
Computing in Science & Engineering 	 This article has been peer-reviewed.� 29

C l o u d
C o m p u t i n g

1521-9615/09/$25.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

R elationship collections are well ex-
pressed as graphs, which provide nat-
ural human interpretation and simple
mechanical analysis. As collections

for study have increased in size, the volume of
associated graphs has stressed practical analysis
means and driven development of methods that
scale well.

Although scaling solutions usually involve im-
provements in algorithmic complexity, at some
point accommodating the graph in memory be-
comes impractical and prohibitively expensive.
Reasonable responses to such a challenge include
distributed computing, stream computing, or pro-
cessing on a single computer with the graph resi-
dent on disk.

Distributed processing on a “cloud”—a large
collection of commodity computers, each with its
own disk, connected through a network—has en-
joyed much recent attention. Atop the hardware is
an infrastructure that supports data and task dis-
tribution and robust component-failure handling.
Google’s use of cloud computing, which employs
the company’s proprietary infrastructure,1 and the
subsequent open source Hadoop cloud computing
infrastructure (http://hadoop.apache.org) have
largely generated cloud computing’s attention.
Both of these environments provide data-process-
ing capability by hosting so-called MapReduce
jobs, which do their work by sequencing through
data stored on disk. The technique increases scale
by having a large number of independent (but

loosely synchronized) computers running their
own instantiations of the MapReduce job compo-
nents on their data partition.

MapReduce processes are interesting beyond
the cloud as well. Having factored a problem in
terms of MapReduce primitives, those primitives
are also useful for computing in a streaming envi-
ronment or on a single computer equipped with a
large disk. However, despite the strong interest in
MapReduce, few researchers have published work
(even in informal Web settings) on MapReduce
algorithms. In particular, almost no descriptions
of graph algorithms appear in the literature, with
the exception of a simplified PageRank calculation
and a naive implementation of finding distances
from a specified node.2

This article begins an investigation into the
feasibility of decomposing useful graph opera-
tions into a series of MapReduce processes. Such
a decomposition could enable implementing the
graph algorithms on a cloud, in a streaming envi-
ronment, or on a single computer.

For the most part, my MapReduce approaches
don’t implement existing graph algorithms in
MapReduce; rather, they discard the usual algo-
rithms and find procedures that produce the same

The easily distributed sorting primitives that constitute MapReduce jobs have shown great
value in processing large data volumes. If useful graph operations can be decomposed into
MapReduce steps, the power of the cloud might be brought to large graph problems as well.

Jonathan Cohen
US National Security Agency

Graph Twiddling
in a MapReduce World

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

30� Computing in Science & Engineering

outcome. Like me, others might find that the pro-
cess of factoring a solution into a sequence of sort-
ing operations (rather than graph traversals, say)
is something of an impediment at the outset, but
becomes instructive and even freeing. An added
benefit is that algorithms based on sorting easily
admit hypergraph extensions.

Before proceeding, those seeking a reference
for graph definitions and results might wish to
consult a compendium such as Jonathan Gross
and Jay Yellen’s work.3

The MapReduce Construct
The terms “map” and “reduce” come from Lisp’s
operations of the same names. In practice, the re-
duce here can differ significantly from Lisp’s in
that the output needn’t be smaller than the input
and might, in fact, be larger.

The Process
The map and reduce operations are general and
have a simple interface. Each receives a sequence
of records, and each usually produces records in
response. A record consists of a key and a value.

Input records presented to the mapper by its
caller have no guaranteed order or relationship to
one another. The mapper’s job is to create some
number of records (perhaps none) in response to
each input record. Records presented to the re-

ducer by its caller are binned by key, such that all
records with a given key are presented as a pack-
age to the reducer. The reducer then examines the
packages sequentially through an iterator. The
programmer also has the option of specifying an
order for the packaged records.

Hadoop doesn’t employ mappers and reducers
independently; they’re part of MapReduce jobs in
which each job specifies one mapper and one re-
ducer. Figure 1 outlines a MapReduce job’s func-
tion. A job operates on an input file (or more than
one) distributed across bins and produces an out-
put file also distributed across bins. (Distribution
of the file contents across bins for both the input
and output files can be taken as arbitrary in most
cases.) The system feeds input-file bins to the job’s
mapper instances and partitions the mapper in-
stances’ outputs globally by key into bins, produc-
ing an intermediate file. It then feeds each of these
intermediate bins to a reducer instance; the reduc-
ers then produce the job’s output file. A complete
algorithm might cascade such jobs to implement a
more complex process.

From this description, it’s apparent that the map
operation does what’s expected: it transforms each
record, although it might produce any number of
transformed records from one input. In particular,
the map seeks to key its outputs so that the system
places in the same bin the records that should come
together in the reduce phase. To perform some of
the reduction early, thereby lessening the need to
store and transport records, the programmer can
also specify a combiner that operates on the map-
per’s output while the mapper is running.

The reduce process operates on a bin’s contents,
and gets its name from the idea that it creates a
small output, such as a count, that characterizes
its relatively larger input. Although Google papers
suggest that a reduce operation’s result is usually
small (such as a count), the graph MapReduce
processes that I describe in this article usually
produce results whose size is on par with the in-
put’s size, belying the name “reduce.”

As Figure 1 suggests, the programmer can spec-
ify that the system sort the bins’ contents accord-
ing to any provided criterion. This customization
occasionally can be useful. The programmer can
also specify partitioning methods to more coarse-
ly or more finely bin the map results.

Although every job must specify both a mapper
and a reducer, either of them can be the identity,
or an empty stub that creates output records equal
to the input records. In particular, an algorithm
frequently calls for input categorization or order-
ing for many successive stages, suggesting a re-

Unordered, randomly
binned data

Unordered, randomly
binned data

…

…

Data binned by key
and optionally
ordered within bins

REDUCE

MAP

REDUCE

MAP

REDUCE

MAP

REDUCE

MAP

Figure 1. A MapReduce job. The input file consists of records
distributed across bins, usually in what may be regarded as an
arbitrary fashion. Each mapper reads from a bin and emits records
that are binned according to their keys to form an intermediate
file. The system then supplies each intermediate file bin to a reduce
process that produces records whose storage again can be regarded
as random. This distributed output file can then serve as the input to
a subsequent job.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

July/August 2009 � 31

ducer sequence without the need for intermediate
mapping; identity mappers fill in to satisfy archi-
tectural needs.

Environmental Assumptions
Although a user can employ MapReduce on a
single machine, MapReduce frameworks are de-
signed to support operation on a cloud of comput-
ers. The infrastructure then implements a single
MapReduce job as parallel mapper and reducer
instances running concurrently on different com-
puters. A simplification that MapReduce brings to
parallel computing is that the only synchroniza-
tion takes place when creating and accessing files.
The downside is that shared state, beyond the
files, is limited.

Hadoop, implemented in Java, runs each map-
per or reducer instance in an independent virtual
machine on each computer. Consequently, the
“static” fields defined in each Java class aren’t static
across instances. Hadoop supports limited distrib-
uted (read-only) tables and common scratches, but
the algorithms I describe here don’t use them.

What the algorithms do use is Hadoop’s facility
for passing parameters to the MapReduce job envi-
ronment and for each mapper or reducer instance
to contribute to counts accumulated across all map-
per and reducer instances. More specifically, when
mapper and reducer instances are created, they’re
initialized with a copy of the job input parameters.

The assumptions include that the data is too vo-
luminous to be held in memory, and, conversely,
that the contents of a single bin can fit in memory
if necessary, provided that bins aren’t permitted to
grow without bound. In particular, the assump-
tion is that a bin describing edges adjacent to a
single vertex can fit into memory.

Graph Algorithms
Let’s begin with a simple example that illustrates
and serves as a component of other algorithms.

An Example: Augmenting Edges with Degrees
Figure 2 summarizes the desired end result for
this example. An input file comprises records that
each hold an edge. This process will augment the
records with vertex-degree information, creating
a new file. Creating the desired output requires
three logical passes through the data: one map
and two reduces. Because of the need to pair maps
with reduces, the process requires two MapRe-
duce jobs: two reduce steps and two map steps,
one of which is the identity map.

Figure 3a summarizes the first MapReduce job.
For each edge record the mapper reads, the map

emits two records, one keyed under each of the
vertices that form the edge. This process will cre-
ate bins corresponding to vertices such that each
bin will hold records for every edge adjacent to
its associated vertex. The reduce phase works on
each such bin in turn. Having read the bin’s con-
tents, the reducer knows the vertex degree, which
is equal to the number of records in the bin. The
reducer can now emit output records (one for each
record read) that are augmented with the degree
of the bin’s vertex. This is only half of the degree
information; another reducer, or another call to
the same reducer, produces the other half. The re-
ducer keys output records by the edge so that the
two halves of each edge’s vertex information can
come together in the next phase.

Figure 3b summarizes the second MapReduce
job, which employs an identity mapper so the sys-
tem bins each record by its key—namely, the edge
it represents. Each bin then collects the partial-
degree information, one record for each vertex in
the edge. The reducer combines these records to
produce a single record for the edge containing
the desired degree information.

Simplifying the Graph
For many algorithms, the starting point is sim-
plifying the graph—that is, removing loops and
removing edges that duplicate other edges. Re-
ducing multiple edges between a pair of vertices
to a single representative edge can include weight-
ing the representative edge for downstream al-
gorithms that might regard multiple edges as an

key (FRED, ETHEL)

key (FRED, RICKY) Raw edges

.

.

.

.

..

Edges
with degrees

d(FRED) d(ETHEL)key (FRED, ETHEL)

d(FRED) d(RICKY)key (FRED, RICKY)

Figure 2. Records for representing vertex degrees. The input file
comprises records whose values are edges. The output file has edges
augmented with degree information. The keys for these records are
unimportant at this point.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

32� Computing in Science & Engineering

indicator of connection strength.
One can simplify the graph as a directed graph

or as an undirected graph. If the graph is undi-
rected, the edge (A, B) duplicates (B, A), and a
single representative edge will replace the pair. If
the graph is directed, the process should preserve
each of these edges.

Simplifying the graph is achievable in a single
MapReduce job. The mapper removes loops and
bins the edges by membership. The map process-

ing on each edge involves several steps. First, to
remove loops, the mapper drops all but the first
occurrence of a vertex in the (ordered) member
list. If the resulting membership list has fewer
than two members, the mapper ignores the edge
and emits no records. Otherwise, if the mapper
removes members, it creates a new representative
edge to stand in for the original. Representative
edges act as other edges in subsequent processing
but are derived from original source edges either
by combining edges or by editing them (that is,
removing edge members). Representative edges
also contain references to their source edges for
mapping results back to the source graph.

Next, the mapper generates a hash to represent
the edge membership. Used for binning, the hash
guarantees that the system places any two edges
with the same membership in the same bin. The
hash might bin edges with distinct membership
together, too, which I’ll discuss in a moment. For
treating the edge as undirected, the hash operates
on membership that’s first ordered in some con-
sistent fashion. For treating the edge as directed,
the hash takes members in their specified order.

Finally, the reducer records unique edges and
drops duplicates. The reducer takes the first edge
in the bin, and, using a hash table, recognizes and
removes duplicates (but totals the weights), mak-
ing a single representative edge for the starting
edge and those that match it. Having completed
this bin portion, the reducer repeats the process
to address the rest of the bin’s contents, in case
edges of different contents happened to hash to
the same bin.

Enumerating Triangles
Triangles, or 3-cycles, can be the basis for ana-
lyzing graphs and subgraphs. In particular, enu-
merating triangles constitutes most of the work
in identifiying the dense subgraphs called trusses
(see the “Finding Trusses” section for more infor-
mation). MapReduce offers a good framework for
locating triangles.

Enumerating triangles is essentially a two-step
approach: enumerate open triads (pairs of edges
of the form {(A, B), (B, C)}) and recognize when
an edge closes those triads to form triangles. This
sounds like a tautology, but it’s useful. Note that it
isn’t necessary to enumerate all open triads to lo-
cate all triangles; only one per triangle is needed.

Suppose I have an ordering of vertices (a lexico-
graphic ordering of the names would work, for ex-
ample). Further suppose I record every edge under
its low-order member. Then I’m guaranteed that
every triangle will have exactly one vertex that

...

Map 1

d(FRED)=4

Reduce 1

d(FRED) = 4(FRED, ETHEL)(FRED, ETHEL)

d(FRED) = 4(FRED, RICKY)(FRED, RICKY)

d(FRED) = 4(FRED, TIM)(FRED, TIM)

key (FRED, ETHEL)
FRED (FRED, ETHEL)

FRED (FRED, ETHEL)

FRED (FRED, TIM)

FRED (LUCY, FRED)

FRED (FRED, RICKY)

FRED (FRED, RICKY)

RICKY (FRED, RICKY)

ETHEL (FRED, ETHEL)

key (FRED, RICKY)

(a)

(LUCY, FRED)(LUCY, FRED) d(FRED) = 4

...

Map 2 (Identity)

Reduce 2

(b)

d(FRED) = 4(FRED, ETHEL)(FRED, ETHEL)

d(FRED) = 4(FRED, ETHEL)(FRED, ETHEL)

(FRED, ETHEL)(FRED, ETHEL)

d(FRED) = 4(FRED, ETHEL)(FRED, ETHEL)

d(ETHEL) = 2

(FRED, ETHEL)(FRED, ETHEL) d(ETHEL) = 2d(FRED) = 4

Figure 3. Augmenting edges with degrees. (a) In the first MapReduce
job, for each input record, the map creates two output records, one
keyed under each vertex in the edge. The reduce takes all edges
mapped to a single vertex (“Fred” here), counts them to obtain the
degree, and emits a record for each input record, each keyed under
the edge it represents. (b) In the second MapReduce job, the identity
mapper preserves the records unchanged, so the records are binned
by the edges they represent. The reducer combines the partial-degree
information to produce a complete record, which it exports.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

July/August 2009 � 33

receives two of its edges. This vertex is the apex
of an open triad comprising the two edges that I
mapped to it. So, to find triangles, I can choose a
vertex ordering, bin all edges under their mini-
mum vertex, and test each pair of edges recorded
in each bin to see if that pair (forming an open
triad) is closed by a third edge.

The one possible problem with this approach
is the quadratic explosion that could result by ex-
hausting the pairs of edges recorded in a bin. To
avoid this problem, I can make a judicious choice
of vertex ordering: degree. I choose to record each
edge under its low-degree member. With this
choice, a high-degree vertex will have few edges
in its bin, so none of the bins will become large.
Thus, the quadratic scaling won’t be an issue in
most graphs. Certainly, it’s possible to construct
graphs for which this won’t work, but most natu-
rally occurring graphs won’t present a problem.

This approach to enumerating triangles applied
to the example in Figure 4 starts with simplifying
the graph, as I described in the previous section,
and augmenting the edge records with vertex va-
lence. After preparation, two MapReduce jobs,
shown in Figures 5 and 6, identify the triangles.
The process begins by mapping each edge to its
low-degree vertex, as Figure 5a illustrates. If the
two vertices have the same valence, the mapper
breaks the tie by employing a consistent method
such as using the order of the vertex names.

Figure 5b shows the first reduce. Each bin it
operates on is labeled with a vertex and contains
edges adjacent to that vertex. The reducer’s job is
to emit a record for each pair of edges in a bin: one
for every open triad whose apex is at that vertex.
The reducer keys output records under the pair’s
outside vertices so that the subsequent mapper
will bin the records with edges closing the triads,
should they exist. Note that the mapper only re-
corded edges under the incident vertex with the
lowest valence to minimize bin size, resulting in
fewer pairs.

Although I’ve done it here for illustration, map
1 isn’t required to emit a record when a vertex’s
degree is only 1. Such a vertex will never have a
pair produced in the following reduce phase, nor
will it appear in a triangle.

Figure 6a shows the second map, which has two
input files: the output file from reduce 1 and the
degree-augmented edge file. Its job is to combine
those records and change the edge records’ keys so
they’re keyed by the vertices that the edges join.
The vertices’ ordering in the keys is consistent
(lexicographic ordering, say) with their ordering
in the triad records.

Figure 6b shows the second (and final) reduce.
Each bin corresponds with a vertex pair. Each bin
might contain direct edges joining those vertices
and triads joining those vertices. The existence
of both will produce a triangle. In particular, a
bin will contain at most one edge record and any
number of triad records. If a bin contains an edge
record and n triad records, then the reducer will
recognize n triangles. In the case in Figure 6b,
the reducer found only one triangle: the one the
(ETHEL, FRED) bin emitted.

Enumerating Rectangles
The job of enumerating rectangles (4-cycles) is
similar to that of enumerating triangles. Here,
the approach is to find two open triads connect-
ing the same pair of vertices; their combination is
a rectangle.

Suppose the vertices have an ordering. In the
case of a triangle, there was only one way to order
the vertices, up to reflection and rotation, and this
guaranteed detection of a triangle by recording
edges under the adjacent vertex of minimum order.
Rectangles are more interesting. Consider the pos-
sibilities for four vertices labeled 1, 2, 3, and 4, oc-
cupying the corners of a rectangle in the graph. The
labels can be permuted 4! = 24 ways, but the sym-
metry group on four elements has |S4| = 8. This
yields 24/8 = 3 distinct cases, as Figure 7 illustrates.

Slightly different methods detect the three rela-
tive orderings, but each involves finding a pair of
open triads that join the same pair of vertices. In

Joe

Ted Fred

Ricky

Randy

Ethel

Lucy

Figure 4. Example graph for finding triangles. Triangles are extracted
from this graph by using the MapReduce operations shown in Figures
5 and 6, after simplification and degree augmentation.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

34� Computing in Science & Engineering

Figure 7, color indicates the decomposition. In
Figure 7a, the method locates two triads (each
shown with a blue apex) by finding a vertex of
lower order than its neighbors, as with detecting
the triad in a triangle, although two are required
here. To find such a triad, a mapper records each
edge under its incident vertex of lowest order and
a reducer looks for pairs recorded to the same ver-
tex. This type of triad is a “low” triad.

In Figure 7b, one triad (shown in blue) again has
an apex whose order is lower than its neighbors.
But the other triad has an apex (green) whose or-
der is between its neighbors. To find such a triad,

a mapper records every edge under both of the
incident vertices and a reducer looks for a pair of
edges binned to that vertex: one low and one high.
This type of triad is a “mixed” triad.

Finally, Figure 7c comprises two mixed triads,
again shown in green. This case is also decompos-
able into low and high triads in which the apex has
an order higher than its neighbors. Because this
method will use degree for ordering, which I’ll
discuss in a moment, high-degree vertices could
make processing explode quadratically, so high-
apex triads are not used.

As in the case with triangle detection, the map-

(FRED, ETHEL)FRED(FRED, ETHEL) d(ETHEL) = 5d(FRED) = 3key

(ETHEL, LUCY)LUCY(ETHEL, LUCY) d(LUCY) = 2d(ETHEL) = 5key

(LUCY, FRED)LUCY(LUCY, FRED) d(FRED) = 3d(LUCY) = 2key

(JOE, ETHEL)JOE(JOE, ETHEL) d(ETHEL) = 5d(JOE) = 1key

(TED, ETHEL)TED(TED, ETHEL) d(ETHEL) = 5d(TED) = 1key

(RICKY, FRED)RICKY(RICKY, FRED) d(FRED) = 3d(RICKY) = 2key

(ETHEL, RANDY)RANDY(ETHEL, RANDY) d(RANDY) = 2d(ETHEL) = 5key

(RANDY, RICKY)RANDY(RANDY, RICKY) d(RICKY) = 2d(RANDY) = 2key

∅∅

∅

(FRED, ETHEL)FRED

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED) (ETHEL, RANDY), (RANDY, RICKY)(ETHEL, RICKY)(ETHEL, LUCY)LUCY

(LUCY, FRED)LUCY

(JOE, ETHEL)JOE

(TED, ETHEL)TED

(RICKY, FRED)RICKY

(ETHEL, RANDY)RANDY

(RANDY, RICKY)RANDY

Joe

Ted

Lucy

Randy

Ricky

Fred

∅

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED)

Reduce 1

Map 1

(a)

(b)

Figure 5. First map and reduce for enumerating triangles. (a) In the first map operation for enumerating triangles, the mapper
records each edge under the vertex with the lowest degree. The incoming records’ key doesn’t matter. (b) In the first reduce,
each bin is labeled with a vertex and holds edges that connect that vertex to another vertex of higher (or equal) degree. The
reducer emits all pairs of entries in that bin. In this case, only two bins have an output, each emitting one record.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

July/August 2009 � 35

per orders the vertices by degree, deciding ties
consistently using a method such as label com-
parison. This process makes enumerating low
triads inexpensive and enumerating mixed triads
practical. In particular, let the degree of vertex v
be decomposed as d v d v d vL H() () ()= + , where
dL(v) and dH(v) are the number of edges incident
to v in which v is the low- and high-degree vertex,

respectively. Then v is the apex for O(d2
L(v)) low

triads and O(dL(v) dH(v)) mixed triads.
So, a MapReduce procedure for finding all rect-

angles in a graph is as follows:

Bin every edge by both its high and low ver-1.	
tex, marking each output record as high or
low, producing a binned edge file.

(FRED, ETHEL)(ETHEL, FRED)

(ETHEL, LUCY)(ETHEL, LUCY)

(FRED, ETHEL) d(ETHEL) = 5d(FRED) = 3key

(ETHEL, LUCY) d(LUCY) = 2d(ETHEL) = 5key

…

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED)

(ETHEL, RANDY), (RANDY, RICKY)(ETHEL, RICKY)

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED)

(ETHEL, RANDY), (RANDY, RICKY)(ETHEL, RICKY)

Map 2 (combine edge and triad �les)

∅

∅

∅

∅

∅

(FRED, ETHEL)(ETHEL, FRED) (FRED, ETHEL),
(ETHEL, LUCY), (LUCY, FRED)

key

(ETHEL, LUCY), (LUCY, FRED)(ETHEL, FRED)

(ETHEL, RANDY), (RANDY, RICKY)(ETHEL, RICKY)

(ETHEL, LUCY)(ETHEL, LUCY)

(ETHEL, LUCY)

(JOE, ETHEL)(ETHEL, JOE)

(ETHEL, JOE)

(RICKY, FRED)(FRED, RICKY)

(FRED, RICKY)

∅

∅

∅

(LUCY, FRED)(FRED, LUCY)

(FRED, LUCY)

(TED, ETHEL)(ETHEL, TED)

(ETHEL, TED)

(ETHEL, RANDY)(ETHEL, RANDY)

(ETHEL, RANDY)

(RANDY, RICKY)(RANDY, RICKY)

(RANDY, RICKY)

(ETHEL, FRED)

(ETHEL, RICKY)

Reduce 2

(a)

(b)

Figure 6. Second map and reduce for enumerating triangles. (a) The second map for enumerating triangles
brings together the edge and open triad records. In the process, it rekeys the edge records so that both
record types are binned under the vertices they connect. (b) In the second reduce, each bin contains at
most one edge record and some number of triad records (perhaps none). For every combination of edge
record and triad record in a bin, the reduce emits a triangle record. The output key isn’t significant.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

36� Computing in Science & Engineering

Go through each bin in the binned edge file, 2.	
exporting every pair of distinct low records
in the bin and every pair of a low record with
a high record in the bin to produce a triad
file. Each record in the triad file is binned by
the pair of vertices the triad connects, that
pair ordered lexicographically.
Go through each bin in the triad file bin, 3.	
exporting a rectangle for every triad pair in
the bin.

Steps 1 and 2 constitute a single MapReduce
job. Step 3 is a second MapReduce job with an
identity map. Of course, before these steps, one
might want to simplify the graph and must have
the vertex valences, perhaps by augmenting the
edge records with degree information.

Finding Trusses
Trusses are subgraphs of high connectivity, suit-
able for recognizing clusters of tight interaction
in social networks. They’re a relaxation of cliques
and capture cliques’ intent without their many
shortcomings. Cliques are computationally in-

tractable. They’re unlikely to be found in natu-
rally occurring graphs, particularly when only
sampled information is available, and intersect
in ways that make their interpretation difficult. I
discuss trusses, cliques, and more classical social
network constructs in prior work.4

Specifically, a k-truss is a relaxation of a k-
member clique and is a nontrivial, single-compo-
nent maximal subgraph, such that every edge is
contained in at least k - 2 triangles in the sub-
graph. The use of “nontrivial” here is meant to
exclude a subgraph that consists only of a single
vertex. A clique of k vertices is an example of a
k-truss. Figure 8 shows the 3-, 4-, and 5-trusses
of a graph.

It shouldn’t come as a surprise that the algorithm
to locate trusses is based on the method for finding
triangles. Complicating the operation is the re-
quirement that the triangles that support the truss
edges must themselves be in the truss. Removing
edges with insufficient support might cause other
edges to lose their support, and so on.

The steps, after simplifying the graph are as
follows:

(a)

1

3 4

2

(c)

1

2 3

4

(b)

1

3

2 4

Figure 7. Three rectangle orderings. Up to rotation and reflection, the only ways in which the relative
orderings of vertices in a rectangle can occur are as shown. The color of the triad’s apex and legs indicates
the type: (a) and (b) a low-order triad has a blue apex, (c) a mixed-order triad has a green apex.

(a) (b) (c)

Figure 8. Trusses of a graph. Each truss has a randomly assigned color: (a) 3-trusses, (b) 4-trusses, and (c)
5-trusses. Vertices and edges not in trusses are black; such vertices are also hollow.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

July/August 2009 � 37

Augment the edges with vertex valences.1.	
Enumerate triangles.2.	
For each edge, record the number of triangles 3.	
containing that edge.
Keep only the edges with sufficient support.4.	
If step 4 dropped any edges, return to step 1.5.	
Find the remaining graph’s components; 6.	
each is a truss.

Steps 3 and 4 are combined into a single MapRe-
duce job, as Figure 9 shows. The figure illustrates
the case of finding 4-trusses, in which each edge
must be in at least two triangles. In the figure’s ex-
ample, the map takes a triangle record and emits
one record for each of the edges in the triangle.
In the reduce stage, each bin corresponds to an
edge. The reduce emits a record only if the num-
ber of records in the bin reaches the threshold of
support (two, in this case). In the example, one of
the edges is in two triangles; one is in three; and
another is in only one and fails to pass.

Barycentric Clustering
Researchers often partition the graph into clusters
to transform the problem of studying a graph into
the problem of studying each cluster subgraph
separately. Such a transformation is useful if the
resulting partition keeps corelevant information
together and divides information that isn’t.

Barycentric clustering5 scales well and identi-
fies tightly connected subgraphs. In barycentric

clustering, vertices are given random initial po-
sitions that are then updated by multiplying by
a matrix a given number of times. The matrix
effectively replaces each vertex position with a
weighted sum of its old position and the positions
of its neighbors. A “run” is then completed by
recording each edge’s length, given by the vertex
position difference. After conducting multiple
runs (a random start followed by iterative updates
by matrix multiplication and edge measurement),
one cuts the edges with relatively long average

(FRED, ETHEL), (ETHEL, RICKY), (RICKY, FRED)key 1(ETHEL, FRED)

1(ETHEL, RICKY)

1(FRED, RICKY)

…

1(ETHEL, FRED)

1(ETHEL, FRED)

key (ETHEL, FRED)

(ETHEL, FRED)

key (ETHEL, RICKY)

1(ETHEL, RICKY)

1(ETHEL, RICKY)

1(ETHEL, RICKY)

(ETHEL, RICKY)

1(FRED, RICKY)

(FRED, RICKY)

∅

Figure 9. Passing edges with sufficient support for trusses. Reading a triangle file, the mapper emits a
record for each edge involved in each triangle. The reduce passes edges that occur in a sufficient number
of triangles. The records shown here are only a portion of the map and reduce data. (Records in this
illustration are unrelated to the graph in Figure 4.)

Figure 10. Barycentric clusters. Randomly
assigned colors indicate the clusters. Some colors
were reused. The layout was not influenced by
barycentric clustering.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

38� Computing in Science & Engineering

length, resulting in components that are taken
as clusters.

More specifically, let the (scalar) positions of
the n vertices be x = (x1, x2, …, xn)T. Initially, x
comprises standard normal samples, translated
and scaled to zero mean and unit L2 length. Given
edge weights {wij}, which are zero where no edge
exists, and weighted degree d wi ij=∑ , each it-
eration consists of replacing x with x′, so that each
vertex position is replaced by a weighted average
of its old location and the locations of its neigh-
bors. Specifically, x′ = Mx, with

M =
+ + +
+

1 1 1 1
1

1 12 1 1 1

21 2

/ () / () / ()
/ (

d w d w d
w d

n

)) / () / ()

/ () / (

1 1 1

1

2 2 2

1 2

d w d

w d w d

n

n n n n

+ +

+ +



   

11 1 1) / ()

.

 dn +













In practice, five iterations of applying M are ad-
equate.5 Note that this matrix is sparse (provided
that the graph is); the amount of work per multi-
ply is proportional to the number of edges in the
graph. Multiple random starts are necessary, but
they all can be done at the same time. To imple-
ment r random starts, the algorithm uses an r-long
vector of positions for each vertex. (For the moti-
vation and implementation details of barycentric
clustering, see my earlier work.)5

The initializing process takes two MapReduce
stages and is similar to augmenting the edges with
vertex degrees, but it augments them instead with
position vectors, one for each vertex:

Map 1.1.	 Bin each edge by its vertices (two re-
cords out for each record in).
Reduce 1.2.	 For each bin (vertex), create a posi-
tion vector of length r, initialize it with stan-
dard normal samples, and emit a record for
each edge record in the bin, augmenting it
with the vertex position vector for that ver-
tex. Key by edge.
Map 2.3.	 (identity).
Reduce 2.4.	 For each bin (edge), combine the
edge records augmented with a single vertex’s
position vector; output one edge record with
both vertex position vectors.

Once initialized, the update iterations begin, with
five iterations in all. Each iteration consists of two
MapReduce jobs:

Map 1.5.	 Bin each (augmented) edge by its ver-
tices (two records out for each record in).
Reduce 1.6.	 This is the essence of the position

update. The bin represents one vertex and
holds the records for every edge incident on
the vertex, so it has the degree and the (op-
tional) weights of the edges (a row in the M
matrix) and the positions of all neighboring
vertices. From this, a new position vector is
calculated for the vertex based on the updates
described above. For each input edge, the re-
ducer writes an output edge record with the
new position vector for the vertex and keys it
by the edge.
Map 2.7.	 (identity).
Reduce 2.8.	 For each bin (edge), combine the
edge records augmented with a single vertex’s
position vector; output one edge record with
all the vertex position vectors.

Note that the second MapReduce job for itera-
tion is the same as the second MapReduce job for
initialization.

Having calculated, in parallel, the results of
many random starts, it’s time to determine which
edges are abnormally long relative to their neigh-
bors. Let aij denote the average length of edge (i, j)
taken over all r of the starts. The edge (i, j) is eval-
uated by comparing aij to aij , a weighted average
of aij over a neighborhood of the graph centered
on (i, j). The (spatial) average is intended to mea-
sure what’s normal for that graph region. Those
edges whose value of aij is large relative to aij are
deemed longer than average and can be cut. In
general, one could remove edges above a preferred
threshold, but I found it sufficient to drop those
edges with aij > aij .

I chose the simple 1-out neighborhood as a spa-
tial average, using

a

a a

ij

jk
k N

jk
k Ni j=











+








∈ ∈
∑ ∑ 

-

+ -

a

N N

ij

i j 1
,

where Ni is the set of vertices neighboring vertex
i. In other words, aij is a spatial average of the
trials (runs) average of edge (i, j) and the edges in-
cident with vertices i and j. The subtraction in the
formula avoids double counting of the edge under
examination.

Calculating { }aij requires two MapReduce jobs,
as the method for expressing the average above
suggests. The second reduce also provides the fil-
ter to drop edges that are too long on average:

Map 19.	 . Each input record is an edge with the
positions of its vertices resulting from the r
random starts. Get the edge’s length averaged

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

July/August 2009 � 39

over the trials (aij for an edge between i and j)
and emit a record for each vertex containing
that average, binned by that vertex. The out-
put records are of the form i | ((i,j), aij), where
the symbol before the divider is the key.
Reduce 110.	 . A bin contains all the records
for one vertex, such as i. Sum the lengths
of the records in the bin, obtaining
 aik
k Ni∈
∑ .

Emit a record for each edge in the bin of the
 form

(,) , ,i j a N aij i ik

k Ni∈
∑











.

Map 211.	 . (identity).
Reduce 212.	 . For edge (i, j), its bin holds one re-
cord for each of the two vertices in the edge,
providing the information to compute aij .
Compare the length aij to the neighborhood
average aij and emit the edge if a aij ij≤ .

The edges that the last reducer emits make up a
filtered graph, whose components are clusters.
The components are found as I’ll discuss in the
next section.

Figure 10 shows the example of applying
barycentric clustering through MapReduce to
a graph. The tightly knit subgraphs are clearly
identified. I created the graph layout in the figure
independently of the clustering algorithm.

The iteration process, being essentially a
matrix–vector multiply, is similar to Google’s
PageRank, whose MapReduce implementation is
described in the literature.2

Finding Components
Useful in its own right, component finding is
also beneficial as a stage in many other opera-
tions, such as barycentric clustering and truss
finding. Some might think the problem of find-
ing components, or connected subgraphs, is
trivial, because it usually involves a single tra-
versal on a graph. But in the MapReduce world,
traversals aren’t trivial, and component finding
is complicated.

The obvious solution. Google’s MapReduce lecture
series describes a simple MapReduce approach to
component finding.2 This method does the obvi-
ous: it starts from a specified seed vertex s, uses a
MapReduce job to find those vertices adjacent to s,
compiles the updated vertex information in another
MapReduce job, then repeats the process, each time
using two MapReduce jobs to advance the frontier

another hop. If the graph consists of a single compo-
nent, this approach will take 2e(s) MapReduce jobs,
where e(v) is the eccentricity of v. (The eccentricity
of a vertex is the maximum distance from that ver-
tex to another vertex in the graph.)

Of course, those lectures deliberately present only
simple algorithms. One can do much better than this
naive approach, which can take an unnecessarily
large number of passes to complete, even when the
graph has only one component. If multiple compo-
nents are present, one must run it with a single seed,
see if the vertices are exhausted, and then repeat the
process with a new seed if vertices remain.

A collective alternative. Here, I sketch an alterna-
tive to the single-seed scheme, in which I build
many local solutions that merge into a global one.
The idea is to form “zones,” each of which com-
prises a set of vertices known to be in the same
component as its seed vertex. Initially, the algo-
rithm constructs one zone for each vertex, having
that vertex as its seed and as its sole member. As
the algorithm proceeds, the zones merge to form
larger zones. When no further expansion is pos-
sible, each zone is known to be a component.

Each zone’s seed vertex serves as its identifica-
tion. Throughout, I’ll use two files: an edge file that
describes the graph, each of whose records is an
edge, and a zone file, whose records, one for each
vertex, are of the form (v, z), indicating that vertex v
is currently assigned to zone z. The edge file is im-
mutable; the zone file will evolve. Initially, the zone
file comprises records whose form is (v, v), because
each vertex is in its own seed at the outset.

When compared, zones get their ordering ac-
cording to their seeds, which themselves have an
order. The order might be arbitrary, such as by
name. When two zones meet, the lower-order
zone absorbs the higher-order one.

The basic idea employs two steps: Step 1 is to
use the zone file to transform the vertex-to-vertex
adjacencies in the edge file to zone-to-zone adja-
cencies, dropping resulting records that connect
a zone to itself. Step 2 is to use the zone-to-zone
adjacencies to find the lowest-order zone adjacent
to each current zone and use this information to
update the zone file: for each zone with a lower-
order neighbor, replace that zone with its lowest-
order neighboring zone. This second step assigns
the vertices to new and likely fewer zones.

Steps 1 and 2 alternate until the first step produces
no records, at which time the result is in the zone file.
Step 1 can be implemented using two MapReduce
jobs: binning by vertex and then by edge, as Table
1 illustrates. Map 1 merges records from the edge

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

40� Computing in Science & Engineering

and zone files. The idea is to translate the vertex-
to-vertex information in each edge to zone-to-zone
information. MapReduce 1 associates edges with
zones by producing one record for each vertex in
an edge, identifying the zone of that vertex with the
edge. MapReduce 2 brings these together by edge,
because reduce 1 binned MapReduce 1’s records by
edge. If distinct zones are joined by the edge, then
the “best” one (the one with the lowest value) cap-
tures the others. This is indicated by output records
that are binned by the zone to be changed, with a
payload of the new zone. Note that MapReduce 2
increments a counter, accumulated across all reduc-
ers, that tallies the number of interzone edges re-
maining. The tally is checked after running the job.
If it’s zero, the procedure terminates.

Step 2 can be implemented in a single MapReduce
job, binning by zone. Table 1 shows MapReduce 3,
which updates the zone file—that is, it records new
zones for the vertices. The job does this by merg-
ing the interzone-edges file, which offers better
zones for some of the old zones, and the preceding

zone file, which held the earlier zone assignments.
Each reduce bin holds all of the old zone’s vertices
and some number (possibly zero) of better zones
for the old zone. The reduce finds the best of the
new zones and emits records for each of the verti-
ces, assigning them to the new zone.

This simple approach has room for improve-
ment. Rather than iterating these steps to the bit-
ter end, the algorithm can iterate them until the
number of interzone edges becomes small enough
to complete the calculation through conventional
means on a single compute node in memory. A final
MapReduce step then translates the results of this
zone-to-zone calculation to update the zone file.

As the computation progresses, map 3 might cre-
ate uneven loading because the increasingly large
zones each map to single bins. Monitoring the size
of zones and distributing a large zone across L bins,
where L is chosen to achieve sufficient balance, can
alleviate this potential problem with little expense.
Monitoring is done through global counters, which
are fed to the next iteration. A zone that gets large

Table 1. Using zones to find components.

MAP 1*

Input: edge file; key: arbitrary; payload: edge e

Input: zone file; key: v; payload: pair (v, z)

If record payload is edge, for each vertex v e∈ , emit a record with key v and payload e; else
emit a record with key v and payload pair (v, z)

REDUCE 1

Input key: vertex t; input payloads consist of one zone pair (v, z), and all edges E incident to vertex v

Iterate through the bin, extracting the edges present E and the zone z. For each e E∈ , emit a record with key
e and payload z

Output: EdgeWithOneZone file

*MapReduce 1 implements the first part of step 1: binning by vertex. Each output record connects an edge to a zone.

MAP 2**
Input: EdgeWithOneZone file; key: e; payload: zone z

Identity

REDUCE 2

Input key: edge e; each input payload is a zone z

Iterate through the bin, extracting the set of distinct zones Z. If Z =1, skip this bin. Increment an
InterzoneEdges counter. Find the minimum zone z Zm ∈ such that z z z Zm ≤ ∀ ∈, . For each z Z zm∈ -{ } ,
emit a record with key z and payload zm

Output: InterzoneEdges file

**MapReduce 2 implements the second part of step 1: binning by edge. Output records each connect one zone to a better one. The global
InterzoneEdges counter can be examined to see if any vertices changed zones.

MAP 3†
Input: InterzoneEdges file; key: zone z; payload: new zone zm. Input: zone file; key: v; payload: pair (v, z)

If record payload is vertex-zone pair (v, z), emit a record with key z and payload v;
else, emit a record with key z and payload zm

REDUCE 3

Input key: old vertex zone z; input payloads consists of some number of vertices V, and some number of
“better” zones Z

Iterate through the bin, extracting the suggested new zones Z and the vertices V with the old zone z. Find the

best new zone for this vertex: z t t Z zb = ∈ ∪{ }min . For each v V∈ , emit a record with key v and payload pair
(v, zb)

Output: zone file
†MapReduce 3 implements step 2: binning by old zone. This step takes in the old zone file and produces a new zone file.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

July/August 2009 � 41

causes each zone-file record to be sent to one of
the L bins and each interzone-edges file record to
be sent to all of L bins. This improvement makes
modifications only to MapReduce 3.

C learly, MapReduce implementations
of useful graph operations exist and
can be rather simple. Moreover, al-
though I don’t describe them here,

one can extend each of the algorithms to hyper-
graphs with no additional MapReduce steps. This
is an important extension because relationships
dealing with more than two vertices are of great
interest and often not handled well in convention-
al graph-processing environments.

The MapReduce implementations aren’t obvi-
ous analogs of standard algorithms; indeed, for
the most part, they require a complete rethink-
ing of the problem. I found the return to funda-
mentals useful, resulting in an improved method
for enumerating triangles and an efficient way of
enumerating squares that I’ll carry to implemen-
tations outside of MapReduce.

A common pattern in the algorithms in the
“Graph Algorithms” section is as follows:

A map operation.1.	 Go through all the edges,
changing some piece of vertex information;
key the resulting records by vertex.
A reduce operation.2.	 For each vertex bin, read
the edge records and determine the updated
state of the vertex; emit this information in
partially updated edge records; bin the result
by edge.
A reduce operation.3.	 For each edge bin, combine
the updates from each of its member vertices
to get an edge record with complete updated
vertex information.

It’s unfortunate, then, that Hadoop forces each
reduce to be proceeded by a map, thus wasting
a map in implementing the pattern. To be fair,
many functions that I could have implemented as
map operations, I incorporated as part of the pre-
ceding reduce operation, leaving an identity map.
Such a factoring is worth reconsidering.

I was able to devise MapReduce approaches to
most operations that I sought, though not all—
for example, I didn’t find an efficient implemen-
tation of finding bridges. (A bridge is an edge
whose removal would cause the graph to divide
into separate components.) Although a complete
characterization of what’s practical and what’s not
doesn’t exist, here’s a beginning: we can efficiently

implement operations that we can characterize by
independent local communication (message pass-
ing, percolation, matrix-vector multiplication, and
so on); algorithms that require depth-first travers-
als likely have poor MapReduce analogs.

Having established a small set of graph opera-
tions that perform well in a MapReduce frame-
work, and having concluded that other graph
operations are probably not appropriate, future
work should make a concerted stab at refining the
line between these two classes.

Beyond the existence of graph operations’
MapReduce implementations, the practicality of
cloud-based MapReduce computations on graphs
depends most heavily on a concern I didn’t ad-
dress in this article: demands on interprocessor
bandwidth. Each MapReduce job has the poten-
tial to move every graph record from one proces-
sor and its disk to another. The prospect of the
entire graph traversing the cloud fabric for each
MapReduce job is disturbing. Serious testing of
these algorithms on the target hardware is needed
before researchers can declare them practical. If
modifications exist that can reduce bandwidth re-
quirements, they warrant investigation.

With the existence of MapReduce methods for
graph processing now established, we must next ad-
dress the practical issues of hardware mapping.�

Acknowledgments
James Johnson’s suggestions greatly benefited this
article. I also thank Chris Wagner and Chris Waring
for reviewing the manuscript and Sterling Foster and
Chris Waring for their help with Hadoop.

References
J. Dean and S. Ghemawat, “MapReduce: Simplified Data 1.	
Processing on Large Clusters,” Comm. ACM, vol. 51, no. 1,
2008, pp. 107–112.

GoogleDevelopers, “Lecture 5: Parallel Graph Algorithms 2.	
with MapReduce,” 28 Aug. 2007; http://youtube.com/
watch?v=BT-piFBP4fE.

J.L. Gross and J. Yellen, 3.	 Handbook of Graph Theory, CRC
Press, 2004.

J.D. Cohen, “Trusses: Cohesive Subgraphs for Social Network 4.	
Analysis,” 2008; http://www2.computer.org/cms/Computer.
org/dl/mags/cs/2009/04/extras/msp2009040029s1.pdf.

J.D. Cohen, “Barycentric Graph Clustering,” 2008; http://5.	
www2.computer.org/cms/Computer.org/dl/mags/cs/2009/
04/extras/msp2009040029s2.pdf.

Jonathan Cohen is a research engineer at the US Na-
tional Security Agency. His research interests include
signal processing, visualization, graph algorithms,
and information retrieval. Cohen has a PhD in elec-
trical engineering from the University of Maryland.
Contact him at jdcohenee@gmail.com.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 9, 2009 at 13:27 from IEEE Xplore. Restrictions apply.

