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Source: Wikipedia (Japanese rock garden) 



Today’s Agenda 
  What are Language Models? 

  Mathematical background and motivation 
  Dealing with data sparsity (smoothing) 
  Evaluating language models 

  Large Scale Language Models using MapReduce 



N-Gram Language Models 
  What?  

  LMs assign probabilities to sequences of tokens 

  How? 
  Based on previous word histories 
  n-gram = consecutive sequences of tokens 

  Why? 
  Speech recognition 
  Handwriting recognition 
  Predictive text input 
  Statistical machine translation 



i saw the small table 
vi la mesa pequeña 

(vi, i saw) 
(la mesa pequeña, the small table) 
… 

Parallel Sentences 

Word Alignment Phrase Extraction 

he sat at the table 
the service was good 

Target-Language Text 

Translation Model Language 
Model 

Decoder 

Foreign Input Sentence English Output Sentence 

maria no daba una bofetada a la bruja verde mary did not slap the green witch 

Training Data 

Statistical Machine Translation 



Maria no dio una bofetada a la bruja verde 

Mary not 

did not 

no 

did not give 

give a slap to the witch green 

slap 

a slap 

to the 

to 

the 

green witch 

the witch 

by 

slap 

SMT: The role of the LM 



This is a sentence 

N-Gram Language Models 
N=1 (unigrams) 

Unigrams: 
This, 

is,  
a,  

sentence 

Sentence of length s, how many unigrams? 



This is a sentence 

N-Gram Language Models 

Bigrams: 
This is, 

is a,  
a sentence 

N=2 (bigrams) 

Sentence of length s, how many bigrams? 



This is a sentence 

N-Gram Language Models 

Trigrams: 
This is a, 

is a sentence 

N=3 (trigrams) 

Sentence of length s, how many trigrams? 



Computing Probabilities 

Is this practical? 
No! Can’t keep track of all possible histories of all words! 

[chain rule] 



Approximating Probabilities 

Basic idea: limit history to fixed number of words N	


(Markov Assumption)	



N=1: Unigram Language Model	



Relation to HMMs? 



Approximating Probabilities 

Basic idea: limit history to fixed number of words N	


(Markov Assumption)	



N=2: Bigram Language Model	



Relation to HMMs? 



Approximating Probabilities 

Basic idea: limit history to fixed number of words N	


(Markov Assumption)	



N=3: Trigram Language Model	



Relation to HMMs? 



Building N-Gram Language Models 
  Use existing sentences to compute n-gram probability 

estimates (training) 

  Terminology: 
  N = total number of words in training data (tokens) 
  V = vocabulary size or number of unique words (types) 
  C(w1,...,wk) = frequency of n-gram w1, ..., wk in training data 
  P(w1, ..., wk) = probability estimate for n-gram w1 ... wk 

  P(wk|w1, ..., wk-1) = conditional probability of producing wk given the 
history w1, ... wk-1 

What’s the vocabulary size? 



Building N-Gram Models 
  Start with what’s easiest! 

  Compute maximum likelihood estimates for individual  
n-gram probabilities 
  Unigram: 

  Bigram:  

  Uses relative frequencies as estimates 

  Maximizes the likelihood of the data given the model  
P(D|M) 

Why not just substitute P(wi) ? 



Example: Bigram Language Model 

Note: We don’t ever cross sentence boundaries 

I am Sam 
Sam I am 
I do not like green eggs and ham 

<s> 
<s> 
<s> 

</s> 
</s> 

</s> 

Training Corpus 

P( I | <s> ) = 2/3 = 0.67   P( Sam | <s> ) = 1/3 = 0.33 
P( am | I ) = 2/3 = 0.67   P( do | I ) = 1/3 = 0.33 
P( </s> | Sam )= 1/2 = 0.50   P( Sam | am) = 1/2 = 0.50 
... 

Bigram Probability Estimates 



Building N-Gram Models 
  Start with what’s easiest! 

  Compute maximum likelihood estimates for individual  
n-gram probabilities 
  Unigram: 

  Bigram:  

  Uses relative frequencies as estimates 

  Maximizes the likelihood of the data given the model  
P(D|M) 

Why not just substitute P(wi)? 
Let’s revisit this issue… 



More Context, More Work 
  Larger N = more context 

  Lexical co-occurrences 
  Local syntactic relations 

  More context is better? 

  Larger N = more complex model 
  For example, assume a vocabulary of 100,000 
  How many parameters for unigram LM? Bigram? Trigram? 

  Larger N has another more serious problem!  



Data Sparsity 

P(I like ham) 

= P( I | <s> ) P( like | I ) P( ham | like ) P( </s> | ham ) 

= 0 

P( I | <s> ) = 2/3 = 0.67   P( Sam | <s> ) = 1/3 = 0.33 
P( am | I ) = 2/3 = 0.67   P( do | I ) = 1/3 = 0.33 
P( </s> | Sam )= 1/2 = 0.50   P( Sam | am) = 1/2 = 0.50 
... 

Bigram Probability Estimates 

Why? 
Why is this bad? 



Data Sparsity 
  Serious problem in language modeling! 

  Becomes more severe as N increases 
  What’s the tradeoff? 

  Solution 1: Use larger training corpora 
  Can’t always work... Blame Zipf’s Law (Looong tail) 

  Solution 2: Assign non-zero probability to unseen n-grams 
  Known as smoothing 



Smoothing 
  Zeros are bad for any statistical estimator 

  Need better estimators because MLEs give us a lot of zeros 
  A distribution without zeros is “smoother” 

  The Robin Hood Philosophy: Take from the rich (seen n-
grams) and give to the poor (unseen n-grams) 
  And thus also called discounting 
  Critical: make sure you still have a valid probability distribution! 

  Language modeling: theory vs. practice 



Laplace’s Law 
  Simplest and oldest smoothing technique 

  Just add 1 to all n-gram counts including the unseen ones 

  So, what do the revised estimates look like? 



Laplace’s Law: Probabilities 

Unigrams 

Bigrams 

What if we don’t know V? 

Careful, don’t confuse the N’s! 



Laplace’s Law: Frequencies 

Expected Frequency Estimates 

Relative Discount 



Laplace’s Law 
  Bayesian estimator with uniform priors 

  Moves too much mass over to unseen n-grams 

  What if we added a fraction of 1 instead? 



Lidstone’s Law of Succession 
  Add 0 < γ < 1 to each count instead 

  The smaller γ is, the lower the mass moved to the unseen 
n-grams (0=no smoothing) 

  The case of γ = 0.5 is known as Jeffery-Perks Law or 
Expected Likelihood Estimation 

  How to find the right value of γ? 



Good-Turing Estimator 
  Intuition: Use n-grams seen once to estimate n-grams 

never seen and so on 

  Compute Nr (frequency of frequency r) 

  N0 is the number of items with count 0 
  N1 is the number of items with count 1 
  … 



Good-Turing Estimator 
  For each r, compute an expected frequency estimate 

(smoothed count) 

  Replace MLE counts of seen bigrams with the expected 
frequency estimates and use those for probabilities 



Good-Turing Estimator 
  What about an unseen bigram? 

  Do we know N0? Can we compute it for bigrams? 



Good-Turing Estimator: Example 

r	

 Nr	



1	

 138741	



2	

 25413	



3	

 10531	



4	

 5997	



5	

 3565	



6	

 ...	



V = 14585 
Seen bigrams =199252 

C(person she) = 2 
C(person) = 223 

(14585)2 - 199252 

N1 / N0 =  0.00065 
N1 /( N0 N ) =  1.06 x 10-9 

N0 =  

Cunseen = 
Punseen = 

CGT(person she) = (2+1)(10531/25413) = 1.243 
P(she|person) =CGT(person she)/223 = 0.0056 

Note: Assumes mass is uniformly distributed 



Good-Turing Estimator 
  For each r, compute an expected frequency estimate 

(smoothed count) 

  Replace MLE counts of seen bigrams with the expected 
frequency estimates and use those for probabilities 

What if wi isn’t observed? 



Good-Turing Estimator 
  Can’t replace all MLE counts 

  What about rmax? 
  Nr+1 = 0 for r = rmax 

  Solution 1: Only replace counts for r < k (~10) 

  Solution 2: Fit a curve S through the observed (r, Nr) 
values and use S(r) instead 

  For both solutions, remember to do what? 

  Bottom line: the Good-Turing estimator is not used  
by itself but in combination with other techniques 



Combining Estimators 
  Better models come from: 

  Combining n-gram probability estimates from different models 
  Leveraging different sources of information for prediction 

  Three major combination techniques: 
  Simple Linear Interpolation of MLEs 
  Katz Backoff  
  Kneser-Ney Smoothing 



Linear MLE Interpolation 
  Mix a trigram model with bigram and unigram models to 

offset sparsity 

  Mix = Weighted Linear Combination 



Linear MLE Interpolation 
  λi are estimated on some held-out data set (not training, 

not test) 

  Estimation is usually done via an EM variant or other 
numerical algorithms (e.g. Powell) 



Backoff Models 
  Consult different models in order depending on specificity 

(instead of all at the same time) 

  The most detailed model for current context first and, if 
that doesn’t work, back off to a lower model 

  Continue backing off until you reach a model that has 
some counts 



Backoff Models 
  Important: need to incorporate discounting as an integral 

part of the algorithm… Why? 

  MLE estimates are well-formed… 

  But, if we back off to a lower order model without taking 
something from the higher order MLEs, we are adding 
extra mass! 

  Katz backoff 
  Starting point: GT estimator assumes uniform distribution over 

unseen events… can we do better? 
  Use lower order models! 



Katz Backoff 

Given a trigram “x y z”	





Kneser-Ney Smoothing 
  Observation: 

  Average Good-Turing discount for r ≥ 3 is largely constant over r 
  So, why not simply subtract a fixed discount D (≤1) from non-zero 

counts? 

  Absolute Discounting: discounted bigram model, back off 
to MLE unigram model 

  Kneser-Ney: Interpolate discounted model with a special 
“continuation” unigram model 



Kneser-Ney Smoothing 
  Intuition 

  Lower order model important only when higher order model is 
sparse 

  Should be optimized to perform in such situations  

  Example 
  C(Los Angeles) = C(Angeles) = M; M is very large 
  “Angeles” always and only occurs after “Los” 
  Unigram MLE for “Angeles” will be high and a normal backoff 

algorithm will likely pick it in any context 
  It shouldn’t, because “Angeles” occurs with only a single context in 

the entire training data 



Kneser-Ney Smoothing 
  Kneser-Ney: Interpolate discounted model with a special 

“continuation” unigram model 
  Based on appearance of unigrams in different contexts 
  Excellent performance, state of the art 

  Why interpolation, not backoff? 

= number of different contexts wi has appeared in 



Explicitly Modeling OOV 
  Fix vocabulary at some reasonable number of words 

  During training: 
  Consider any words that don’t occur in this list as unknown or out 

of vocabulary (OOV) words 
  Replace all OOVs with the special word <UNK> 
  Treat <UNK> as any other word and count and estimate 

probabilities 

  During testing: 
  Replace unknown words with <UNK> and use LM 
  Test set characterized by OOV rate (percentage of OOVs) 



Evaluating Language Models 
  Information theoretic criteria used 

  Most common: Perplexity assigned by the trained LM to a 
test set 

  Perplexity: How surprised are you on average by what 
comes next ? 
  If the LM is good at knowing what comes next in a sentence ⇒ 

Low perplexity (lower is better) 
  Relation to weighted average branching factor 



Computing Perplexity 
  Given test set W with words w1, ...,wN 

  Treat entire test set as one word sequence 

  Perplexity is defined as the probability of the entire test set 
normalized by the number of words 

  Using the probability chain rule and (say) a bigram LM, we 
can write this as  

  A lot easier to do with logprobs! 



Practical Evaluation 
  Use <s> and </s> both in probability computation 

  Count </s> but not <s> in N 

  Typical range of perplexities on English text is 50-1000 

  Closed vocabulary testing yields much lower perplexities 

  Testing across genres yields higher perplexities 

  Can only compare perplexities if the LMs use the same 
vocabulary 

Training:  N=38 million, V~20000, open vocabulary, Katz backoff where applicable 
Test: 1.5 million words, same genre as training 

Order	

 Unigram	

 Bigram	

 Trigram	



PP	

 962	

 170	

 109	





Typical “State of the Art” LMs 
  Training 

  N = 10 billion words, V = 300k words 
  4-gram model with Kneser-Ney smoothing 

  Testing 
  25 million words, OOV rate 3.8% 
  Perplexity ~50 



Take-Away Messages 
  LMs assign probabilities to sequences of tokens 

  N-gram language models: consider only limited histories 

  Data sparsity is an issue: smoothing to the rescue 
  Variations on a theme: different techniques for redistributing 

probability mass 
  Important: make sure you still have a valid probability distribution! 



Scaling Language Models 
with  

MapReduce 



Language Modeling Recap 
  Interpolation: Consult all models at the same time to 

compute an interpolated probability estimate. 

  Backoff: Consult the highest order model first and backoff 
to lower order model only if there are no higher order 
counts.  

  Interpolated Kneser Ney (state-of-the-art) 
  Use absolute discounting to save some probability mass for lower 

order models. 
  Use a novel form of lower order models (count unique single word 

contexts instead of occurrences) 
  Combine models into a true probability model using interpolation 



Questions for today 

Can we efficiently train an IKN LM with terabytes of data? 

Does it really matter? 



Using MapReduce to Train IKN 
  Step 0: Count words [MR] 

  Step 0.5: Assign IDs to words [vocabulary generation] 
(more frequent → smaller IDs) 

  Step 1: Compute n-gram counts [MR] 

  Step 2: Compute lower order context counts [MR] 

  Step 3: Compute unsmoothed probabilities and 
interpolation weights [MR] 

  Step 4: Compute interpolated probabilities [MR] 

[MR] = MapReduce job 



Steps 0 & 0.5 

Step 0.5 

Step 0 



Steps 1-4 
Step 1 Step 2 Step 3 Step 4 

Input Key DocID n-grams 
“a b c” “a b c” “a b” 

Input Value Document Ctotal(“a b c”) CKN(“a b c”) _Step 3 Output_ 

Intermediate 
Key 

n-grams 
“a b c” “a b c” “a b” (history) “c b a” 

Intermediate 
Value Cdoc(“a b c”) C’KN(“a b c”) (“c”, CKN(“a b c”)) (P’(“a b c”), λ(“a b”)) 

Partitioning “a b c” “a b c” “a b” “c b” 

Output Value Ctotal(“a b c”) CKN(“a b c”) (“c”, P’(“a b c”),  
λ(“a b”)) 

(PKN(“a b c”),  
λ(“a b”)) 

Count  
n-grams 

All output keys are always the same as the intermediate keys 
I only show trigrams here but the steps operate on bigrams and unigrams as well 

Count  
contexts 

Compute unsmoothed 
probs AND interp. weights 

Compute 
Interp. probs 
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Steps 1-4 
Step 1 Step 2 Step 3 Step 4 

Input Key DocID n-grams 
“a b c” “a b c” “a b” 

Input Value Document Ctotal(“a b c”) CKN(“a b c”) _Step 3 Output_ 

Intermediate 
Key 

n-grams 
“a b c” “a b c” “a b” (history) “c b a” 

Intermediate 
Value Cdoc(“a b c”) C’KN(“a b c”) (“c”, CKN(“a b c”)) (P’(“a b c”), λ(“a b”)) 

Partitioning “a b c” “a b c” “a b” “c b” 

Output Value Ctotal(“a b c”) CKN(“a b c”) (“c”, P’(“a b c”),  
λ(“a b”)) 

(PKN(“a b c”),  
λ(“a b”)) 

Count  
n-grams 

All output keys are always the same as the intermediate keys 
I only show trigrams here but the steps operate on bigrams and unigrams as well 

Count  
contexts 

Compute unsmoothed 
probs AND interp. weights 

Compute 
Interp. probs 
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Details are not important! 

5 MR jobs to train IKN (expensive)! 

IKN LMs are big!  
(interpolation weights are context dependent) 

Can we do something that has better 
behavior at scale in terms of time and space? 



Let’s try something stupid! 
  Simplify backoff as much as possible! 

  Forget about trying to make the LM be a true probability 
distribution! 

  Don’t do any discounting of higher order models! 

  Have a single backoff weight independent of context! 
[α(•) = α] 

“Stupid Backoff (SB)” 



Using MapReduce to Train SB 
  Step 0: Count words [MR] 

  Step 0.5: Assign IDs to words [vocabulary generation] 
(more frequent → smaller IDs) 

  Step 1: Compute n-gram counts [MR] 

  Step 2: Generate final LM “scores” [MR] 

[MR] = MapReduce job 



Steps 0 & 0.5 

Step 0.5 

Step 0 



Steps 1 & 2 
Step 1 Step 2 

Input Key DocID First two words of n-grams 
“a b c” and “a b” (“a b”) 

Input Value Document Ctotal(“a b c”) 

Intermediate 
Key 

n-grams 
“a b c” “a b c” 

Intermediate 
Value Cdoc(“a b c”) S(“a b c”) 

Partitioning first two words (why?) 
“a b” 

last two words 
“b c” 

Output Value “a b c”, Ctotal(“a b c”) S(“a b c”) [write to disk] 

Count  
n-grams 

Compute 
LM scores 

•  All unigram counts are replicated in all partitions in both steps 
•  The clever partitioning in Step 2 is the key to efficient use at runtime! 

•  The trained LM model is composed of partitions written to disk 
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Which one wins? 



Which one wins? 

Can’t compute perplexity for SB. Why? 

Why do we care about 5-gram coverage for a test set? 



Which one wins? 

BLEU is a measure of MT performance. 

Not as stupid as you thought, huh? 

SB overtakes IKN 



Take away 
  The MapReduce paradigm and infrastructure make it 

simple to scale algorithms to web scale data 

  At Terabyte scale, efficiency becomes really important! 

  When you have a lot of data, a more scalable technique 
(in terms of speed and memory consumption) can do 
better than the state-of-the-art even if it’s stupider! 

“The difference between genius and stupidity is that genius has its limits.” 
       - Oscar Wilde 

“The dumb shall inherit the cluster” 
   - Nitin Madnani  



Source: Wikipedia (Japanese rock garden) 

Questions? 


