Data-Intensive Computing with MapReduce

Session 5: Graph Processing

Jimmy Lin
University of Maryland
Thursday, February 21, 2013
Today’s Agenda

- Graph problems and representations
- Parallel breadth-first search
- PageRank
- Beyond PageRank and other graph algorithms
- Optimizing graph algorithms
What’s a graph?

- $G = (V, E)$, where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information

- Different types of graphs:
 - Directed vs. undirected edges
 - Presence or absence of cycles

- Graphs are everywhere:
 - Hyperlink structure of the web
 - Physical structure of computers on the Internet
 - Interstate highway system
 - Social networks
Some Graph Problems

- Finding shortest paths
 - Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
 - Telco laying down fiber
- Finding Max Flow
 - Airline scheduling
- Identify “special” nodes and communities
 - Breaking up terrorist cells, spread of avian flu
- Bipartite matching
 - Monster.com, Match.com
- And of course... PageRank
Graphs and MapReduce

- A large class of graph algorithms involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: “traversing” the graph

- Key questions:
 - How do you represent graph data in MapReduce?
 - How do you traverse a graph in MapReduce?
Representing Graphs

- $G = (V, E)$

- Two common representations
 - Adjacency matrix
 - Adjacency list
Adjacency Matrices

Represent a graph as an $n \times n$ square matrix M

- $n = |V|$
- $M_{ij} = 1$ means a link from node i to j

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency Matrices: Critique

- **Advantages:**
 - Amenable to mathematical manipulation
 - Iteration over rows and columns corresponds to computations on outlinks and inlinks

- **Disadvantages:**
 - Lots of zeros for sparse matrices
 - Lots of wasted space
Adjacency Lists

Take adjacency matrices... and throw away all the zeros

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency Lists: Critique

- **Advantages:**
 - Much more compact representation
 - Easy to compute over outlinks

- **Disadvantages:**
 - Much more difficult to compute over inlinks
Single-Source Shortest Path

- **Problem:** find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- First, a refresher: Dijkstra’s Algorithm
Dijkstra’s Algorithm Example

Example from CLR
Dijkstra's Algorithm Example

Example from CLR
Dijkstra’s Algorithm Example

Example from CLR
Single-Source Shortest Path

- **Problem:** find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- Single processor machine: Dijkstra’s Algorithm
- MapReduce: parallel breadth-first search (BFS)
Finding the Shortest Path

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here’s the intuition:
 - Define: \(b \) is reachable from \(a \) if \(b \) is on adjacency list of \(a \)
 \[\text{DISTANCETo}(s) = 0 \]
 - For all nodes \(p \) reachable from \(s \),
 \[\text{DISTANCETo}(p) = 1 \]
 - For all nodes \(n \) reachable from some other set of nodes \(M \),
 \[\text{DISTANCETo}(n) = 1 + \min(\text{DISTANCETo}(m), m \in M) \]
Visualizing Parallel BFS
From Intuition to Algorithm

- **Data representation:**
 - Key: node \(n \)
 - Value: \(d \) (distance from start), adjacency list (nodes reachable from \(n \))
 - Initialization: for all nodes except for start node, \(d = \infty \)

- **Mapper:**
 - \(\forall m \in \text{adjacency list}: \text{emit} \ (m, d + 1) \)

- **Sort/Shuffle**
 - Groups distances by reachable nodes

- **Reducer:**
 - Selects minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of actual path
Multiple Iterations Needed

- Each MapReduce iteration advances the “frontier” by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - Multiple iterations are needed to explore entire graph

- Preserving graph structure:
 - Problem: Where did the adjacency list go?
 - Solution: mapper emits \((n, \text{adjacency list})\) as well
BFS Pseudo-Code

1: class Mapper
2: method Map(nid n, node N)
3: d ← N.Distance
4: Emit(nid n, N)
5: for all nodeid m ∈ N.AdjacencyList do
6: Emit(nid m, d + 1) // Pass along graph structure
7: for all nodeid m ∈ N.AdjacencyList do
8: Emit(nid m, d + 1) // Emit distances to reachable nodes

1: class Reducer
2: method Reduce(nid m, [d₁, d₂, ...])
3: d_min ← ∞
4: M ← ∅
5: for all d ∈ counts [d₁, d₂, ...] do
6: if IsNode(d) then
7: M ← d
8: else if d < d_min then
9: d_min ← d
10: M.Distance ← d_min
11: Emit(nid m, node M) // Recover graph structure
12: Emit(nid m, node M) // Look for shorter distance
13: Emit(nid m, node M) // Update shortest distance
Stopping Criterion

- How many iterations are needed in parallel BFS (equal edge weight case)?

- Convince yourself: when a node is first “discovered”, we’ve found the shortest path

- Now answer the question...
 - Six degrees of separation?

- Practicalities of implementation in MapReduce
Comparison to Dijkstra

- Dijkstra’s algorithm is more efficient
 - At each step, only pursues edges from minimum-cost path inside frontier

- MapReduce explores all paths in parallel
 - Lots of “waste”
 - Useful work is only done at the “frontier”

- Why can’t we do better using MapReduce?
Now add positive weights to the edges

- Why can’t edge weights be negative?

Simple change: add weight \(w \) for each edge in adjacency list

- In mapper, emit \((m, d + w_p)\) instead of \((m, d + 1)\) for each node \(m\)

That’s it?
Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Convince yourself: when a node is first “discovered”, we’ve found the shortest path

Not true!
Additional Complexities
Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Practicalities of implementation in MapReduce
Application: Social Search

Source: Wikipedia (Crowd)
Social Search

- When searching, how to rank friends named “John”?
 - Assume undirected graphs
 - Rank matches by distance to user

- Naïve implementations:
 - Precompute all-pairs distances
 - Compute distances at query time

- Can we do better?
All-Pairs?

- Floyd-Warshall Algorithm: difficult to MapReduce-ify…
- Multiple-source shortest paths in MapReduce: run multiple parallel BFS *simultaneously*
 - Assume source nodes \(\{s_0, s_1, \ldots, s_n\}\)
 - Instead of emitting a single distance, emit an array of distances, with respect to each source
 - Reducer selects minimum for each element in array
- Does this scale?
Landmark Approach (aka sketches)

- Select \(n \) seeds \(\{s_0, s_1, \ldots, s_n\} \)
- Compute distances from seeds to every node:

\[
\begin{align*}
A &= [2, 1, 1] \\
B &= [1, 1, 2] \\
C &= [4, 3, 1] \\
D &= [1, 2, 4]
\end{align*}
\]

- What can we conclude about distances?
- Insight: landmarks bound the maximum path length

- Lots of details:
 - How to more tightly bound distances
 - How to select landmarks (random isn’t the best…)

- Use multi-source parallel BFS implementation in MapReduce!
Graphs and MapReduce

- A large class of graph algorithms involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: “traversing” the graph

- Generic recipe:
 - Represent graphs as adjacency lists
 - Perform local computations in mapper
 - Pass along partial results via outlinks, keyed by destination node
 - Perform aggregation in reducer on inlinks to a node
 - Iterate until convergence: controlled by external “driver”
 - Don’t forget to pass the graph structure between iterations
Random Walks Over the Web

- **Random surfer model:**
 - User starts at a random Web page
 - User randomly clicks on links, surfing from page to page

- **PageRank**
 - Characterizes the amount of time spent on any given page
 - Mathematically, a probability distribution over pages

- **PageRank captures notions of page importance**
 - Correspondence to human intuition?
 - One of thousands of features used in web search (query-independent)
PageRank: Defined

Given page x with inlinks $t_1 \ldots t_n$, where

- $C(t)$ is the out-degree of t
- α is probability of random jump
- N is the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N} \right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$
Computing PageRank

- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration are local

- Sketch of algorithm:
 - Start with seed PR_i values
 - Each page distributes PR_i “credit” to all pages it links to
 - Each target page adds up “credit” from multiple in-bound links to compute PR_{i+1}
 - Iterate until values converge
Simplified PageRank

- First, tackle the simple case:
 - No random jump factor
 - No dangling nodes

- Then, factor in these complexities…
 - Why do we need the random jump?
 - Where do dangling nodes come from?
Sample PageRank Iteration (1)
Sample PageRank Iteration (2)

Iteration 2

$n_1 (0.066)$

$n_2 (0.166)$

$n_3 (0.166)$

$n_4 (0.3)$

$n_5 (0.3)$
PageRank in MapReduce

Map

- $n_1[n_2, n_4]$
- $n_2[n_3, n_5]$
- $n_3[n_4]$
- $n_4[n_5]$
- $n_5[n_1, n_2, n_3]$

Reduce

- $n_1[n_2, n_4]$
- $n_2[n_3, n_5]$
- $n_3[n_4]$
- $n_4[n_5]$
- $n_5[n_1, n_2, n_3]$
PageRank Pseudo-Code

1: class Mapper
2: method MAP(nid n, node N)
3: p ← N.PAGERANK/|N.ADJACENCYLIST|
4: EMIT(nid n, N) ▶ Pass along graph structure
5: for all nodeid m ∈ N.ADJACENCYLIST do
6: EMIT(nid m, p) ▶ Pass PageRank mass to neighbors

1: class Reducer
2: method REDUCE(nid m, [p₁, p₂, ...])
3: M ← ∅
4: for all p ∈ counts [p₁, p₂, ...] do
5: if ISNODE(p) then
6: M ← p ▶ Recover graph structure
7: else
8: s ← s + p ▶ Sums incoming PageRank contributions
9: M.PAGERANK ← s
10: EMIT(nid m, node M)
Complete PageRank

- Two additional complexities
 - What is the proper treatment of dangling nodes?
 - How do we factor in the random jump factor?

- Solution:
 - Second pass to redistribute “missing PageRank mass” and account for random jumps

\[
p' = \alpha \left(\frac{1}{N} \right) + (1 - \alpha) \left(\frac{m}{N} + p \right)
\]

- \(p \) is PageRank value from before, \(p' \) is updated PageRank value
- \(N \) is the number of nodes in the graph
- \(m \) is the missing PageRank mass

- Additional optimization: make it a single pass!
PageRank Convergence

- Alternative convergence criteria
 - Iterate until PageRank values don’t change
 - Iterate until PageRank rankings don’t change
 - Fixed number of iterations

- Convergence for web graphs?
 - Not a straightforward question

- Watch out for link spam:
 - Link farms
 - Spider traps
 - …
Beyond PageRank

- Variations of PageRank
 - Weighted edges
 - Personalized PageRank

- Variants on graph random walks
 - Hubs and authorities (HITS)
 - SALSA
Applications

- Static prior for web ranking
- Identification of “special nodes” in a network
- Link recommendation
- Additional feature in any machine learning problem
Other Classes of Graph Algorithms

- Subgraph pattern matching
- Computing simple graph statistics
 - Degree vertex distributions
- Computing more complex graph statistics
 - Clustering coefficients
 - Counting triangles
General Issues for Graph Algorithms

- Sparse vs. dense graphs
- Graph topologies
MapReduce Sucks

- Java verbosity
- Hadoop task startup time
- Stragglers
- Needless graph shuffling
- Checkpointing at each iteration
Iterative Algorithms
MapReduce sucks at iterative algorithms

- Alternative programming models (later)
- Easy fixes (now)
In-Mapper Combining

- Use combiners
 - Perform local aggregation on map output
 - Downside: intermediate data is still materialized

- Better: in-mapper combining
 - Preserve state across multiple map calls, aggregate messages in buffer, emit buffer contents at end
 - Downside: requires memory management

Emit all key-value pairs at once
Better Partitioning

- Default: hash partitioning
 - Randomly assign nodes to partitions

- Observation: many graphs exhibit local structure
 - E.g., communities in social networks
 - Better partitioning creates more opportunities for local aggregation

- Unfortunately, partitioning is hard!
 - Sometimes, chick-and-egg…
 - But cheap heuristics sometimes available
 - For webgraphs: range partition on domain-sorted URLs
Schimmy Design Pattern

- Basic implementation contains two dataflows:
 - Messages (actual computations)
 - Graph structure ("bookkeeping")

- Schimmy: separate the two dataflows, shuffle only the messages
 - Basic idea: merge join between graph structure and messages

Both relations consistently partitioned and sorted by join key
Do the Schimmy!

- Schimmy = reduce side parallel merge join between graph structure and messages
 - Consistent partitioning between input and intermediate data
 - Mappers emit only messages (actual computation)
 - Reducers read graph structure directly from HDFS
Experiments

- **Cluster setup:**
 - 10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk
 - Hadoop 0.20.0 on RHELS 5.3

- **Dataset:**
 - First English segment of ClueWeb09 collection
 - 50.2m web pages (1.53 TB uncompressed, 247 GB compressed)
 - Extracted webgraph: 1.4 billion links, 7.0 GB
 - Dataset arranged in crawl order

- **Setup:**
 - Measured per-iteration running time (5 iterations)
 - 100 partitions
Results

"Best Practices"

Per-Iteration Running Time (seconds)

- Combining Baseline +IMC +range partitioning +Schimmy
Results

+18% 1.4b

Per-Iteration Running Time (seconds)

- Combining Baseline +IMC +range partitioning +Schimmy

674m
Results

Bar chart showing per-iteration running time in seconds.

- Combining: 1.4b
- Baseline: 674m
- +IMC: -15%
- +range partitioning
- +Schimmy
Results

- Combining: +18%
- Baseline: 674m
- +MC: -15%
- +range partitioning: -60%
- +Schimmy: 86m
Results

- Combining: +18%
- Baseline: 674m
- +IMC: -15%
- +range partitioning: -60%
- +Schimmy: -69%
MapReduce sucks at iterative algorithms

- Alternative programming models (later)
- Easy fixes (now)

Later, the “hammer” argument…
Today’s Agenda

- Graph problems and representations
- Parallel breadth-first search
- PageRank
- Beyond PageRank and other graph algorithms
- Optimizing graph algorithms