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R elationship collections are well ex-
pressed as graphs, which provide nat-
ural human interpretation and simple 
mechanical analysis. As collections 

for study have increased in size, the volume of 
associated graphs has stressed practical analysis 
means and driven development of methods that 
scale well. 

Although scaling solutions usually involve im-
provements in algorithmic complexity, at some 
point accommodating the graph in memory be-
comes impractical and prohibitively expensive. 
Reasonable responses to such a challenge include 
distributed computing, stream computing, or pro-
cessing on a single computer with the graph resi-
dent on disk.

Distributed processing on a “cloud”—a large 
collection of commodity computers, each with its 
own disk, connected through a network—has en-
joyed much recent attention. Atop the hardware is 
an infrastructure that supports data and task dis-
tribution and robust component-failure handling. 
Google’s use of cloud computing, which employs 
the company’s proprietary infrastructure,1 and the 
subsequent open source Hadoop cloud computing 
infrastructure (http://hadoop.apache.org) have 
largely generated cloud computing’s attention. 
Both of these environments provide data-process-
ing capability by hosting so-called MapReduce 
jobs, which do their work by sequencing through 
data stored on disk. The technique increases scale 
by having a large number of independent (but 

loosely synchronized) computers running their 
own instantiations of the MapReduce job compo-
nents on their data partition.

MapReduce processes are interesting beyond 
the cloud as well. Having factored a problem in 
terms of MapReduce primitives, those primitives 
are also useful for computing in a streaming envi-
ronment or on a single computer equipped with a 
large disk. However, despite the strong interest in 
MapReduce, few researchers have published work 
(even in informal Web settings) on MapReduce 
algorithms. In particular, almost no descriptions 
of graph algorithms appear in the literature, with 
the exception of a simplified PageRank calculation 
and a naive implementation of finding distances 
from a specified node.2 

This article begins an investigation into the 
feasibility of decomposing useful graph opera-
tions into a series of MapReduce processes. Such 
a decomposition could enable implementing the 
graph algorithms on a cloud, in a streaming envi-
ronment, or on a single computer.

For the most part, my MapReduce approaches 
don’t implement existing graph algorithms in 
MapReduce; rather, they discard the usual algo-
rithms and find procedures that produce the same 

The easily distributed sorting primitives that constitute MapReduce jobs have shown great 
value in processing large data volumes. If useful graph operations can be decomposed into 
MapReduce steps, the power of the cloud might be brought to large graph problems as well.
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outcome. Like me, others might find that the pro-
cess of factoring a solution into a sequence of sort-
ing operations (rather than graph traversals, say) 
is something of an impediment at the outset, but 
becomes instructive and even freeing. An added 
benefit is that algorithms based on sorting easily 
admit hypergraph extensions.

Before proceeding, those seeking a reference 
for graph definitions and results might wish to 
consult a compendium such as Jonathan Gross 
and Jay Yellen’s work.3

The MapReduce Construct
The terms “map” and “reduce” come from Lisp’s 
operations of the same names. In practice, the re-
duce here can differ significantly from Lisp’s in 
that the output needn’t be smaller than the input 
and might, in fact, be larger.

The Process
The map and reduce operations are general and 
have a simple interface. Each receives a sequence 
of records, and each usually produces records in 
response. A record consists of a key and a value.

Input records presented to the mapper by its 
caller have no guaranteed order or relationship to 
one another. The mapper’s job is to create some 
number of records (perhaps none) in response to 
each input record. Records presented to the re-

ducer by its caller are binned by key, such that all 
records with a given key are presented as a pack-
age to the reducer. The reducer then examines the 
packages sequentially through an iterator. The 
programmer also has the option of specifying an 
order for the packaged records.

Hadoop doesn’t employ mappers and reducers 
independently; they’re part of MapReduce jobs in 
which each job specifies one mapper and one re-
ducer. Figure 1 outlines a MapReduce job’s func-
tion. A job operates on an input file (or more than 
one) distributed across bins and produces an out-
put file also distributed across bins. (Distribution 
of the file contents across bins for both the input 
and output files can be taken as arbitrary in most 
cases.) The system feeds input-file bins to the job’s 
mapper instances and partitions the mapper in-
stances’ outputs globally by key into bins, produc-
ing an intermediate file. It then feeds each of these 
intermediate bins to a reducer instance; the reduc-
ers then produce the job’s output file. A complete 
algorithm might cascade such jobs to implement a 
more complex process.

From this description, it’s apparent that the map 
operation does what’s expected: it transforms each 
record, although it might produce any number of 
transformed records from one input. In particular, 
the map seeks to key its outputs so that the system 
places in the same bin the records that should come 
together in the reduce phase. To perform some of 
the reduction early, thereby lessening the need to 
store and transport records, the programmer can 
also specify a combiner that operates on the map-
per’s output while the mapper is running. 

The reduce process operates on a bin’s contents, 
and gets its name from the idea that it creates a 
small output, such as a count, that characterizes 
its relatively larger input. Although Google papers 
suggest that a reduce operation’s result is usually 
small (such as a count), the graph MapReduce 
processes that I describe in this article usually 
produce results whose size is on par with the in-
put’s size, belying the name “reduce.”

As Figure 1 suggests, the programmer can spec-
ify that the system sort the bins’ contents accord-
ing to any provided criterion. This customization 
occasionally can be useful. The programmer can 
also specify partitioning methods to more coarse-
ly or more finely bin the map results.

Although every job must specify both a mapper 
and a reducer, either of them can be the identity, 
or an empty stub that creates output records equal 
to the input records. In particular, an algorithm 
frequently calls for input categorization or order-
ing for many successive stages, suggesting a re-

Unordered, randomly
binned data

Unordered, randomly
binned data
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…

Data binned by key
and optionally
ordered within bins
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Figure 1. A MapReduce job. The input file consists of records 
distributed across bins, usually in what may be regarded as an 
arbitrary fashion. Each mapper reads from a bin and emits records 
that are binned according to their keys to form an intermediate 
file. The system then supplies each intermediate file bin to a reduce 
process that produces records whose storage again can be regarded 
as random. This distributed output file can then serve as the input to 
a subsequent job.
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ducer sequence without the need for intermediate 
mapping; identity mappers fill in to satisfy archi-
tectural needs.

Environmental Assumptions
Although a user can employ MapReduce on a 
single machine, MapReduce frameworks are de-
signed to support operation on a cloud of comput-
ers. The infrastructure then implements a single 
MapReduce job as parallel mapper and reducer 
instances running concurrently on different com-
puters. A simplification that MapReduce brings to 
parallel computing is that the only synchroniza-
tion takes place when creating and accessing files. 
The downside is that shared state, beyond the 
files, is limited.

Hadoop, implemented in Java, runs each map-
per or reducer instance in an independent virtual 
machine on each computer. Consequently, the 
“static” fields defined in each Java class aren’t static 
across instances. Hadoop supports limited distrib-
uted (read-only) tables and common scratches, but 
the algorithms I describe here don’t use them.

What the algorithms do use is Hadoop’s facility 
for passing parameters to the MapReduce job envi-
ronment and for each mapper or reducer instance 
to contribute to counts accumulated across all map-
per and reducer instances. More specifically, when 
mapper and reducer instances are created, they’re 
initialized with a copy of the job input parameters.

The assumptions include that the data is too vo-
luminous to be held in memory, and, conversely, 
that the contents of a single bin can fit in memory 
if necessary, provided that bins aren’t permitted to 
grow without bound. In particular, the assump-
tion is that a bin describing edges adjacent to a 
single vertex can fit into memory.

Graph Algorithms
Let’s begin with a simple example that illustrates 
and serves as a component of other algorithms. 

An Example: Augmenting Edges with Degrees
Figure 2 summarizes the desired end result for 
this example. An input file comprises records that 
each hold an edge. This process will augment the 
records with vertex-degree information, creating 
a new file. Creating the desired output requires 
three logical passes through the data: one map 
and two reduces. Because of the need to pair maps 
with reduces, the process requires two MapRe-
duce jobs: two reduce steps and two map steps, 
one of which is the identity map.

Figure 3a summarizes the first MapReduce job. 
For each edge record the mapper reads, the map 

emits two records, one keyed under each of the 
vertices that form the edge. This process will cre-
ate bins corresponding to vertices such that each 
bin will hold records for every edge adjacent to 
its associated vertex. The reduce phase works on 
each such bin in turn. Having read the bin’s con-
tents, the reducer knows the vertex degree, which 
is equal to the number of records in the bin. The 
reducer can now emit output records (one for each 
record read) that are augmented with the degree 
of the bin’s vertex. This is only half of the degree 
information; another reducer, or another call to 
the same reducer, produces the other half. The re-
ducer keys output records by the edge so that the 
two halves of each edge’s vertex information can 
come together in the next phase.

Figure 3b summarizes the second MapReduce 
job, which employs an identity mapper so the sys-
tem bins each record by its key—namely, the edge 
it represents. Each bin then collects the partial-
degree information, one record for each vertex in 
the edge. The reducer combines these records to 
produce a single record for the edge containing 
the desired degree information.

Simplifying the Graph
For many algorithms, the starting point is sim-
plifying the graph—that is, removing loops and 
removing edges that duplicate other edges. Re-
ducing multiple edges between a pair of vertices 
to a single representative edge can include weight-
ing the representative edge for downstream al-
gorithms that might regard multiple edges as an 

key (FRED, ETHEL)

key (FRED, RICKY) Raw edges

.

.

.

.

..

Edges
with degrees

d(FRED) d(ETHEL)key (FRED, ETHEL)

d(FRED) d(RICKY)key (FRED, RICKY)

Figure 2. Records for representing vertex degrees. The input file 
comprises records whose values are edges. The output file has edges 
augmented with degree information. The keys for these records are 
unimportant at this point.
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indicator of connection strength. 
One can simplify the graph as a directed graph 

or as an undirected graph. If the graph is undi-
rected, the edge (A, B) duplicates (B, A), and a 
single representative edge will replace the pair. If 
the graph is directed, the process should preserve 
each of these edges.

Simplifying the graph is achievable in a single 
MapReduce job. The mapper removes loops and 
bins the edges by membership. The map process-

ing on each edge involves several steps. First, to 
remove loops, the mapper drops all but the first 
occurrence of a vertex in the (ordered) member 
list. If the resulting membership list has fewer 
than two members, the mapper ignores the edge 
and emits no records. Otherwise, if the mapper 
removes members, it creates a new representative 
edge to stand in for the original. Representative 
edges act as other edges in subsequent processing 
but are derived from original source edges either 
by combining edges or by editing them (that is, 
removing edge members). Representative edges 
also contain references to their source edges for 
mapping results back to the source graph.

Next, the mapper generates a hash to represent 
the edge membership. Used for binning, the hash 
guarantees that the system places any two edges 
with the same membership in the same bin. The 
hash might bin edges with distinct membership 
together, too, which I’ll discuss in a moment. For 
treating the edge as undirected, the hash operates 
on membership that’s first ordered in some con-
sistent fashion. For treating the edge as directed, 
the hash takes members in their specified order.

Finally, the reducer records unique edges and 
drops duplicates. The reducer takes the first edge 
in the bin, and, using a hash table, recognizes and 
removes duplicates (but totals the weights), mak-
ing a single representative edge for the starting 
edge and those that match it. Having completed 
this bin portion, the reducer repeats the process 
to address the rest of the bin’s contents, in case 
edges of different contents happened to hash to 
the same bin.

Enumerating Triangles
Triangles, or 3-cycles, can be the basis for ana-
lyzing graphs and subgraphs. In particular, enu-
merating triangles constitutes most of the work 
in identifiying the dense subgraphs called trusses 
(see the “Finding Trusses” section for more infor-
mation). MapReduce offers a good framework for 
locating triangles.

Enumerating triangles is essentially a two-step 
approach: enumerate open triads (pairs of edges 
of the form {(A, B), (B, C)}) and recognize when 
an edge closes those triads to form triangles. This 
sounds like a tautology, but it’s useful. Note that it 
isn’t necessary to enumerate all open triads to lo-
cate all triangles; only one per triangle is needed.

Suppose I have an ordering of vertices (a lexico-
graphic ordering of the names would work, for ex-
ample). Further suppose I record every edge under 
its low-order member. Then I’m guaranteed that 
every triangle will have exactly one vertex that 

...

Map 1

d(FRED)=4

Reduce 1

d(FRED) = 4(FRED, ETHEL)(FRED, ETHEL)

d(FRED) = 4(FRED, RICKY)(FRED, RICKY)

d(FRED) = 4(FRED, TIM)(FRED, TIM)

key (FRED, ETHEL)
FRED (FRED, ETHEL)

FRED (FRED, ETHEL)

FRED (FRED, TIM)

FRED (LUCY, FRED)

FRED (FRED, RICKY)

FRED (FRED, RICKY)

RICKY (FRED, RICKY)

ETHEL (FRED, ETHEL)

key (FRED, RICKY)

(a)

(LUCY, FRED)(LUCY, FRED) d(FRED) = 4

...

Map 2 (Identity)

Reduce 2

(b)

d(FRED) = 4(FRED, ETHEL)(FRED, ETHEL)

d(FRED) = 4(FRED, ETHEL)(FRED, ETHEL)

(FRED, ETHEL)(FRED, ETHEL)

d(FRED) = 4(FRED, ETHEL)(FRED, ETHEL)

d(ETHEL) = 2

(FRED, ETHEL)(FRED, ETHEL) d(ETHEL) = 2d(FRED) = 4

Figure 3. Augmenting edges with degrees. (a) In the first MapReduce 
job, for each input record, the map creates two output records, one 
keyed under each vertex in the edge. The reduce takes all edges 
mapped to a single vertex (“Fred” here), counts them to obtain the 
degree, and emits a record for each input record, each keyed under 
the edge it represents. (b) In the second MapReduce job, the identity 
mapper preserves the records unchanged, so the records are binned 
by the edges they represent. The reducer combines the partial-degree 
information to produce a complete record, which it exports.
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receives two of its edges. This vertex is the apex 
of an open triad comprising the two edges that I 
mapped to it. So, to find triangles, I can choose a 
vertex ordering, bin all edges under their mini-
mum vertex, and test each pair of edges recorded 
in each bin to see if that pair (forming an open 
triad) is closed by a third edge.

The one possible problem with this approach 
is the quadratic explosion that could result by ex-
hausting the pairs of edges recorded in a bin. To 
avoid this problem, I can make a judicious choice 
of vertex ordering: degree. I choose to record each 
edge under its low-degree member. With this 
choice, a high-degree vertex will have few edges 
in its bin, so none of the bins will become large. 
Thus, the quadratic scaling won’t be an issue in 
most graphs. Certainly, it’s possible to construct 
graphs for which this won’t work, but most natu-
rally occurring graphs won’t present a problem.

This approach to enumerating triangles applied 
to the example in Figure 4 starts with simplifying 
the graph, as I described in the previous section, 
and augmenting the edge records with vertex va-
lence. After preparation, two MapReduce jobs, 
shown in Figures 5 and 6, identify the triangles. 
The process begins by mapping each edge to its 
low-degree vertex, as Figure 5a illustrates. If the 
two vertices have the same valence, the mapper 
breaks the tie by employing a consistent method 
such as using the order of the vertex names.

Figure 5b shows the first reduce. Each bin it 
operates on is labeled with a vertex and contains 
edges adjacent to that vertex. The reducer’s job is 
to emit a record for each pair of edges in a bin: one 
for every open triad whose apex is at that vertex. 
The reducer keys output records under the pair’s 
outside vertices so that the subsequent mapper 
will bin the records with edges closing the triads, 
should they exist. Note that the mapper only re-
corded edges under the incident vertex with the 
lowest valence to minimize bin size, resulting in 
fewer pairs.

Although I’ve done it here for illustration, map 
1 isn’t required to emit a record when a vertex’s 
degree is only 1. Such a vertex will never have a 
pair produced in the following reduce phase, nor 
will it appear in a triangle.

Figure 6a shows the second map, which has two 
input files: the output file from reduce 1 and the 
degree-augmented edge file. Its job is to combine 
those records and change the edge records’ keys so 
they’re keyed by the vertices that the edges join. 
The vertices’ ordering in the keys is consistent 
(lexicographic ordering, say) with their ordering 
in the triad records.

Figure 6b shows the second (and final) reduce. 
Each bin corresponds with a vertex pair. Each bin 
might contain direct edges joining those vertices 
and triads joining those vertices. The existence 
of both will produce a triangle. In particular, a 
bin will contain at most one edge record and any 
number of triad records. If a bin contains an edge 
record and n triad records, then the reducer will 
recognize n triangles. In the case in Figure 6b, 
the reducer found only one triangle: the one the 
(ETHEL, FRED) bin emitted.

Enumerating Rectangles
The job of enumerating rectangles (4-cycles) is 
similar to that of enumerating triangles. Here, 
the approach is to find two open triads connect-
ing the same pair of vertices; their combination is 
a rectangle.

Suppose the vertices have an ordering. In the 
case of a triangle, there was only one way to order 
the vertices, up to reflection and rotation, and this 
guaranteed detection of a triangle by recording 
edges under the adjacent vertex of minimum order. 
Rectangles are more interesting. Consider the pos-
sibilities for four vertices labeled 1, 2, 3, and 4, oc-
cupying the corners of a rectangle in the graph. The 
labels can be permuted 4! = 24 ways, but the sym-
metry group on four elements has |S4| = 8. This 
yields 24/8 = 3 distinct cases, as Figure 7 illustrates. 

Slightly different methods detect the three rela-
tive orderings, but each involves finding a pair of 
open triads that join the same pair of vertices. In 

Joe

Ted Fred

Ricky

Randy

Ethel

Lucy

Figure 4. Example graph for finding triangles. Triangles are extracted 
from this graph by using the MapReduce operations shown in Figures 
5 and 6, after simplification and degree augmentation.
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Figure 7, color indicates the decomposition. In 
Figure 7a, the method locates two triads (each 
shown with a blue apex) by finding a vertex of 
lower order than its neighbors, as with detecting 
the triad in a triangle, although two are required 
here. To find such a triad, a mapper records each 
edge under its incident vertex of lowest order and 
a reducer looks for pairs recorded to the same ver-
tex. This type of triad is a “low” triad.

In Figure 7b, one triad (shown in blue) again has 
an apex whose order is lower than its neighbors. 
But the other triad has an apex (green) whose or-
der is between its neighbors. To find such a triad, 

a mapper records every edge under both of the 
incident vertices and a reducer looks for a pair of 
edges binned to that vertex: one low and one high. 
This type of triad is a “mixed” triad.

Finally, Figure 7c comprises two mixed triads, 
again shown in green. This case is also decompos-
able into low and high triads in which the apex has 
an order higher than its neighbors. Because this 
method will use degree for ordering, which I’ll 
discuss in a moment, high-degree vertices could 
make processing explode quadratically, so high-
apex triads are not used.

As in the case with triangle detection, the map-

(FRED, ETHEL)FRED(FRED, ETHEL) d(ETHEL) = 5d(FRED) = 3key

(ETHEL, LUCY)LUCY(ETHEL, LUCY) d(LUCY) = 2d(ETHEL) = 5key

(LUCY, FRED)LUCY(LUCY, FRED) d(FRED) = 3d(LUCY) = 2key

(JOE, ETHEL)JOE(JOE, ETHEL) d(ETHEL) = 5d(JOE) = 1key

(TED, ETHEL)TED(TED, ETHEL) d(ETHEL) = 5d(TED) = 1key

(RICKY, FRED)RICKY(RICKY, FRED) d(FRED) = 3d(RICKY) = 2key

(ETHEL, RANDY)RANDY(ETHEL, RANDY) d(RANDY) = 2d(ETHEL) = 5key

(RANDY, RICKY)RANDY(RANDY, RICKY) d(RICKY) = 2d(RANDY) = 2key

∅∅

∅

(FRED, ETHEL)FRED

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED) (ETHEL, RANDY), (RANDY, RICKY)(ETHEL, RICKY)(ETHEL, LUCY)LUCY

(LUCY, FRED)LUCY

(JOE, ETHEL)JOE

(TED, ETHEL)TED

(RICKY, FRED)RICKY

(ETHEL, RANDY)RANDY

(RANDY, RICKY)RANDY

Joe

Ted

Lucy

Randy

Ricky

Fred

∅

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED)

Reduce 1

Map 1

(a)

(b)

Figure 5. First map and reduce for enumerating triangles. (a) In the first map operation for enumerating triangles, the mapper 
records each edge under the vertex with the lowest degree. The incoming records’ key doesn’t matter. (b) In the first reduce, 
each bin is labeled with a vertex and holds edges that connect that vertex to another vertex of higher (or equal) degree. The 
reducer emits all pairs of entries in that bin. In this case, only two bins have an output, each emitting one record.
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per orders the vertices by degree, deciding ties 
consistently using a method such as label com-
parison. This process makes enumerating low 
triads inexpensive and enumerating mixed triads 
practical. In particular, let the degree of vertex v 
be decomposed as d v d v d vL H( ) ( ) ( )= + , where 
dL(v) and dH(v) are the number of edges incident 
to v in which v is the low- and high-degree vertex, 

respectively. Then v is the apex for O(d2
L(v)) low 

triads and O(dL(v) dH(v)) mixed triads.
So, a MapReduce procedure for finding all rect-

angles in a graph is as follows:

Bin every edge by both its high and low ver-1.	
tex, marking each output record as high or 
low, producing a binned edge file.

(FRED, ETHEL)(ETHEL, FRED)

(ETHEL, LUCY)(ETHEL, LUCY)

(FRED, ETHEL) d(ETHEL) = 5d(FRED) = 3key

(ETHEL, LUCY) d(LUCY) = 2d(ETHEL) = 5key

…

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED)

(ETHEL, RANDY), (RANDY, RICKY)(ETHEL, RICKY)

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED)

(ETHEL, RANDY), (RANDY, RICKY)(ETHEL, RICKY)

Map 2 (combine edge and triad �les)

∅

∅

∅

∅

∅

(FRED, ETHEL)(ETHEL, FRED) (FRED, ETHEL),
(ETHEL, LUCY), (LUCY, FRED)

key

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED)

(ETHEL, RANDY), (RANDY, RICKY)(ETHEL, RICKY)

(ETHEL, LUCY)(ETHEL, LUCY)

(ETHEL, LUCY)

(JOE, ETHEL)(ETHEL, JOE)

(ETHEL, JOE)

(RICKY, FRED)(FRED, RICKY)

(FRED, RICKY)

∅

∅

∅

(LUCY, FRED)(FRED, LUCY)

(FRED, LUCY)

(TED, ETHEL)(ETHEL, TED)

(ETHEL, TED)

(ETHEL, RANDY)(ETHEL, RANDY)

(ETHEL, RANDY)

(RANDY, RICKY)(RANDY, RICKY)

(RANDY, RICKY)

(ETHEL, FRED)

(ETHEL, RICKY)

Reduce 2

(a)

(b)

Figure 6. Second map and reduce for enumerating triangles. (a) The second map for enumerating triangles 
brings together the edge and open triad records. In the process, it rekeys the edge records so that both 
record types are binned under the vertices they connect. (b) In the second reduce, each bin contains at 
most one edge record and some number of triad records (perhaps none). For every combination of edge 
record and triad record in a bin, the reduce emits a triangle record. The output key isn’t significant.
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Go through each bin in the binned edge file, 2.	
exporting every pair of distinct low records 
in the bin and every pair of a low record with 
a high record in the bin to produce a triad 
file. Each record in the triad file is binned by 
the pair of vertices the triad connects, that 
pair ordered lexicographically.
Go through each bin in the triad file bin, 3.	
exporting a rectangle for every triad pair in 
the bin.

Steps 1 and 2 constitute a single MapReduce 
job. Step 3 is a second MapReduce job with an 
identity map. Of course, before these steps, one 
might want to simplify the graph and must have 
the vertex valences, perhaps by augmenting the 
edge records with degree information.

Finding Trusses
Trusses are subgraphs of high connectivity, suit-
able for recognizing clusters of tight interaction 
in social networks. They’re a relaxation of cliques 
and capture cliques’ intent without their many 
shortcomings. Cliques are computationally in-

tractable. They’re unlikely to be found in natu-
rally occurring graphs, particularly when only 
sampled information is available, and intersect 
in ways that make their interpretation difficult. I 
discuss trusses, cliques, and more classical social 
network constructs in prior work.4

Specifically, a k-truss is a relaxation of a k-
member clique and is a nontrivial, single-compo-
nent maximal subgraph, such that every edge is 
contained in at least k - 2 triangles in the sub-
graph. The use of “nontrivial” here is meant to 
exclude a subgraph that consists only of a single 
vertex. A clique of k vertices is an example of a 
k-truss. Figure 8 shows the 3-, 4-, and 5-trusses 
of a graph.

It shouldn’t come as a surprise that the algorithm 
to locate trusses is based on the method for finding 
triangles. Complicating the operation is the re-
quirement that the triangles that support the truss 
edges must themselves be in the truss. Removing 
edges with insufficient support might cause other 
edges to lose their support, and so on.

The steps, after simplifying the graph are as 
follows:

(a)

1

3 4

2

(c)

1

2 3

4

(b)

1

3

2 4

Figure 7. Three rectangle orderings. Up to rotation and reflection, the only ways in which the relative 
orderings of vertices in a rectangle can occur are as shown. The color of the triad’s apex and legs indicates 
the type: (a) and (b) a low-order triad has a blue apex, (c) a mixed-order triad has a green apex.

(a) (b) (c)

Figure 8. Trusses of a graph. Each truss has a randomly assigned color: (a) 3-trusses, (b) 4-trusses, and (c) 
5-trusses. Vertices and edges not in trusses are black; such vertices are also hollow.
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Augment the edges with vertex valences.1.	
Enumerate triangles.2.	
For each edge, record the number of triangles 3.	
containing that edge.
Keep only the edges with sufficient support.4.	
If step 4 dropped any edges, return to step 1.5.	
Find the remaining graph’s components; 6.	
each is a truss.

Steps 3 and 4 are combined into a single MapRe-
duce job, as Figure 9 shows. The figure illustrates 
the case of finding 4-trusses, in which each edge 
must be in at least two triangles. In the figure’s ex-
ample, the map takes a triangle record and emits 
one record for each of the edges in the triangle. 
In the reduce stage, each bin corresponds to an 
edge. The reduce emits a record only if the num-
ber of records in the bin reaches the threshold of 
support (two, in this case). In the example, one of 
the edges is in two triangles; one is in three; and 
another is in only one and fails to pass. 

Barycentric Clustering
Researchers often partition the graph into clusters 
to transform the problem of studying a graph into 
the problem of studying each cluster subgraph 
separately. Such a transformation is useful if the 
resulting partition keeps corelevant information 
together and divides information that isn’t. 

Barycentric clustering5 scales well and identi-
fies tightly connected subgraphs. In barycentric 

clustering, vertices are given random initial po-
sitions that are then updated by multiplying by 
a matrix a given number of times. The matrix 
effectively replaces each vertex position with a 
weighted sum of its old position and the positions 
of its neighbors. A “run” is then completed by 
recording each edge’s length, given by the vertex 
position difference. After conducting multiple 
runs (a random start followed by iterative updates 
by matrix multiplication and edge measurement), 
one cuts the edges with relatively long average 

(FRED, ETHEL), (ETHEL, RICKY), (RICKY, FRED)key 1(ETHEL, FRED)

1(ETHEL, RICKY)

1(FRED, RICKY)

…

1(ETHEL, FRED)

1(ETHEL, FRED)

key (ETHEL, FRED)

(ETHEL, FRED)

key (ETHEL, RICKY)

1(ETHEL, RICKY)

1(ETHEL, RICKY)

1(ETHEL, RICKY)

(ETHEL, RICKY)

1(FRED, RICKY)

(FRED, RICKY)

∅

Figure 9. Passing edges with sufficient support for trusses. Reading a triangle file, the mapper emits a 
record for each edge involved in each triangle. The reduce passes edges that occur in a sufficient number 
of triangles. The records shown here are only a portion of the map and reduce data. (Records in this 
illustration are unrelated to the graph in Figure 4.)

Figure 10. Barycentric clusters. Randomly 
assigned colors indicate the clusters. Some colors 
were reused. The layout was not influenced by 
barycentric clustering.
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length, resulting in components that are taken 
as clusters.

More specifically, let the (scalar) positions of 
the n vertices be x = (x1, x2, …, xn)T. Initially, x 
comprises standard normal samples, translated 
and scaled to zero mean and unit L2 length. Given 
edge weights {wij}, which are zero where no edge 
exists, and weighted degree d wi ij=∑ , each it-
eration consists of replacing x with x′, so that each 
vertex position is replaced by a weighted average 
of its old location and the locations of its neigh-
bors. Specifically, x′ = Mx, with

M =
+ + +
+

1 1 1 1
1

1 12 1 1 1

21 2

/ ( ) / ( ) / ( )
/ (

d w d w d
w d
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)) / ( ) / ( )

/ ( ) / (

1 1 1

1

2 2 2

1 2
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w d w d
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
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











In practice, five iterations of applying M are ad-
equate.5 Note that this matrix is sparse (provided 
that the graph is); the amount of work per multi-
ply is proportional to the number of edges in the 
graph. Multiple random starts are necessary, but 
they all can be done at the same time. To imple-
ment r random starts, the algorithm uses an r-long 
vector of positions for each vertex. (For the moti-
vation and implementation details of barycentric 
clustering, see my earlier work.)5

The initializing process takes two MapReduce 
stages and is similar to augmenting the edges with 
vertex degrees, but it augments them instead with 
position vectors, one for each vertex:

Map 1.1.	  Bin each edge by its vertices (two re-
cords out for each record in).
Reduce 1.2.	  For each bin (vertex), create a posi-
tion vector of length r, initialize it with stan-
dard normal samples, and emit a record for 
each edge record in the bin, augmenting it 
with the vertex position vector for that ver-
tex. Key by edge.
Map 2.3.	  (identity).
Reduce 2.4.	  For each bin (edge), combine the 
edge records augmented with a single vertex’s 
position vector; output one edge record with 
both vertex position vectors. 

Once initialized, the update iterations begin, with 
five iterations in all. Each iteration consists of two 
MapReduce jobs:

Map 1.5.	  Bin each (augmented) edge by its ver-
tices (two records out for each record in).
Reduce 1.6.	  This is the essence of the position 

update. The bin represents one vertex and 
holds the records for every edge incident on 
the vertex, so it has the degree and the (op-
tional) weights of the edges (a row in the M 
matrix) and the positions of all neighboring 
vertices. From this, a new position vector is 
calculated for the vertex based on the updates 
described above. For each input edge, the re-
ducer writes an output edge record with the 
new position vector for the vertex and keys it 
by the edge.
Map 2.7.	  (identity).
Reduce 2.8.	  For each bin (edge), combine the 
edge records augmented with a single vertex’s 
position vector; output one edge record with 
all the vertex position vectors.

Note that the second MapReduce job for itera-
tion is the same as the second MapReduce job for 
initialization.

Having calculated, in parallel, the results of 
many random starts, it’s time to determine which 
edges are abnormally long relative to their neigh-
bors. Let aij denote the average length of edge (i, j) 
taken over all r of the starts. The edge (i, j) is eval-
uated by comparing aij to aij , a weighted average 
of aij over a neighborhood of the graph centered 
on (i, j). The (spatial) average is intended to mea-
sure what’s normal for that graph region. Those 
edges whose value of aij is large relative to aij  are 
deemed longer than average and can be cut. In 
general, one could remove edges above a preferred 
threshold, but I found it sufficient to drop those 
edges with aij > aij .

I chose the simple 1-out neighborhood as a spa-
tial average, using 

a

a a

ij

jk
k N

jk
k Ni j=









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







∈ ∈
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+ -

a

N N
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i j 1
,

where Ni is the set of vertices neighboring vertex 
i. In other words, aij  is a spatial average of the 
trials (runs) average of edge (i, j) and the edges in-
cident with vertices i and j. The subtraction in the 
formula avoids double counting of the edge under 
examination.

Calculating { }aij  requires two MapReduce jobs, 
as the method for expressing the average above 
suggests. The second reduce also provides the fil-
ter to drop edges that are too long on average:

Map 19.	 . Each input record is an edge with the 
positions of its vertices resulting from the r 
random starts. Get the edge’s length averaged 
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over the trials (aij for an edge between i and j) 
and emit a record for each vertex containing 
that average, binned by that vertex. The out-
put records are of the form i | ((i,j), aij), where 
the symbol before the divider is the key.
Reduce 110.	 . A bin contains all the records 
for one vertex, such as i. Sum the lengths 
of the records in the bin, obtaining  
 aik
k Ni∈
∑ .

 
Emit a record for each edge in the bin of the 
 form 
 
( , ) , ,i j a N aij i ik

k Ni∈
∑











.

Map 211.	 . (identity).
Reduce 212.	 . For edge (i, j), its bin holds one re-
cord for each of the two vertices in the edge, 
providing the information to compute aij . 
Compare the length aij to the neighborhood 
average aij  and emit the edge if a aij ij≤ .

The edges that the last reducer emits make up a 
filtered graph, whose components are clusters. 
The components are found as I’ll discuss in the 
next section.

Figure 10 shows the example of applying 
barycentric clustering through MapReduce to 
a graph. The tightly knit subgraphs are clearly 
identified. I created the graph layout in the figure 
independently of the clustering algorithm.

The iteration process, being essentially a 
matrix–vector multiply, is similar to Google’s 
PageRank, whose MapReduce implementation is 
described in the literature.2

Finding Components
Useful in its own right, component finding is 
also beneficial as a stage in many other opera-
tions, such as barycentric clustering and truss 
finding. Some might think the problem of find-
ing components, or connected subgraphs, is 
trivial, because it usually involves a single tra-
versal on a graph. But in the MapReduce world, 
traversals aren’t trivial, and component finding 
is complicated.

The obvious solution. Google’s MapReduce lecture 
series describes a simple MapReduce approach to 
component finding.2 This method does the obvi-
ous: it starts from a specified seed vertex s, uses a 
MapReduce job to find those vertices adjacent to s, 
compiles the updated vertex information in another 
MapReduce job, then repeats the process, each time 
using two MapReduce jobs to advance the frontier 

another hop. If the graph consists of a single compo-
nent, this approach will take 2e(s) MapReduce jobs, 
where e(v) is the eccentricity of v. (The eccentricity 
of a vertex is the maximum distance from that ver-
tex to another vertex in the graph.)

Of course, those lectures deliberately present only 
simple algorithms. One can do much better than this 
naive approach, which can take an unnecessarily 
large number of passes to complete, even when the 
graph has only one component. If multiple compo-
nents are present, one must run it with a single seed, 
see if the vertices are exhausted, and then repeat the 
process with a new seed if vertices remain.

A collective alternative. Here, I sketch an alterna-
tive to the single-seed scheme, in which I build 
many local solutions that merge into a global one. 
The idea is to form “zones,” each of which com-
prises a set of vertices known to be in the same 
component as its seed vertex. Initially, the algo-
rithm constructs one zone for each vertex, having 
that vertex as its seed and as its sole member. As 
the algorithm proceeds, the zones merge to form 
larger zones. When no further expansion is pos-
sible, each zone is known to be a component.

Each zone’s seed vertex serves as its identifica-
tion. Throughout, I’ll use two files: an edge file that 
describes the graph, each of whose records is an 
edge, and a zone file, whose records, one for each 
vertex, are of the form (v, z), indicating that vertex v 
is currently assigned to zone z. The edge file is im-
mutable; the zone file will evolve. Initially, the zone 
file comprises records whose form is (v, v), because 
each vertex is in its own seed at the outset. 

When compared, zones get their ordering ac-
cording to their seeds, which themselves have an 
order. The order might be arbitrary, such as by 
name. When two zones meet, the lower-order 
zone absorbs the higher-order one. 

The basic idea employs two steps: Step 1 is to 
use the zone file to transform the vertex-to-vertex 
adjacencies in the edge file to zone-to-zone adja-
cencies, dropping resulting records that connect 
a zone to itself. Step 2 is to use the zone-to-zone 
adjacencies to find the lowest-order zone adjacent 
to each current zone and use this information to 
update the zone file: for each zone with a lower-
order neighbor, replace that zone with its lowest-
order neighboring zone. This second step assigns 
the vertices to new and likely fewer zones.

Steps 1 and 2 alternate until the first step produces 
no records, at which time the result is in the zone file. 
Step 1 can be implemented using two MapReduce 
jobs: binning by vertex and then by edge, as Table 
1 illustrates. Map 1 merges records from the edge 
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and zone files. The idea is to translate the vertex-
to-vertex information in each edge to zone-to-zone 
information. MapReduce 1 associates edges with 
zones by producing one record for each vertex in 
an edge, identifying the zone of that vertex with the 
edge. MapReduce 2 brings these together by edge, 
because reduce 1 binned MapReduce 1’s records by 
edge. If distinct zones are joined by the edge, then 
the “best” one (the one with the lowest value) cap-
tures the others. This is indicated by output records 
that are binned by the zone to be changed, with a 
payload of the new zone. Note that MapReduce 2 
increments a counter, accumulated across all reduc-
ers, that tallies the number of interzone edges re-
maining. The tally is checked after running the job. 
If it’s zero, the procedure terminates.

Step 2 can be implemented in a single MapReduce 
job, binning by zone. Table 1 shows MapReduce 3, 
which updates the zone file—that is, it records new 
zones for the vertices. The job does this by merg-
ing the interzone-edges file, which offers better 
zones for some of the old zones, and the preceding 

zone file, which held the earlier zone assignments. 
Each reduce bin holds all of the old zone’s vertices 
and some number (possibly zero) of better zones 
for the old zone. The reduce finds the best of the 
new zones and emits records for each of the verti-
ces, assigning them to the new zone.

This simple approach has room for improve-
ment. Rather than iterating these steps to the bit-
ter end, the algorithm can iterate them until the 
number of interzone edges becomes small enough 
to complete the calculation through conventional 
means on a single compute node in memory. A final 
MapReduce step then translates the results of this 
zone-to-zone calculation to update the zone file. 

As the computation progresses, map 3 might cre-
ate uneven loading because the increasingly large 
zones each map to single bins. Monitoring the size 
of zones and distributing a large zone across L bins, 
where L is chosen to achieve sufficient balance, can 
alleviate this potential problem with little expense. 
Monitoring is done through global counters, which 
are fed to the next iteration. A zone that gets large 

Table 1. Using zones to find components.

MAP 1*

Input: edge file; key: arbitrary; payload: edge e

Input: zone file; key: v; payload: pair (v, z) 

If record payload is edge, for each vertex v e∈ , emit a record with key v and payload e; else
emit a record with key v and payload pair (v, z)

REDUCE 1

Input key: vertex t; input payloads consist of one zone pair (v, z), and all edges E incident to vertex v

Iterate through the bin, extracting the edges present E and the zone z. For each e E∈ , emit a record with key 
e and payload z

Output: EdgeWithOneZone file

*MapReduce 1 implements the first part of step 1: binning by vertex. Each output record connects an edge to a zone.

MAP 2**
Input: EdgeWithOneZone file; key: e; payload: zone z

Identity

REDUCE 2

Input key: edge e; each input payload is a zone z

Iterate through the bin, extracting the set of distinct zones Z. If Z =1, skip this bin. Increment an 
InterzoneEdges counter. Find the minimum zone z Zm ∈  such that z z z Zm ≤ ∀ ∈, . For each z Z zm∈ -{ } , 
emit a record with key z and payload zm

Output: InterzoneEdges file

**MapReduce 2 implements the second part of step 1: binning by edge. Output records each connect one zone to a better one. The global 
InterzoneEdges counter can be examined to see if any vertices changed zones.

MAP 3†
Input: InterzoneEdges file; key: zone z; payload: new zone zm. Input: zone file; key: v; payload: pair (v, z)

If record payload is vertex-zone pair (v, z), emit a record with key z and payload v;
else, emit a record with key z and payload zm

REDUCE 3

Input key: old vertex zone z; input payloads consists of some number of vertices V, and some number of 
“better” zones Z

Iterate through the bin, extracting the suggested new zones Z and the vertices V with the old zone z. Find the 

best new zone for this vertex: z t t Z zb = ∈ ∪{ }min . For each v V∈ , emit a record with key v and payload pair 
(v, zb)

Output: zone file
†MapReduce 3 implements step 2: binning by old zone. This step takes in the old zone file and produces a new zone file.
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causes each zone-file record to be sent to one of 
the L bins and each interzone-edges file record to 
be sent to all of L bins. This improvement makes 
modifications only to MapReduce 3.

C learly, MapReduce implementations 
of useful graph operations exist and 
can be rather simple. Moreover, al-
though I don’t describe them here, 

one can extend each of the algorithms to hyper-
graphs with no additional MapReduce steps. This 
is an important extension because relationships 
dealing with more than two vertices are of great 
interest and often not handled well in convention-
al graph-processing environments.

The MapReduce implementations aren’t obvi-
ous analogs of standard algorithms; indeed, for 
the most part, they require a complete rethink-
ing of the problem. I found the return to funda-
mentals useful, resulting in an improved method 
for enumerating triangles and an efficient way of 
enumerating squares that I’ll carry to implemen-
tations outside of MapReduce.

A common pattern in the algorithms in the 
“Graph Algorithms” section is as follows:

A map operation.1.	  Go through all the edges, 
changing some piece of vertex information; 
key the resulting records by vertex.
A reduce operation.2.	  For each vertex bin, read 
the edge records and determine the updated 
state of the vertex; emit this information in 
partially updated edge records; bin the result 
by edge.
A reduce operation.3.	  For each edge bin, combine 
the updates from each of its member vertices 
to get an edge record with complete updated 
vertex information.

It’s unfortunate, then, that Hadoop forces each 
reduce to be proceeded by a map, thus wasting 
a map in implementing the pattern. To be fair, 
many functions that I could have implemented as 
map operations, I incorporated as part of the pre-
ceding reduce operation, leaving an identity map. 
Such a factoring is worth reconsidering.

I was able to devise MapReduce approaches to 
most operations that I sought, though not all—
for example, I didn’t find an efficient implemen-
tation of finding bridges. (A bridge is an edge 
whose removal would cause the graph to divide 
into separate components.) Although a complete 
characterization of what’s practical and what’s not 
doesn’t exist, here’s a beginning: we can efficiently 

implement operations that we can characterize by 
independent local communication (message pass-
ing, percolation, matrix-vector multiplication, and 
so on); algorithms that require depth-first travers-
als likely have poor MapReduce analogs.

Having established a small set of graph opera-
tions that perform well in a MapReduce frame-
work, and having concluded that other graph 
operations are probably not appropriate, future 
work should make a concerted stab at refining the 
line between these two classes.

Beyond the existence of graph operations’ 
MapReduce implementations, the practicality of 
cloud-based MapReduce computations on graphs 
depends most heavily on a concern I didn’t ad-
dress in this article: demands on interprocessor 
bandwidth. Each MapReduce job has the poten-
tial to move every graph record from one proces-
sor and its disk to another. The prospect of the 
entire graph traversing the cloud fabric for each 
MapReduce job is disturbing. Serious testing of 
these algorithms on the target hardware is needed 
before researchers can declare them practical. If 
modifications exist that can reduce bandwidth re-
quirements, they warrant investigation.

With the existence of MapReduce methods for 
graph processing now established, we must next ad-
dress the practical issues of hardware mapping.�
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