
Hidden Markov Models & EM
Data-Intensive Information Processing Applications ― Session #8

Nitin Madnani
University of Maryland

Tuesday, March 30, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source: Wikipedia (Japanese rock garden)

Today’s Agenda
  Need to cover lots of background material

  Introduction to Statistical Models
  Hidden Markov Models
  Part of Speech Tagging
  Applying HMMs to POS tagging
  Expectation-Maximization (EM) Algorithm

  Now on to the Map Reduce stuff
  Training HMMs using MapReduce

•  Supervised training of HMMs
•  Rough conceptual sketch of unsupervised training using EM

Introduction to statistical models
  Until the 1990s, text processing relied on rule-based

systems

  Advantages
  More predictable
  Easy to understand
  Easy to identify errors and fix them

  Disadvantages
  Extremely labor-intensive to create
  Not robust to out of domain input
  No partial output or analysis when failure occurs

Introduction to statistical models
  A better strategy is to use data-driven methods

  Basic idea: learn from a large corpus of examples of what
we wish to model (Training Data)

  Advantages
  More robust to the complexities of real-world input
  Creating training data is usually cheaper than creating rules

•  Even easier today thanks to Amazon Mechanical Turk
•  Data may already exist for independent reasons

  Disadvantages
  Systems often behave differently compared to expectations
  Hard to understand the reasons for errors or debug errors

Introduction to statistical models
  Learning from training data usually means estimating the

parameters of the statistical model

  Estimation usually carried out via machine learning

  Two kinds of machine learning algorithms

  Supervised learning
  Training data consists of the inputs and respective outputs (labels)
  Labels are usually created via expert annotation (expensive)
  Difficult to annotate when predicting more complex outputs

  Unsupervised learning
  Training data just consists of inputs. No labels.
  One example of such an algorithm: Expectation Maximization

Hidden Markov Models (HMMs)

A very useful and popular statistical model

Finite State Machines
  What do we need to specify an FSM formally ?

  Finite number of states
  Transitions
  Input alphabet
  Start state
  Final state(s)

Real World Knowledge

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’
‘c’ is three times as likely to be seen in state 2 as ‘a’

Weighted FSMs

2

1

1

1

3

1

What do we get out of it ?

score(‘ab’) = 2, score(‘bc’) = 3

Real World Knowledge

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’
‘c’ is three times as likely to be seen in state 2 as ‘a’

Probabilistic FSMs

What do we get out of it ?

P(‘ab’) = 0.50 * 1.00 = 0.5, P(‘bc’) = 0.25 * 0.75 = 0.1875

0.5

0.25

0.25

0.25

0.75

1.0

Markov Chains
  This not a valid prob. FSM!

  No start states
  Use prior probabilities
  Note that prob. of being in

any state ONLY depends on
previous state ,i.e., the (1st
order) Markov assumption

  This extension of a prob.
FSM is called a Markov
Chain or an Observed
Markov Model

  Each state corresponds to
an observable physical
event

0.5!

0.2! 0.3!

Are states always observable?

1, 2, 3, 4, 5, 6 Day:

Bu, Be, S, Be, S, Bu

 Bu: Bull Market
 Be: Bear Market
 S : Static Market

Here’s what you actually observe:

1, 2, 3, 4, 5, 6 Day: ↑: Market is up
 ↓: Market is down
 ↔: Market hasn’t changed

↑ ↓ ↔ ↑ ↓ ↔

↑ ↓ ↔ ↑ ↓ ↔

Hidden Markov Models
  Markov chains are usually inadequate

  Need to model problems where observed events don’t
correspond to states directly

  Instead observations = fp(states) for some p.d.f p

  Solution: A Hidden Markov Model (HMM)
  Assume two probabilistic processes
  Underlying process is hidden (states = hidden events)
  Second process produces sequence of observed events

Formalizing HMMs
  An HMM λ = (A, B, ∏) is characterized by:

  Set of N states {q1, q2, ..., qN}
  N x N Transition probability matrix A = [aij]

  Sequence of observations o1, o2, ... oT, each drawn from a given
set of symbols (vocabulary V)

  N x |V| Emission probability matrix, B = [bit]

  N x 1 Prior probabilities vector ∏ = { ∏1, ∏2, ..., ∏N }

Things to know about HMMs
  The (first-order) Markov assumption holds

  The probability of an output symbol depends only on the
state generating it

  The number of states (N) does not have to equal the
number of observations (T)

Stock Market HMM

States ✓
Transitions ✓

Valid ✓

Vocabulary ✓




P (↑ |Bear) = 0.1
P (↓ |Bear) = 0.6
P (↔ |Bear) = 0.3








P (↑ |Bull) = 0.7
P (↓ |Bull) = 0.1
P (↔ |Bull) = 0.2








P (↑ |Static) = 0.3
P (↓ |Static) = 0.3
P (↔ |Static) = 0.4





Emissions ✓
Valid ✓

∏1=0.5! ∏2=0.2! ∏3=0.3!

Priors ✓
Valid ✓

Applying HMMs
  3 problems to solve before HMMs can be useful

  Given an HMM λ = (A, B, ∏), and a sequence of observed events
O, find P(O| λ) [Likelihood]

  Given an HMM λ = (A, B, ∏), and an observation sequence O, find
the most likely (hidden) state sequence [Decoding]

  Given a set of observation sequences and the set of states Q in λ,
compute the parameters A and B. [Training]

Computing Likelihood

1 2 3 4 5 6

↑ ↓ ↔ ↑ ↓ ↔

t:

O:

Assuming λstock models the stock market, how likely is it
that on day 1, the market is up, on day 2, it’s down etc. ?




P (↑ |Bear) = 0.1
P (↓ |Bear) = 0.6
P (↔ |Bear) = 0.3








P (↑ |Bull) = 0.7
P (↓ |Bull) = 0.1
P (↔ |Bull) = 0.2








P (↑ |Static) = 0.3
P (↓ |Static) = 0.3
P (↔ |Static) = 0.4





∏1=
0.5!

∏2=
0.2!

∏3=
0.3!

Markov Chain?

λstock

Computing Likelihood
  Sounds easy!

  Sum over all possible ways in which we could generate O
from λ

Takes exponential (∝ NT) time to compute !
Right idea, wrong algorithm !

Computing Likelihood
  What are we doing wrong ?

  State sequences may have a lot of overlap

  We are recomputing the shared bits every time

  Need to store intermediate computation results somehow
so that they can be used

  Requires a Dynamic Programming algorithm

20

Forward Algorithm
  Use an N x T trellis or chart [αtj]

  αtj or αt(j) = P(being in state j after seeing t observations) =
p(o1, o2, ... ot, qt=j)

  Each cell = ∑ extensions of all paths from other cells

  αt-1(i): forward path probability until (t-1)
  aij : transition probability of going from state i to j
  bj(ot) : probability of emitting symbol ot in state j

  P(O|λ) = ∑i αT(i)

  Polynomial time (∝ N2T)

Forward Algorithm
  Formal Definition

  Initialization

  Recursion

  Termination

22

2
3

Forward Algorithm

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

↑ ↓ ↑ O =

find P(O|λstock)

2
4

Forward Algorithm (Initialization)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

2
5

Forward Algorithm (Recursion)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

0.0145

α1(Bu) * aBuBu * bBu(↓)
0.14 * 0.6 * 0.1=0.0084

∑

.... and so on

2
6

Forward Algorithm (Recursion)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

0.0145

0.0312

0.0249

0.024

0.0014
75

0.0064
77

2
7

Forward Algorithm (Recursion)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

0.0145

0.0312

0.0249

0.024

0.0014
75

0.0064
77

∑
P(O) = 0.03195

Decoding

1 2 3 4 5 6

↑ ↓ ↔ ↑ ↓ ↔

t:

O:

Given λstock as our model and O as our observations, what are the most
likely states the market went through to produce O ?




P (↑ |Bear) = 0.1
P (↓ |Bear) = 0.6
P (↔ |Bear) = 0.3








P (↑ |Bull) = 0.7
P (↓ |Bull) = 0.1
P (↔ |Bull) = 0.2








P (↑ |Static) = 0.3
P (↓ |Static) = 0.3
P (↔ |Static) = 0.4





∏1=
0.5!

∏2=
0.2!

∏3=
0.3!

λstock

Decoding
  “Decoding” because states are hidden

  There’s a simple way to do it
  For each possible hidden state sequence, compute P(O) using

“forward algorithm”
  Pick the one that gives the highest P(O)

  Will this give the right answer ?

  Is it practical ?

29

Viterbi Algorithm
  Another dynamic programming algorithm

  Same idea as the forward algorithm
  Store intermediate computation results in a trellis
  Build new cells from existing cells

  Efficient (polynomial vs. exponential)

30

Viterbi Algorithm
  Use an N x T trellis [vtj]

  vtj or vt(j) = P(in state j after seeing t observations &
passing through the most likely state sequence so far)
= p(q1, q2, ..., qt-1, qt=j, o1, o2, ... ot)

  Each cell = extension of most likely path from other cells

  vt-1(i): viterbi probability until time (t-1)
  aij : transition probability of going from state i to j
  bj(ot) : probability of emitting symbol ot in state j

  P = maxi vT(i)

31

Viterbi Algorithm
  Maximization instead of summation over previous paths

  This algorithm is still missing something !

  Unlike forward alg., we need something else in addition to
the probability !
  Need to keep track which previous cell we chose
  At the end, follow the chain of backpointers and we have the most

likely state sequence too !
  qT* = argmaxi vT(i); qt* = the state qt+1* points to

32

Viterbi Algorithm
  Formal Definition

  Initialization

  Recursion

  Termination Why no b() ?

3
4

Viterbi Algorithm

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

↑ ↓ ↑ O =
find most likely given state sequence

3
5

Viterbi Algorithm (Initialization)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

3
6

Viterbi Algorithm (Recursion)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

0.0084

v1(Bu) * aBuBu * bBu(↓)
0.14 * 0.6 * 0.1=0.0084

max

3
7

Viterbi Algorithm (Recursion)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

0.0084

.... and so on

3
8

Viterbi Algorithm (Recursion)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

0.0084

0.0168

0.0135

0.0058
8

0.0005
04

0.0020
2

3
9

Viterbi Algorithm (Termination)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

0.0084

0.0168

0.0135

0.0058
8

0.0005
04

0.0020
2

4
0

Viterbi Algorithm (Termination)

Bear

Bull

Static

st
at

es

time

↑ ↓ ↑
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14

0.5*0.1
=0.05

0.3*0.3
=0.09

0.0084

0.0168

0.0135

0.0058
8

0.0005
04

0.0020
2

Most likely state sequence
 [Bull, Bear, Bull], P = 0.00588

Why are HMMs useful?
  Models of data that is ordered sequentially

  Recall sequence of market up/down/static observations

  Other more useful sequences
  Words in a sentence
  Base pairs in a gene
  Letters in a word

  Have been used for almost everything
  Automatic speech recognition
  Stock market forecasting (you thought I was joking?!)
  Aligning words in a bilingual parallel text
  Tagging words with parts of speech

Md. Rafiul Hassan and Baikunth Nath. Stock Market Forecasting Using Hidden Markov Models: A New Approach.
Proceedings of the International Conference on Intelligent Systems Design and Applications.

Part of Speech Tagging

Part of Speech (POS) Tagging
  Parts of speech are well recognized linguistic entities

  The Art of Grammar circa 100 B.C.
  Written to allow post-Classical Greek speakers to understand

Odyssey and other classical poets
  8 classes of words

[Noun, Verb, Pronoun, Article, Adverb, Conjunction, Participle,
Preposition]

  Remarkably enduring list

  Occur in almost every language

  Defined primarily in terms of syntactic and morphological
criteria (affixes)

Part of Speech (POS) Tagging
  Two broad categories of POS tags

  Closed Class:
  Relatively fixed membership
  Conjunctions, Prepositions, Auxiliaries, Determiners, Pronouns …
  Function words: short and used primarily for structuring

  Open Class:
  Nouns, Verbs, Adjectives, Adverbs
  Frequent neologisms (borrowed/coined)

Part of Speech (POS) Tagging
  Several English tagsets have been developed

  Vary in number of tags
  Brown Tagset (87)
  Penn Treebank (45) [More common]

  Language specific
  Simple morphology = more ambiguity = smaller tagset

  Size depends on language and purpose

Part of Speech (POS) Tagging

POS Tagging: The process of assigning “one” POS or other lexical
class marker to each word in a corpus

Why do POS tagging?
  Corpus-based Linguistic Analysis & Lexicography

  Information Retrieval & Question Answering

  Automatic Speech Synthesis

  Word Sense Disambiguation

  Shallow Syntactic Parsing

  Machine Translation

Why is POS tagging hard?
  Not really a lexical problem

  Sequence labeling problem

  Treating it as lexical problem runs us smack into the wall
of ambiguity

I thought that you ... (that: conjunction)
That day was nice (that: determiner)
You can go that far (that: adverb)

HMMs & POS Tagging

Modeling the problem
  What should the HMM look like?

  States: Part-of-Speech Tags (t1, t2, … tN)
  Output symbols: Words (w1, w2, …, wM)

  Can an HMM find the best tagging for a given sentence ?
  Yes ! Viterbi Decoding (best = most likely)

  Once we have an HMM model, tagging lots of data is
embarrassingly parallel: a tagger in each mapper

  The HMM machinery gives us (almost) everything we
need to solve the problem

HMM Training
  Almost everything ?

  Before HMMs can decode, they must be trained, i.e., (A,
B, ∏) must be computed

  Recall the two types of training?

  Supervised training: Use a large corpus of already tagged words
as training data; count stuff; estimate model parameters

  Unsupervised training: Use a corpus of untagged words; bootstrap
parameter estimates; improve estimates iteratively

Supervised Training
  We have training data, i.e., thousands of sentences with

their words already tagged

  Given this data, we already have the set of states and
symbols

  Next, compute Maximum Likelihood Estimates (MLEs) for
the various parameters

  Those estimates of the parameters that maximize the
likelihood that the training data was actually generated by
our model

52

Supervised Training
  Transition Probabilities

  Any P(ti | ti-1) = C(ti-1ti)/Σt’C(ti-1t’) from the training data
  For P(NN|VB), count how many times a noun follows a verb and

divide by the the number of times anything else follows a verb

  Emission Probabilities
  Any P(wi | ti) = C(wi,ti)/Σw’C(w’, ti) from the training data
  For P(bank|NN), count how many times the word bank was seen

tagged as a noun and divide by the number of times anything was
seen tagged as a noun

  Priors
  The prior probability of any state (tag)
  For ∏noun, count the number of times a noun occurs and divide by

the total number of words in the corpus

53

Supervised Training in MapReduce
  Recall that we computed relative frequencies of words in

MapReduce using the Stripes design

  Estimating HMM parameters via supervised training is
identical

f(B|A) =
c(A,B)�
B� c(A,B�)

(Eqn 3.1, p. 51)

p(ti|ti−1) =
c(ti−1, ti)�
t� c(ti−1, t�)

p(wi|ti) =
c(wi, ti)�
w� c(w�, ti)

πi =
c(ti)

N
Priors is like counting words

Unsupervised Training
  No labeled/tagged training data

  No way to compute MLEs directly

  Make an initial guess for parameter values

  Use this guess to get a better estimate

  Iteratively improve the estimate until some convergence
criterion is met

EXPECTATION MAXIMIZATION (EM)

Expectation Maximization
  A fundamental tool for unsupervised machine learning

techniques

  Forms basis of state-of-the-art systems in MT, Parsing,
WSD, Speech Recognition and more

  Seminal paper (with a very instructive title)
Maximum Likelihood from Incomplete Data via the EM
algorithm, JRSS, Dempster et al., 1977

56

Motivating Example
  Let observed events be the grades given out in, say, this

class

  Assume grades are generated by a probabilistic model
described by single parameter µ

  P(A) = 1/2, P(B) = µ, P(C) = 2µ, P(D) = 1/2 - 3µ

  Number of ‘A’s observed = ‘a’, ‘b’ number of ‘B’s etc.

  Compute MLE of µ given ‘a’, ‘b’, ‘c’ and ‘d’

Adapted from Andrew Moore’s Slides
http://www.autonlab.org/tutorials/gmm.html

Motivating Example
  Recall the definition of MLE

“.... maximizes likelihood of data given the model.”

  P(data|model)= P(a,b,c,d|µ) = K(1/2)a(µ)b(2µ)c(1/2-3µ)d
[independent and identically distributed]

  L = log-likelihood = log P(a,b,c,d|µ)
 = a log(1/2) + b log µ + c log 2µ + d log(1/2-3µ)

  How to maximize L w.r.t µ ? [Think Calculus]

  δL/δµ = 0; (b/µ) + (2c/2µ) - (3d/(1/2 - 3µ)) = 0

  µ = (b+c)/6(b+c+d) [Note missing ‘a’]

  We got our answer without EM. Boring !

Motivating Example
  P(A) = 1/2, P(B) = µ, P(C) = 2µ, P(D) = 1/2 - 3µ

  Number of ‘A’s and ‘B’s = h, c ‘C’s and d ‘D’s

  Part of the observable information is hidden

  Can we compute the MLE for µ now?

  If we knew ‘b’ (and hence ‘a’), we could compute the MLE
for µ. But we need to know µ to know how the model
generates ‘a’ and ‘b’.

  Circular enough for you?

The EM Algorithm
  Start with an initial guess for µ (µ0)

  t = 1; Repeat
  bt = µ(t-1)h/(1/2 + µ(t-1))

 [E-step: Compute expected value of b given µ]

  µt = (bt + c)/6(bt + c + d)
 [M-step: Compute MLE of µ given b]

  t = t + 1

  Until some convergence criterion is met

The EM Algorithm
  Algorithm to compute MLEs for model parameters when

information is hidden

  Iterate between Expectation (E-step) and Maximization
(M-step)

  Each iteration is guaranteed to increase the log-likelihood
of the data (improve the estimate)

  Good news: It will always converge to a maximum

  Bad news: It will always converge to a maximum

61

Applying EM to HMMs
  Just the intuition; No gory details

  Hidden information (the state sequence)

  Model Parameters: A, B & ∏

  Introduce two new observation statistics:
  Number of transitions from qi to qj (ξ)
  Number of times in state qi (γ)

  The EM algorithm should now apply perfectly

62

Applying EM to HMMs
  Start with initial guesses for A, B and ∏

  t = 1; Repeat
  E-step: Compute expected values of ξ, γ using At, Bt, ∏t

  M-step: Compute MLE of A, B and ∏ using ξt, γt

  t = t + 1

  Until some specified convergence criterion is met

  Optional: Read Section 6.2 in Lin & Dyer for gory details

6
3

Baum-Welch Algorithm

EM in MapReduce
  Each iteration of EM is one MapReduce job

  A driver program spawns MR jobs, keeps track of the
number of iterations and convergence criteria

  Model parameters static for the duration of each job are
loaded by each mapper from HDFS

  Mappers map over independent instances from training
data to do computations from E-step

  Reducers sum together stuff from mappers to solve
equations from M-step

  Combiners are important to sum together the training
instances in memory and reduce disk I/O

Source: Wikipedia (Japanese rock garden)

Questions?

