
mented by transforming the vertex and edge RDDs using the Spark
API. The execution strategies for each operator are as follows:
vertices, edges: Directly extract the vertex and edge RDDs.
mapV, mapE: Transform the internal vertex and edge collections,
preserving the indexes.
leftJoin: Co-partition the input with the vertex attributes, join the
vertex attributes with the co-partitioned input using the internal in-
dexes, and produce a new set of vertex attributes. As a consequence
only the input is shuffled across the network.



triplets: Logically requires a multiway distributed join between
the vertex and edge RDDs. However using the routing map, we
move the execution site of the multiway join to the edges, allowing
the system to shuffle only the vertex data and avoid moving the
edges, which are often orders of magnitude larger than the vertices.
The triplets are assembled at the edges by placing the vertices in a
local hash map and then scanning the edge table.
subgraph: (1) Generate the graph’s triplets, (2) filter the triplets
using the conjunction of the edge triplet predicate and the vertex
predicate on both source and target vertices to produce a restricted
edge set, and (3) filter the vertices using the vertex predicate. To
avoid allocation and provide fast joins between the subgraph and
the original graph, the vertex filter is performed using the bitmask
in the internal vertex collection, as described in Section 4.3.
innerJoin: (1) Perform an inner join between the input and the
internal vertex collection to produce the new vertex properties, and
(2) ensure consistency by joining the ids in the input collection with
the internal edge collection and dropping invalidated edges.

The distributed join in step 2 is only performed separately when
the user requests the edges of the result. It is redundant for op-
erations on the triplet view of the graph, such as triplets and mr-
Triplets, because the joins in these operations implicitly filter out
edges with no corresponding vertex attributes.

Vertices eliminated by the inner join in step 1 can be removed
using the bitmask in a similar fashion as for subgraph, enabling fast
joins between the resulting vertex set and the original graph. We
exploit this in our Enhanced Pregel implementation, as described
in Section 4.5.1.
mrTriplets: Apply the map UDF to each triplet and aggregate the
resulting messages by target vertex id using the reduce UDF. Im-
plementing the skipStale argument requires the Incremental View
Maintenance optimization in section 4.5.1, so its implementation is
described there.

4.5 Distributed Join Optimizations
The logical query plan for the mrTriplets operator consists of a

three-way join to bring the source vertex attributes and the target
vertex attributes to the edges and generate the triplets view of the
graph, followed by an aggregation step to apply the map and re-
duce UDFs. We use the routing table to ship vertices to edges and
set the edge partition as the join sites, which is equivalent to the
idea of vertex-cut partitioning in PowerGraph. In addition, we de-
scribe two techniques we have developed that further minimize the
communication in the join step. The first applies the concept of
incremental view maintenance to communicate only vertices that
change values after a graph operation, and the second uses bytecode
analysis to automatically rewrite the physical join plan. These tech-
niques enable GraphX to present a simple logical view of triplets
with the capability to optimize the communication patterns in the
physical execution plan.

4.5.1 Incremental View Maintenance
We observe that the number of vertices that change in itera-

tive graph computations usually decreases as the computation con-
verges to a fixed-point. This presents an opportunity to further op-
timize the join in mrTriplets using techniques in incremental view
maintenance. Recall that in order to compute the join, GraphX
uses the routing table to route vertices to the appropriate join sites
in the internal edge RDD. After each graph operation, we update
a bit mask to track which vertex properties have changed. When
GraphX needs to ship the vertices to materialize (in-memory) the
replicated vertex view, it creates the view by shipping only vertices
that have changed, and uses values from the previously material-
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Figure 4: Impact of incrementally maintaining the replicated
vertex view: For both PageRank and connected components, as
vertices converge, communication decreases due to incremental
view maintenance. We suspect the initial steep rise in communi-
cation is due to compression; many early rank update messages are
the same and can be run-length encoded.

ized replicated vertex view for vertices that have not changed.
Internally, GraphX maintains a bitmask alongside the replicated

vertex view to record which vertices have changed. The mrTriplets
operator uses this bitmask to support skipStale, which determines
for each edge whether to skip running the map UDF based on
whether the source and/or target vertex of the edge has changed.

Figure 4 illustrates the impact of incrementally maintaining the
replicated vertex view in both PageRank and connected compo-
nents on the Twitter graph.

4.5.2 Automatic Join Elimination
The map UDF in the mrTriplets operator may only access one of

the vertices, or none at all, in many algorithms. For example, when
mrTriplets is used to count the degree of each vertex, the map UDF
does not access any vertex attributes.2 In the case of PageRank,
only the source vertex attributes are referenced.

GraphX implements a JVM bytecode analyzer that inspects the
bytecode of the map UDF at runtime for a given mrTriplets query
plan and determines whether the source or target vertex attributes
are referenced. If only the source attributes are referenced, GraphX
automatically rewrites the query plan from a three-way join to
a two-way join. If none of the vertex attributes are referenced,
GraphX eliminates the join entirely. Figure 5 demonstrates the
impact of this physical execution plan rewrite on communication
and runtime.

4.6 Sequential Scan vs Index Scan
Recall that in most operators, GraphX uses the structural indexes

and relies on bitmasks to track whether a particular vertex is still
visible. While this reduces the cost of computing index structures
in iterative computations, it also prevents the physical data set from
shrinking in size. For example, in the last iteration of connected
components on the Twitter graph, only a few of the vertices are still
active. However, to execute the mrTriplets on the triplet view we
still need to sequentially scan 1.5 billion edges and verify for each
edge whether its vertices are still visible using the bitmask.

To mitigate this problem, we implement an index scan access
method on the bitmask and switch from sequential scan on edges

2The map UDF does access vertex IDs, but they are part of the edge
structure and do not require shipping the vertices.
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Figure 5: Impact of automatic join elimination on communica-
tion and runtime: We ran PageRank for 20 iterations on the Twit-
ter dataset with join elimination turned on and off. We observe that
automatic join elimination reduces the amount of communication
by almost half and substantially decreases the total execution time
as well.

to bitmap index scan on vertices when the fraction of active ver-
tices is less than 0.8. This bitmap index scan on vertices exploits
the property that edges are clustered by their source vertex id to
efficiently join vertices and edges together. Figure 6 illustrates the
performance of sequential scan versus index scan in both PageRank
and connected components.

When skipStale is passed to the mrTriplets operator, the index
scan can be further optimized by checking the bitmask for each
vertex id and filtering the index as specified by skipStale rather than
performing the filter on the output of the index scan.

4.7 Additional Engineering Techniques
While implementing GraphX, we discovered that a number of

low level engineering details had significant performance impact.
We sketch some of them here.

Memory-based Shuffle: GraphX relies on Spark’s shuffle mecha-
nism for join and aggregation communication. Spark’s default im-
plementation materializes the shuffle data to disk, hoping that it
will remain in the OS buffer cache when the data is fetched by re-
mote nodes. In practice, we have found that the extra system calls
and file system journaling adds significant overhead, and the in-
ability to control when buffer caches are flushed leads to variability
in communication-intensive workloads like graph algorithms. We
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Figure 6: Sequential scan vs index scan: Connected components
(CC) on Twitter graph benefits greatly from switching to index scan
after the 4th iteration, while PageRank (PR) benefits only slightly
because the set of active vertices is large even at the 15th iteration.

modified the shuffle phase to materialize map outputs in memory
and remove this temporary data using a timer.

Batching and Columnar Structure: In our join code path, rather
than shuffling the vertices one by one, we batch a block of vertices
routed to the same target join site and convert the block from row-
oriented format to column-oriented format. We then apply the LZF
compression algorithm on these blocks to send them. Batching has
a negligible impact on CPU time while improving the compression
ratio of LZF by 10–40% in our benchmarks.

Variable Integer Encoding: Though we use 64-bit integer identi-
fiers for vertices and edges, in most cases the ids are much smaller
than 264. To exploit this fact, during shuffling, we encode integers
using a variable-encoding scheme where for each byte, we use only
the first 7 bits to encode the value, and use the highest order bit to
indicate whether we need another byte to encode the value. In this
case, smaller integers are encoded with fewer bytes. In the worst
case, integers greater than 256 require 5 bytes to encode. This tech-
nique reduces our communication in PageRank by 20%.

5. SYSTEM EVALUATION
We evaluate the performance of GraphX on specific graph-

parallel computation tasks as well as end-to-end graph analytic
pipelines, comparing to the following systems:

1. Apache Spark 0.8.1: the data-parallel cluster compute engine
GraphX builds on. We use Spark to demonstrate the per-
formance of graph algorithms implemented naively on data-
parallel systems. We chose Spark over Hadoop MapReduce
because of Spark’s support for distributed joins and its re-
ported superior performance [23, 22].

2. Apache Giraph 1.0: an open source implementation of
Google’s Pregel. It is a popular graph computation engine in
the Hadoop ecosystem initially open-sourced by Yahoo!.

3. GraphLab 2.2 (PowerGraph): another open source graph
computation engine commonly believed to be one of the
fastest available. Note that GraphLab is implemented in
C++, while both other systems and GraphX run on the
JVM. It is expected that even if all four systems implement
identical optimizations, GraphLab would have an “unfair”
advantage due to its native runtime.



Dataset Edges Vertices
LiveJournal 68,993,773 4,847,571
Wikipedia 116,841,365 6,556,598
Twitter [3, 2] 1,468,365,182 41,652,230

Table 1: Graph datasets

For graph-parallel algorithms, we demonstrate that GraphX is
more than an order of magnitude faster than idiomatic Spark and
performs comparably to the specialized systems, while outperform-
ing them in end-to-end pipelines.

All experiments were conducted on Amazon EC2 using 16
m2.4xlarge worker nodes in November and December 2013. Each
node had 8 virtual cores, 68 GB of memory, and two hard disks.
The cluster was running 64-bit Linux 3.2.28. We plot the mean
and standard deviation for 10 trials of each experiment.

5.1 Graph-Parallel Performance
We evaluated the performance of GraphX on PageRank and Con-

nected Components, two well-understood graph algorithms that are
simple enough to serve as an effective measure of the system’s per-
formance rather than the performance of the user-defined functions.

For each system, we ran both algorithms on the Twitter and Live-
Journal social network graphs (see Table 1). We used the imple-
mentations of these algorithms included in the Giraph and Pow-
erGraph distributions, and we additionally implemented PageRank
using idiomatic Spark dataflow operators.

Figures 7a and 7b show the total runtimes for the connected com-
ponents algorithm running until convergence. On the Twitter graph,
Giraph outperforms GraphX and is as fast as GraphLab despite the
latter’s highly optimized C++ implementation. We conjecture that
this is due to the difference in partitioning strategies: GraphLab and
GraphX use vertex cuts while Giraph uses edge cuts. Vertex cuts
split high-degree vertices across partitions, but incur some over-
head due to the joins and aggregation needed to coordinate vertex
properties across partitions containing adjacent edges. The con-
nected components algorithm does very little communication per
iteration (see Figure 4), negating the benefit of vertex cuts but still
incurring the overhead. In the case of LiveJournal, Giraph is slower
because it uses Hadoop MapReduce for resource scheduling and
the overhead of that (approximately 10 seconds) is quite substan-
tial when the graph is small.

Figures 7c and 7d show the total runtimes for PageRank for 20
iterations on each system, including the idiomatic Spark dataflow
implementation of PageRank. PageRank on GraphX is much faster
than PageRank on Spark, and since GraphX is built on Spark, the
difference can be isolated to the fact that GraphX exploits the graph
structure using vertex cuts, structural indices, and the other op-
timizations described in Section 4. The specialized systems also
outperform the Spark dataflow implementation for similar reasons.

In Figure 8 we plot the strong scaling performance of GraphX
running PageRank on the Twitter follower graph. As we move from
8 to 32 machines (a factor of 4) we see a 3x speedup. However as
we move to 64 machines (a factor of 8) we only see a 3.5x speedup.
While this is hardly linear scaling, it is actually slightly better than
the 3.2x speedup reported by PowerGraph [10]. The poor scaling
performance of PageRank has been attributed by [10] to high com-
munication overhead relative to computation.

The fact that GraphX is able to scale slightly better than Power-
Graph is relatively surprising given that the Spark shared-nothing
worker model eliminates the potential for shared memory paral-
lelism and forces the graph to be partitioned across processors and
not machines. However, Figure 9 shows the communication of

GraphX as a function of the number of partitions. Going from 16 to
128 partitions (a factor of 8) yields only around a 2-fold increase in
communication. Returning to the analysis conducted by [10], we
find that the vertex-cut partitioning adopted by GraphX mitigates
the 8-fold increase in communication due to Spark.

5.2 End-to-End Pipeline Performance
Specialized graph-parallel systems are much faster than data-

parallel systems such as Hadoop MapReduce and Apache Spark
for iterative graph algorithms, but they are not well suited for many
of the operations found in a typical graph analytics pipeline. To il-
lustrate the unification of graph-parallel and data-parallel analytics
in GraphX, we evaluate the end-to-end performance of each system
in performing a multi-step pipeline that determines the 20 most im-
portant articles in the English Wikipedia by PageRank.

This analytics pipeline contains three stages: (1) parsing an
XML file containing a snapshot of all English Wikipedia articles
and extracting the link graph, (2) computing PageRank on the link
graph, and (3) joining the 20 highest-ranked articles with their full
text. Existing graph processing systems focus only on stage 2, and
we demonstrate that GraphX’s unified approach provides better
end-to-end performance than specialized graph-parallel systems
even for simple pipelines.

Because Giraph and GraphLab do not support general data-
parallel operations such as XML parsing, joins, or top-K, we
implemented these operations in their pipelines by transferring
data to and from a data-parallel system using files. We used
Spark and HDFS for this purpose. The GraphX unified model was
capable of expressing the entire pipeline.

Figure 10 shows the performance of each system’s pipeline. De-
spite GraphLab’s superior performance on the graph-parallel por-
tion of the pipeline, GraphX outperforms it in end-to-end runtime
by avoiding the overhead of serialization, replication, and disk I/O
at the stage boundaries. The GraphX pipeline was also simpler and
easier to write due to the unified programming model.

6. RELATED WORK
We have already discussed related work on graph-parallel en-

gines extensively in Section 2. This section focuses on related work
in RDF and data-parallel systems.

The Semantic Web movement led to several areas of related
work. The Resource Description Framework (RDF) graph [15] is
a flexible representation of data as a graph consisting of subject-
predicate-object triplets (e.g., NYC-isA-city) viewed as directed
edges (e.g., NYC isA−→ city). The property graph data model
adopted by GraphX contains the RDF graph as a special case [19].
The property graph corresponding to an RDF graph contains
the predicates as edge properties and the subjects and objects as
vertex properties. In the RDF model the subject and predicate
must be a Universal Resource Identifier (URI) and the value can
either be a URI or a string literal. As a consequence complex
vertex properties (e.g., name, age, and interests) must actually be
expressed as a subgraphs connected to a URI corresponding to a
person. In this sense, the RDF may be thought of a normalized
property graph. As a consequence the RDF graph does not closely
model the original graph structure or exploit the inherent grouping
of fields (e.g., information about a user), which must therefore be
materialized through repeated self joins. Nonetheless, we adopt
some of the core ideas from the RDF work including the triples
view of graphs.

Numerous systems [4, 17, 1] have been proposed for storing and
executing queries against RDF graphs using query languages such
as SPARQL [18]. These systems as well as the SPARQL query lan-
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aSpark PageRank on Twitter encountered memory constraints and took over 5000 s, so we have truncated its bar to ease comparison between the graph
systems.

Figure 7: Graph-parallel performance comparison
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Figure 9: Effect of partitioning on commu-
nication
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Figure 10: End-to-end pipeline perfor-
mance comparison

guage target subgraph queries and aggregation for OLTP workloads
where the focus is on low-latency rather than throughput and the
query is over small subgraphs (e.g., short paths). Furthermore, this
work is geared towards the RDF graph data models. In contrast,
graph computation systems generally operate on the entire graph
by transforming properties rather than returning subsets of vertices
with a focus on throughput. Nonetheless, we believe that some of
the ideas developed for GraphX (e.g., distributed graph represen-
tations) may be beneficial in the design of low-latency distributed
graph query processing systems.

There has been recent work applying incremental iterative data-
parallel systems to graph computation. Both Ewen et al. [9] and
Murray et al. [16] proposed systems geared towards incremental
iterative data-parallel computation and demonstrated performance
gains for specialized implementations of PageRank. While this
work demonstrates the importance of incremental updates in graph
computation, neither proposed a graph oriented view of the data or
graph specific optimizations beyond incremental data-flows.

7. DISCUSSION
In this work, we revisit the concept of Physical Data Indepen-

dence in the context of graphs and collections. We posit that col-
lections and graphs are not only logical data models presented to

programmers but in fact can be efficiently implemented using the
same physical representation of the underlying data. Through the
GraphX abstraction we proposed a common substrate that allows
these data to be viewed as both collections and graphs and sup-
ports efficient data-parallel and graph-parallel computation using a
combination of in-memory indexing, data storage formats, and var-
ious join optimization techniques. Our experiments show that this
common substrate can match the performance of specialized graph
computation systems and support the composition of graphs and
tables in a single data model. In this section, we discuss the impact
of our discoveries.

Domain Specific Views: Historically, physical independence fo-
cused on the flexibility to implement different physical storage, in-
dexing, and access strategies without changing the applications.
We argue that physical independence also enables the presenta-
tion of multiple logical views with different semantics and cor-
responding constraints on the same physical data. Because each
view individually restricts the computation, the underlying system
in turn can exploit those restrictions to optimize its physical execu-
tion strategies. However, by allowing the composition of multiple
views, the system is able to maintain a high degree of generality.
Furthermore, the semantic properties of each view enable the de-
sign of domain specific operators which can be further specialized



by the system. We believe there is opportunity for further research
into the composition of specialized views (e.g., queues and sets)
and operators and their corresponding optimizations.

Graph Computation as Joins: The design of the GraphX sys-
tem revealed a strong connection between distributed graph compu-
tation and distributed join optimizations. When viewed through the
lens of relational operators, graph computation reduces to joining
vertices with edges (i.e., triplets) and then applying aggregations.
These two stages correspond to the Scatter and Gather phases of
the GAS abstraction [10]. Likewise, the optimizations used to dis-
tribute and accelerate the GAS abstraction correspond to horizontal
partitioning and indexing strategies. In particular, the construction
of the triplets relies heavily on distributed routing tables that resem-
ble the join site selection optimization in distributed databases. Ex-
ploiting the iterative nature in graph computation, GraphX reuses
many of the intermediate data structures built for joins across iter-
ations, and employs techniques in incremental view maintenance
to optimize the joins. We hope this connection will inspire further
research into distributed join optimizations for graph computation.

The Narrow Waist: In the design of the GraphX abstraction we
sought to develop a thin extension on top of relational operators
with the goal of identifying the essential data model and core oper-
ations needed to support graph computation and achieve a portable
framework that can be embedded in a range of data-parallel plat-
forms. We restricted our attention to the small set of primitive op-
erators needed to express existing graph-parallel frameworks such
as Pregel and PowerGraph. In doing so, we identified the prop-
erty graph and its tabular analog the unordered type collection as
the essential data-model, as well as a small set of basic operators
which can be cast in relational operators. It is our hope that, as
a consequence, the GraphX design can be adopted by other data-
parallel systems, including MPP databases, to efficiently support a
wide range of graph computations.

Simplified Analytics Pipeline: Some key benefits of GraphX
are difficult to quantify. The ability to stay within a single frame-
work throughout the analytics process means it is no longer nec-
essary to learn and support multiple systems or develop the data
interchange formats and plumbing needed to move betweens sys-
tems. As a consequence, it is substantially easier to iteratively slice,
transform, and compute on large graphs and share code that spans
a much larger part of the pipeline. The gains in performance and
scalability for graph computation translate to a tighter analytics
feedback loop and therefore a more efficient work flow. Finally,
GraphX creates the opportunity for rich libraries of graph opera-
tors tailored to specific analytics tasks.

8. CONCLUSION
The growing scale and importance of graph data has driven the

development of specialized graph computation engines capable
of inferring complex recursive properties of graph-structured
data. However, these systems are unable to express many of the
inherently data-parallel stages in a typical graph-analytics pipeline.
As a consequence, existing graph analytics pipelines [11] resort
to multiple stages of data-parallel and graph-parallel systems
composed through external storage systems. This approach to
graph analytics is inefficient, difficult to adopt to new workloads,
and difficult to maintain.

In this work we introduced GraphX, a distributed graph process-
ing framework that unifies graph-parallel and data-parallel compu-
tation in a single system and is capable of succinctly expressing
and efficiently executing the entire graph analytics pipeline. The
GraphX abstraction unifies the data-parallel and graph-parallel ab-
stractions through a data model that presents graphs and collections

as first-class objects with a set of primitive operators enabling their
composition. We demonstrated that these operators are expressive
enough to implement the Pregel and PowerGraph abstractions but
also simple enough to be cast in relational algebra.

GraphX encodes graphs as collections of edges and vertices
along with simple auxiliary index structures, and represents graph
computations as a sequence of relational joins and aggregations.
It incorporates techniques such as incremental view maintenance
and index scans in databases and adapts these techniques to
exploit common characteristics of graph computation workloads.
The result is a system that achieves performance comparable
to contemporary graph-parallel systems in graph computation
while retaining the expressiveness of contemporary data-parallel
systems.

We have open sourced GraphX at www.anon-sys.com. Though
it has not been officially released, a brave industry user has suc-
cessfully deployed GraphX and achieved a speedup of two orders
of magnitude over their pre-existing graph analytics pipelines.
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