
Language Models
Data-Intensive Information Processing Applications ― Session #9

Nitin Madnani
University of Maryland

Tuesday, April 6, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source: Wikipedia (Japanese rock garden)

Today’s Agenda
  What are Language Models?

  Mathematical background and motivation
  Dealing with data sparsity (smoothing)
  Evaluating language models

  Large Scale Language Models using MapReduce

N-Gram Language Models
  What?

  LMs assign probabilities to sequences of tokens

  How?
  Based on previous word histories
  n-gram = consecutive sequences of tokens

  Why?
  Speech recognition
  Handwriting recognition
  Predictive text input
  Statistical machine translation

i saw the small table
vi la mesa pequeña

(vi, i saw)
(la mesa pequeña, the small table)
…

Parallel Sentences

Word Alignment Phrase Extraction

he sat at the table
the service was good

Target-Language Text

Translation Model Language
Model

Decoder

Foreign Input Sentence English Output Sentence

maria no daba una bofetada a la bruja verde mary did not slap the green witch

Training Data

Statistical Machine Translation

Maria no dio una bofetada a la bruja verde

Mary not

did not

no

did not give

give a slap to the witch green

slap

a slap

to the

to

the

green witch

the witch

by

slap

SMT: The role of the LM

This is a sentence

N-Gram Language Models
N=1 (unigrams)

Unigrams:
This,

is,
a,

sentence

Sentence of length s, how many unigrams?

This is a sentence

N-Gram Language Models

Bigrams:
This is,

is a,
a sentence

N=2 (bigrams)

Sentence of length s, how many bigrams?

This is a sentence

N-Gram Language Models

Trigrams:
This is a,

is a sentence

N=3 (trigrams)

Sentence of length s, how many trigrams?

Computing Probabilities

Is this practical?
No! Can’t keep track of all possible histories of all words!

[chain rule]

Approximating Probabilities

Basic idea: limit history to fixed number of words N	

(Markov Assumption)	

N=1: Unigram Language Model	

Relation to HMMs?

Approximating Probabilities

Basic idea: limit history to fixed number of words N	

(Markov Assumption)	

N=2: Bigram Language Model	

Relation to HMMs?

Approximating Probabilities

Basic idea: limit history to fixed number of words N	

(Markov Assumption)	

N=3: Trigram Language Model	

Relation to HMMs?

Building N-Gram Language Models
  Use existing sentences to compute n-gram probability

estimates (training)

  Terminology:
  N = total number of words in training data (tokens)
  V = vocabulary size or number of unique words (types)
  C(w1,...,wk) = frequency of n-gram w1, ..., wk in training data
  P(w1, ..., wk) = probability estimate for n-gram w1 ... wk

  P(wk|w1, ..., wk-1) = conditional probability of producing wk given the
history w1, ... wk-1

What’s the vocabulary size?

Building N-Gram Models
  Start with what’s easiest!

  Compute maximum likelihood estimates for individual
n-gram probabilities
  Unigram:

  Bigram:

  Uses relative frequencies as estimates

  Maximizes the likelihood of the data given the model
P(D|M)

Why not just substitute P(wi) ?

Example: Bigram Language Model

Note: We don’t ever cross sentence boundaries

I am Sam
Sam I am
I do not like green eggs and ham

<s>
<s>
<s>

</s>
</s>

</s>

Training Corpus

P(I | <s>) = 2/3 = 0.67 P(Sam | <s>) = 1/3 = 0.33
P(am | I) = 2/3 = 0.67 P(do | I) = 1/3 = 0.33
P(</s> | Sam)= 1/2 = 0.50 P(Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Building N-Gram Models
  Start with what’s easiest!

  Compute maximum likelihood estimates for individual
n-gram probabilities
  Unigram:

  Bigram:

  Uses relative frequencies as estimates

  Maximizes the likelihood of the data given the model
P(D|M)

Why not just substitute P(wi)?
Let’s revisit this issue…

More Context, More Work
  Larger N = more context

  Lexical co-occurrences
  Local syntactic relations

  More context is better?

  Larger N = more complex model
  For example, assume a vocabulary of 100,000
  How many parameters for unigram LM? Bigram? Trigram?

  Larger N has another more serious problem!

Data Sparsity

P(I like ham)

= P(I | <s>) P(like | I) P(ham | like) P(</s> | ham)

= 0

P(I | <s>) = 2/3 = 0.67 P(Sam | <s>) = 1/3 = 0.33
P(am | I) = 2/3 = 0.67 P(do | I) = 1/3 = 0.33
P(</s> | Sam)= 1/2 = 0.50 P(Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

Why?
Why is this bad?

Data Sparsity
  Serious problem in language modeling!

  Becomes more severe as N increases
  What’s the tradeoff?

  Solution 1: Use larger training corpora
  Can’t always work... Blame Zipf’s Law (Looong tail)

  Solution 2: Assign non-zero probability to unseen n-grams
  Known as smoothing

Smoothing
  Zeros are bad for any statistical estimator

  Need better estimators because MLEs give us a lot of zeros
  A distribution without zeros is “smoother”

  The Robin Hood Philosophy: Take from the rich (seen n-
grams) and give to the poor (unseen n-grams)
  And thus also called discounting
  Critical: make sure you still have a valid probability distribution!

  Language modeling: theory vs. practice

Laplace’s Law
  Simplest and oldest smoothing technique

  Just add 1 to all n-gram counts including the unseen ones

  So, what do the revised estimates look like?

Laplace’s Law: Probabilities

Unigrams

Bigrams

What if we don’t know V?

Careful, don’t confuse the N’s!

Laplace’s Law: Frequencies

Expected Frequency Estimates

Relative Discount

Laplace’s Law
  Bayesian estimator with uniform priors

  Moves too much mass over to unseen n-grams

  What if we added a fraction of 1 instead?

Lidstone’s Law of Succession
  Add 0 < γ < 1 to each count instead

  The smaller γ is, the lower the mass moved to the unseen
n-grams (0=no smoothing)

  The case of γ = 0.5 is known as Jeffery-Perks Law or
Expected Likelihood Estimation

  How to find the right value of γ?

Good-Turing Estimator
  Intuition: Use n-grams seen once to estimate n-grams

never seen and so on

  Compute Nr (frequency of frequency r)

  N0 is the number of items with count 0
  N1 is the number of items with count 1
  …

Good-Turing Estimator
  For each r, compute an expected frequency estimate

(smoothed count)

  Replace MLE counts of seen bigrams with the expected
frequency estimates and use those for probabilities

Good-Turing Estimator
  What about an unseen bigram?

  Do we know N0? Can we compute it for bigrams?

Good-Turing Estimator: Example

r	
 Nr	

1	
 138741	

2	
 25413	

3	
 10531	

4	
 5997	

5	
 3565	

6	
 ...	

V = 14585
Seen bigrams =199252

C(person she) = 2
C(person) = 223

(14585)2 - 199252

N1 / N0 = 0.00065
N1 /(N0 N) = 1.06 x 10-9

N0 =

Cunseen =
Punseen =

CGT(person she) = (2+1)(10531/25413) = 1.243
P(she|person) =CGT(person she)/223 = 0.0056

Note: Assumes mass is uniformly distributed

Good-Turing Estimator
  For each r, compute an expected frequency estimate

(smoothed count)

  Replace MLE counts of seen bigrams with the expected
frequency estimates and use those for probabilities

What if wi isn’t observed?

Good-Turing Estimator
  Can’t replace all MLE counts

  What about rmax?
  Nr+1 = 0 for r = rmax

  Solution 1: Only replace counts for r < k (~10)

  Solution 2: Fit a curve S through the observed (r, Nr)
values and use S(r) instead

  For both solutions, remember to do what?

  Bottom line: the Good-Turing estimator is not used
by itself but in combination with other techniques

Combining Estimators
  Better models come from:

  Combining n-gram probability estimates from different models
  Leveraging different sources of information for prediction

  Three major combination techniques:
  Simple Linear Interpolation of MLEs
  Katz Backoff
  Kneser-Ney Smoothing

Linear MLE Interpolation
  Mix a trigram model with bigram and unigram models to

offset sparsity

  Mix = Weighted Linear Combination

Linear MLE Interpolation
  λi are estimated on some held-out data set (not training,

not test)

  Estimation is usually done via an EM variant or other
numerical algorithms (e.g. Powell)

Backoff Models
  Consult different models in order depending on specificity

(instead of all at the same time)

  The most detailed model for current context first and, if
that doesn’t work, back off to a lower model

  Continue backing off until you reach a model that has
some counts

Backoff Models
  Important: need to incorporate discounting as an integral

part of the algorithm… Why?

  MLE estimates are well-formed…

  But, if we back off to a lower order model without taking
something from the higher order MLEs, we are adding
extra mass!

  Katz backoff
  Starting point: GT estimator assumes uniform distribution over

unseen events… can we do better?
  Use lower order models!

Katz Backoff

Given a trigram “x y z”	

Kneser-Ney Smoothing
  Observation:

  Average Good-Turing discount for r ≥ 3 is largely constant over r
  So, why not simply subtract a fixed discount D (≤1) from non-zero

counts?

  Absolute Discounting: discounted bigram model, back off
to MLE unigram model

  Kneser-Ney: Interpolate discounted model with a special
“continuation” unigram model

Kneser-Ney Smoothing
  Intuition

  Lower order model important only when higher order model is
sparse

  Should be optimized to perform in such situations

  Example
  C(Los Angeles) = C(Angeles) = M; M is very large
  “Angeles” always and only occurs after “Los”
  Unigram MLE for “Angeles” will be high and a normal backoff

algorithm will likely pick it in any context
  It shouldn’t, because “Angeles” occurs with only a single context in

the entire training data

Kneser-Ney Smoothing
  Kneser-Ney: Interpolate discounted model with a special

“continuation” unigram model
  Based on appearance of unigrams in different contexts
  Excellent performance, state of the art

  Why interpolation, not backoff?

= number of different contexts wi has appeared in

Explicitly Modeling OOV
  Fix vocabulary at some reasonable number of words

  During training:
  Consider any words that don’t occur in this list as unknown or out

of vocabulary (OOV) words
  Replace all OOVs with the special word <UNK>
  Treat <UNK> as any other word and count and estimate

probabilities

  During testing:
  Replace unknown words with <UNK> and use LM
  Test set characterized by OOV rate (percentage of OOVs)

Evaluating Language Models
  Information theoretic criteria used

  Most common: Perplexity assigned by the trained LM to a
test set

  Perplexity: How surprised are you on average by what
comes next ?
  If the LM is good at knowing what comes next in a sentence ⇒

Low perplexity (lower is better)
  Relation to weighted average branching factor

Computing Perplexity
  Given test set W with words w1, ...,wN

  Treat entire test set as one word sequence

  Perplexity is defined as the probability of the entire test set
normalized by the number of words

  Using the probability chain rule and (say) a bigram LM, we
can write this as

  A lot easier to do with logprobs!

Practical Evaluation
  Use <s> and </s> both in probability computation

  Count </s> but not <s> in N

  Typical range of perplexities on English text is 50-1000

  Closed vocabulary testing yields much lower perplexities

  Testing across genres yields higher perplexities

  Can only compare perplexities if the LMs use the same
vocabulary

Training: N=38 million, V~20000, open vocabulary, Katz backoff where applicable
Test: 1.5 million words, same genre as training

Order	
 Unigram	
 Bigram	
 Trigram	

PP	
 962	
 170	
 109	

Typical “State of the Art” LMs
  Training

  N = 10 billion words, V = 300k words
  4-gram model with Kneser-Ney smoothing

  Testing
  25 million words, OOV rate 3.8%
  Perplexity ~50

Take-Away Messages
  LMs assign probabilities to sequences of tokens

  N-gram language models: consider only limited histories

  Data sparsity is an issue: smoothing to the rescue
  Variations on a theme: different techniques for redistributing

probability mass
  Important: make sure you still have a valid probability distribution!

Scaling Language Models
with

MapReduce

Language Modeling Recap
  Interpolation: Consult all models at the same time to

compute an interpolated probability estimate.

  Backoff: Consult the highest order model first and backoff
to lower order model only if there are no higher order
counts.

  Interpolated Kneser Ney (state-of-the-art)
  Use absolute discounting to save some probability mass for lower

order models.
  Use a novel form of lower order models (count unique single word

contexts instead of occurrences)
  Combine models into a true probability model using interpolation

Questions for today

Can we efficiently train an IKN LM with terabytes of data?

Does it really matter?

Using MapReduce to Train IKN
  Step 0: Count words [MR]

  Step 0.5: Assign IDs to words [vocabulary generation]
(more frequent → smaller IDs)

  Step 1: Compute n-gram counts [MR]

  Step 2: Compute lower order context counts [MR]

  Step 3: Compute unsmoothed probabilities and
interpolation weights [MR]

  Step 4: Compute interpolated probabilities [MR]

[MR] = MapReduce job

Steps 0 & 0.5

Step 0.5

Step 0

Steps 1-4
Step 1 Step 2 Step 3 Step 4

Input Key DocID n-grams
“a b c” “a b c” “a b”

Input Value Document Ctotal(“a b c”) CKN(“a b c”) _Step 3 Output_

Intermediate
Key

n-grams
“a b c” “a b c” “a b” (history) “c b a”

Intermediate
Value Cdoc(“a b c”) C’KN(“a b c”) (“c”, CKN(“a b c”)) (P’(“a b c”), λ(“a b”))

Partitioning “a b c” “a b c” “a b” “c b”

Output Value Ctotal(“a b c”) CKN(“a b c”) (“c”, P’(“a b c”),
λ(“a b”))

(PKN(“a b c”),
λ(“a b”))

Count
n-grams

All output keys are always the same as the intermediate keys
I only show trigrams here but the steps operate on bigrams and unigrams as well

Count
contexts

Compute unsmoothed
probs AND interp. weights

Compute
Interp. probs

M
ap

pe
r I

np
ut

M

ap
pe

r O
ut

pu
t

R
ed

uc
er

 In
pu

t
R

ed
uc

er

O
ut

pu
t

Steps 1-4
Step 1 Step 2 Step 3 Step 4

Input Key DocID n-grams
“a b c” “a b c” “a b”

Input Value Document Ctotal(“a b c”) CKN(“a b c”) _Step 3 Output_

Intermediate
Key

n-grams
“a b c” “a b c” “a b” (history) “c b a”

Intermediate
Value Cdoc(“a b c”) C’KN(“a b c”) (“c”, CKN(“a b c”)) (P’(“a b c”), λ(“a b”))

Partitioning “a b c” “a b c” “a b” “c b”

Output Value Ctotal(“a b c”) CKN(“a b c”) (“c”, P’(“a b c”),
λ(“a b”))

(PKN(“a b c”),
λ(“a b”))

Count
n-grams

All output keys are always the same as the intermediate keys
I only show trigrams here but the steps operate on bigrams and unigrams as well

Count
contexts

Compute unsmoothed
probs AND interp. weights

Compute
Interp. probs

M
ap

pe
r I

np
ut

M

ap
pe

r O
ut

pu
t

R
ed

uc
er

 In
pu

t
R

ed
uc

er

O
ut

pu
t

Details are not important!

5 MR jobs to train IKN (expensive)!

IKN LMs are big!
(interpolation weights are context dependent)

Can we do something that has better
behavior at scale in terms of time and space?

Let’s try something stupid!
  Simplify backoff as much as possible!

  Forget about trying to make the LM be a true probability
distribution!

  Don’t do any discounting of higher order models!

  Have a single backoff weight independent of context!
[α(•) = α]

“Stupid Backoff (SB)”

Using MapReduce to Train SB
  Step 0: Count words [MR]

  Step 0.5: Assign IDs to words [vocabulary generation]
(more frequent → smaller IDs)

  Step 1: Compute n-gram counts [MR]

  Step 2: Generate final LM “scores” [MR]

[MR] = MapReduce job

Steps 0 & 0.5

Step 0.5

Step 0

Steps 1 & 2
Step 1 Step 2

Input Key DocID First two words of n-grams
“a b c” and “a b” (“a b”)

Input Value Document Ctotal(“a b c”)

Intermediate
Key

n-grams
“a b c” “a b c”

Intermediate
Value Cdoc(“a b c”) S(“a b c”)

Partitioning first two words (why?)
“a b”

last two words
“b c”

Output Value “a b c”, Ctotal(“a b c”) S(“a b c”) [write to disk]

Count
n-grams

Compute
LM scores

•  All unigram counts are replicated in all partitions in both steps
•  The clever partitioning in Step 2 is the key to efficient use at runtime!

•  The trained LM model is composed of partitions written to disk

M
ap

pe
r I

np
ut

M

ap
pe

r O
ut

pu
t

R
ed

uc
er

 In
pu

t
R

ed
uc

er

O
ut

pu
t

Which one wins?

Which one wins?

Can’t compute perplexity for SB. Why?

Why do we care about 5-gram coverage for a test set?

Which one wins?

BLEU is a measure of MT performance.

Not as stupid as you thought, huh?

SB overtakes IKN

Take away
  The MapReduce paradigm and infrastructure make it

simple to scale algorithms to web scale data

  At Terabyte scale, efficiency becomes really important!

  When you have a lot of data, a more scalable technique
(in terms of speed and memory consumption) can do
better than the state-of-the-art even if it’s stupider!

“The difference between genius and stupidity is that genius has its limits.”
 - Oscar Wilde

“The dumb shall inherit the cluster”
 - Nitin Madnani

Source: Wikipedia (Japanese rock garden)

Questions?

