Data-Intensive Information Processing Applications — Session #8

Hidden Markov Models & EM

Nitin Madnani University of Maryland

Tuesday, March 30, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source: Wikipedia (Japanese rock garden)

Today's Agenda

- Need to cover lots of background material
 - Introduction to Statistical Models
 - Hidden Markov Models
 - Part of Speech Tagging
 - Applying HMMs to POS tagging
 - Expectation-Maximization (EM) Algorithm
- Now on to the Map Reduce stuff
 - Training HMMs using MapReduce
 - Supervised training of HMMs
 - Rough conceptual sketch of unsupervised training using EM

Introduction to statistical models

- Until the 1990s, text processing relied on *rule-based* systems
- Advantages
 - More predictable
 - Easy to understand
 - Easy to identify errors and fix them
- Disadvantages
 - Extremely labor-intensive to create
 - Not robust to out of domain input
 - No partial output or analysis when failure occurs

Introduction to statistical models

- A better strategy is to use data-driven methods
- Basic idea: learn from a large corpus of examples of what we wish to model (*Training Data*)
- Advantages
 - More robust to the complexities of real-world input
 - Creating training data is usually cheaper than creating rules
 - Even easier today thanks to Amazon Mechanical Turk
 - Data may already exist for independent reasons
- Disadvantages
 - Systems often behave differently compared to expectations
 - Hard to understand the reasons for errors or debug errors

Introduction to statistical models

- Learning from training data usually means estimating the parameters of the statistical model
- Estimation usually carried out via machine learning
- Two kinds of machine learning algorithms
- Supervised learning
 - Training data consists of the inputs and respective outputs (labels)
 - Labels are usually created via expert annotation (expensive)
 - Difficult to annotate when predicting more complex outputs
- Unsupervised learning
 - Training data just consists of inputs. No labels.
 - One example of such an algorithm: Expectation Maximization

Hidden Markov Models (HMMs)

A very useful and popular statistical model

Finite State Machines

- What do we need to specify an FSM formally ?
 - Finite number of states
 - Transitions
 - Input alphabet
 - Start state
 - Final state(s)

Real World Knowledge

Weighted FSMs

'a' is twice as likely to be seen in state 1 as 'b' or 'c'

'c' is three times as likely to be seen in state 2 as 'a'

What do we get out of it ?

score('ab') = 2, score('bc') = 3

Real World Knowledge

Probabilistic FSMs

'a' is twice as likely to be seen in state 1 as 'b' or 'c'

'c' is three times as likely to be seen in state 2 as 'a'

What do we get out of it ?

P('ab') = 0.50 * 1.00 = 0.5, P('bc') = 0.25 * 0.75 = 0.1875

Markov Chains

- This not a valid prob. FSM!
 - No start states
- Use prior probabilities
- Note that prob. of being in any state ONLY depends on previous state ,i.e., the (1st order) Markov assumption

 $P(q_i|q_1, q_2, \dots, q_{i-1}) = P(q_i|q_{i-1})$

- This extension of a prob. FSM is called a *Markov Chain* or an *Observed Markov Model*
- Each state corresponds to an observable physical event

Are states always observable?

Here's what you actually observe:

Day: 1, 2, 3, 4, 5, 6
$$\uparrow \downarrow \leftrightarrow \uparrow \downarrow \leftrightarrow \uparrow \downarrow \leftrightarrow$$

↑: Market is up ↓: Market is down

⇔: Market hasn't changed

<u>Hidden</u> Markov Models

- Markov chains are usually inadequate
- Need to model problems where observed events don't correspond to states directly
- Instead observations = $f_p(states)$ for some p.d.f p
- Solution: A Hidden Markov Model (HMM)
 - Assume two probabilistic processes
 - Underlying process is hidden (states = hidden events)
 - Second process produces sequence of observed events

Formalizing HMMs

- An HMM λ = (A, B, \prod) is characterized by:
 - Set of N states $\{q_1, q_2, ..., q_N\}$
 - N x N Transition probability matrix $A = [a_{ij}]$

$$a_{ij} = p(q_j | q_i), \quad \sum_i a_{ij} = 1 \quad orall i$$

- Sequence of observations o₁, o₂, ... o_T, each drawn from a given set of symbols (vocabulary V)
- N x |V| Emission probability matrix, B = [b_{it}]

 $b_{it} = b_i(o_t) = p(o_t|q_i)$

• N x 1 Prior probabilities vector $\prod = \{ \prod_1, \prod_2, ..., \prod_N \}$

$$\sum_{i=1}^N \pi_i = 1$$

Things to know about HMMs

• The (first-order) Markov assumption holds $P(q_i|q_1, q_2, ..., q_{i-1}) = P(q_i|q_{i-1})$

 The probability of an output symbol depends only on the state generating it

$$P(o_t|q_1, q_2, \dots, q_N, o_1, o_2, \dots, o_T) = P(o_t|q_i)$$

• The number of states (N) does not have to equal the number of observations (T)

Stock Market HMM

States ✓ Transitions ✓ Valid ✓ Vocabulary ✓ Emissions ✓ Valid ✓ Priors ✓ Valid ✓

 $V = \{\uparrow, \downarrow, \leftrightarrow\}$

Applying HMMs

- 3 problems to solve before HMMs can be useful
 - Given an HMM λ = (A, B, Π), and a sequence of observed events O, find P(O| λ) [Likelihood]
 - Given an HMM λ = (A, B, ∏), and an observation sequence O, find the most likely (hidden) state sequence [Decoding]
 - Given a set of observation sequences and the set of states Q in λ, compute the parameters A and B. [Training]

Computing Likelihood

Assuming λ_{stock} models the stock market, how likely is it that on day 1, the market is up, on day 2, it's down etc. ? Markov Chain?

Computing Likelihood

- Sounds easy!
- Sum over all possible ways in which we could generate O from $\boldsymbol{\lambda}$

$$P(O|\lambda) = \sum_{Q} P(O, Q|\lambda) = \sum_{Q} P(O|Q, \lambda) P(Q|\lambda)$$
$$= \sum_{q_1, q_2 \dots q_T} \pi_{q_1} b_{q_1}(o_1) a_{q_1 q_2} \dots a_{q_{T-1} q_T} b_{q_T}(o_T)$$

Takes exponential ($\propto N^T$) time to compute ! Right idea, wrong algorithm !

Computing Likelihood

- What are we doing wrong ?
- State sequences may have a lot of overlap
- We are recomputing the shared bits every time
- Need to store intermediate computation results somehow so that they can be used
- Requires a Dynamic Programming algorithm

Forward Algorithm

- Use an N x T *trellis* or chart $[\alpha_{ti}]$
- α_{tj} or α_t(j) = P(being in state j after seeing t observations) = p(o₁, o₂, ... o_t, q_t=j)
- Each cell = \sum extensions of all paths from other cells

$$lpha_t(j) = \sum_{i=1}^N lpha_{t-1}(i) a_{ij} b_j(o_t)$$

- $\alpha_{t-1}(i)$: forward path probability until (t-1)
- a_{ij} : transition probability of going from state i to j
- b_j(o_t) : probability of emitting symbol ot in state j
- $P(O|\lambda) = \sum_{i} \alpha_{T}(i)$
- Polynomial time (∝ N²T)

Forward Algorithm

- Formal Definition
 - Initialization

$$\alpha_1(j) = \pi_j b_j(o_1), 1 \le j \le N$$

Doouroion

$$\begin{array}{c} q_{1} \\ q_{2} \\ q_{3} \\ \vdots \\ q_{N} \\ (t-1) \\ \alpha_{(t-1)}(l) \end{array} \qquad \begin{array}{c} a_{1j} \\ a_{2j} \\ a_{3j} \\ a_{3j} \\ \vdots \\ a_{Nj} \\ a_{Nj}$$

Recursion

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i)a_{ij}b_j(o_t); 1 \le j \le N, 2 \le t \le T$$

• Termination $P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$

Forward Algorithm

Static

Forward Algorithm (Initialization)

Forward Algorithm (Recursion)

Forward Algorithm (Recursion)

Forward Algorithm (Recursion)

Decoding

Given λ_{stock} as our model and O as our observations, what are the most likely states the market went through to produce O ?

Decoding

- "Decoding" because states are hidden
- There's a simple way to do it
 - For each possible hidden state sequence, compute P(O) using "forward algorithm"
 - Pick the one that gives the highest P(O)
- Will this give the right answer?
- Is it practical ?

- Another dynamic programming algorithm
- Same idea as the forward algorithm
 - Store intermediate computation results in a trellis
 - Build new cells from existing cells
- Efficient (polynomial vs. exponential)

- Use an N x T trellis $[v_{tj}]$
- v_{tj} or v_t(j) = P(in state j after seeing t observations & passing through the most likely state sequence so far) = p(q₁, q₂, ..., q_{t-1}, q_t=j, o₁, o₂, ... o_t)
- Each cell = extension of most likely path from other cells

$$v_t(j) = \max_{i=1}^N v_{t-1}(i)a_{ij}b_j(o_t)$$

- v_{t-1}(i): viterbi probability until time (t-1)
- a_{ij}: transition probability of going from state i to j
- b_j(o_t) : probability of emitting symbol ot in state j
- $P = max_i v_T(i)$

- Maximization instead of summation over previous paths
- This algorithm is still missing something !
- Unlike forward alg., we need something else in addition to the probability !
 - Need to keep track which previous cell we chose
 - At the end, follow the chain of backpointers and we have the most likely state sequence too !
 - $q_T^* = argmax_i v_T(i); q_t^* = the state q_{t+1}^* points to$

- Formal Definition
 - Initialization

$$v_1(i) = \pi_i b_i(o_1); 1 \le i \le N$$
$$BT_1(i) = 0$$

Recursion

 $v_{t}(j) = \max_{i=1}^{N} [v_{t-1}(i)a_{ij}] b_{j}(o_{t}); 1 \le i \le N, 2 \le t \le T$ $BT_{t}(j) = \arg \max_{i=1}^{N} [v_{t-1}(i)a_{ij}]$ Termination $P^{*} = \max_{i=1}^{N} v_{T}(i)$ $q_{T}^{*} = \arg \max_{i=1}^{N} v_{T}(i)$

Static

Viterbi Algorithm (Initialization)

states

Viterbi Algorithm (Recursion)

t=3

states

Viterbi Algorithm (Recursion)

Viterbi Algorithm (Recursion)

states

Viterbi Algorithm (Termination)

Viterbi Algorithm (Termination)

Why are HMMs useful?

- Models of data that is ordered *sequentially*
 - Recall sequence of market up/down/static observations
- Other more useful sequences
 - Words in a sentence
 - Base pairs in a gene
 - Letters in a word
- Have been used for almost everything
 - Automatic speech recognition
 - Stock market forecasting (you thought I was joking?!)
 - Aligning words in a bilingual parallel text
 - Tagging words with parts of speech

Md. Rafiul Hassan and Baikunth Nath. *Stock Market Forecasting Using Hidden Markov Models: A New Approach*. Proceedings of the International Conference on Intelligent Systems Design and Applications.

Part of Speech Tagging

- Parts of speech are well recognized linguistic entities
- The Art of Grammar circa 100 B.C.
 - Written to allow post-Classical Greek speakers to understand Odyssey and other classical poets
 - 8 *classes* of words [Noun, Verb, Pronoun, Article, Adverb, Conjunction, Participle, Preposition]
 - Remarkably enduring list
- Occur in almost every language
- Defined primarily in terms of syntactic and morphological criteria (affixes)

Two broad categories of POS tags

• Closed Class:

- Relatively fixed membership
- Conjunctions, Prepositions, Auxiliaries, Determiners, Pronouns ...
- Function words: short and used primarily for structuring
- Open Class:
 - Nouns, Verbs, Adjectives, Adverbs
 - Frequent neologisms (borrowed/coined)

- Several English tagsets have been developed
- Vary in number of tags
 - Brown Tagset (87)
 - Penn Treebank (45) [More common]
- Language specific
 - Simple morphology = more ambiguity = smaller tagset
- Size depends on language and purpose

POS Tagging: The process of assigning "one" POS or other lexical class marker to each word in a corpus

Why do POS tagging?

- Corpus-based Linguistic Analysis & Lexicography
- Information Retrieval & Question Answering
- Automatic Speech Synthesis
- Word Sense Disambiguation
- Shallow Syntactic Parsing
- Machine Translation

Why is POS tagging hard?

- Not really a lexical problem
- Sequence labeling problem
- Treating it as lexical problem runs us smack into the wall of ambiguity

I thought that you	(that: conjunction)
That day was nice	(that: determiner)
You can go that far	(that: adverb)

HMMs & POS Tagging

Modeling the problem

- What should the HMM look like?
 - States: Part-of-Speech Tags (t₁, t₂, ... t_N)
 - Output symbols: Words (w₁, w₂, ..., w_M)
- Can an HMM find the best tagging for a given sentence ?
 - Yes ! Viterbi Decoding (best = most likely)
- Once we have an HMM model, tagging lots of data is embarrassingly parallel: a tagger in each mapper
- The HMM machinery gives us (almost) everything we need to solve the problem

HMM Training

- Almost everything ?
- Before HMMs can decode, they must be trained, i.e., (A, B, □) must be computed
- Recall the two types of training?
 - Supervised training: Use a large corpus of already tagged words as training data; count stuff; estimate model parameters
 - Unsupervised training: Use a corpus of untagged words; bootstrap parameter estimates; improve estimates iteratively

Supervised Training

- We have training data, i.e., thousands of sentences with their words already tagged
- Given this data, we already have the set of states and symbols
- Next, compute Maximum Likelihood Estimates (MLEs) for the various parameters
- Those estimates of the parameters that maximize the likelihood that the training data was actually generated by our model

Supervised Training

- Transition Probabilities
 - Any $P(t_i | t_{i-1}) = C(t_{i-1}t_i) / \Sigma_{t'}C(t_{i-1}t')$ from the training data
 - For P(NN|VB), count how many times a noun follows a verb and divide by the the number of times anything else follows a verb
- Emission Probabilities
 - Any $P(w_i | t_i) = C(w_i, t_i) / \Sigma_{w'} C(w', t_i)$ from the training data
 - For P(bank|NN), count how many times the word bank was seen tagged as a noun and divide by the number of times anything was seen tagged as a noun
- Priors
 - The prior probability of any state (tag)
 - For ∏_{noun}, count the number of times a noun occurs and divide by the total number of words in the corpus

Supervised Training in MapReduce

- Recall that we computed relative frequencies of words in MapReduce using the Stripes design
- Estimating HMM parameters via supervised training is identical

$$f(B|A) = \frac{c(A,B)}{\sum_{B'} c(A,B')} \quad \text{(Eqn 3.1, p. 51)}$$

$$p(t_i|t_{i-1}) = \frac{c(t_{i-1},t_i)}{\sum_{t'} c(t_{i-1},t')} \quad p(w_i|t_i) = \frac{c(w_i,t_i)}{\sum_{w'} c(w',t_i)}$$

$$\pi_i = \frac{c(t_i)}{N} \quad \text{Priors is like counting words}$$

Unsupervised Training

- No labeled/tagged training data
- No way to compute MLEs directly
- Make an initial guess for parameter values
- Use this guess to get a better estimate
- Iteratively improve the estimate until some convergence criterion is met

EXPECTATION MAXIMIZATION (EM)

Expectation Maximization

- A fundamental tool for unsupervised machine learning techniques
- Forms basis of state-of-the-art systems in MT, Parsing, WSD, Speech Recognition and more
- Seminal paper (with a very instructive title) Maximum Likelihood from Incomplete Data via the EM algorithm, JRSS, Dempster et al., 1977

Motivating Example

- Let observed events be the grades given out in, say, this class
- Assume grades are generated by a probabilistic model described by single parameter µ
- P(A) = 1/2, $P(B) = \mu$, $P(C) = 2\mu$, $P(D) = 1/2 3\mu$
- Number of 'A's observed = 'a', 'b' number of 'B's etc.
- Compute MLE of µ given 'a', 'b', 'c' and 'd'

Motivating Example

- Recall the definition of MLE
 ".... maximizes likelihood of data given the model."
- P(data|model)= P(a,b,c,d|µ) = K(1/2)^a(µ)^b(2µ)^c(1/2-3µ)^d
 [independent and identically distributed]
- L = log-likelihood = log P(a,b,c,d| μ) = a log(1/2) + b log μ + c log 2 μ + d log(1/2-3 μ)
- How to maximize L w.r.t μ ? [Think Calculus]
- $\delta L/\delta \mu = 0$; $(b/\mu) + (2c/2\mu) (3d/(1/2 3\mu)) = 0$
- $\mu = (b+c)/6(b+c+d)$ [Note missing 'a']
- We got our answer without EM. Boring !

Motivating Example

- P(A) = 1/2, $P(B) = \mu$, $P(C) = 2\mu$, $P(D) = 1/2 3\mu$
- Number of 'A's and 'B's = h, c 'C's and d 'D's
- Part of the observable information is hidden
- Can we compute the MLE for µ now?
- If we knew 'b' (and hence 'a'), we could compute the MLE for µ. But we need to know µ to know how the model generates 'a' and 'b'.
- Circular enough for you?

The EM Algorithm

- Start with an initial guess for μ (μ 0)
- t = 1; Repeat
 - $b_t = \mu_{(t-1)}h/(1/2 + \mu_{(t-1))}$ [E-step: Compute expected value of b given μ]
 - $\mu_t = (b_t + c)/6(b_t + c + d)$ [M-step: Compute MLE of μ given b]
 - t = t + 1
- Until some convergence criterion is met

The EM Algorithm

- Algorithm to compute MLEs for model parameters when information is hidden
- Iterate between Expectation (E-step) and Maximization (M-step)
- Each iteration is guaranteed to increase the log-likelihood of the data (improve the estimate)
- Good news: It will <u>always</u> converge to a maximum
- Bad news: It will always converge to <u>a</u> maximum

Applying EM to HMMs

- Just the intuition; No gory details
- Hidden information (the state sequence)
- Model Parameters: A, B & ∏
- Introduce two new observation statistics:
 - Number of transitions from q_i to q_j (ξ)
 - Number of times in state $q_i(\gamma)$
- The EM algorithm should now apply perfectly

Applying EM to HMMs

- Start with initial guesses for A, B and \square
- t = 1; Repeat
 - E-step: Compute expected values of ξ , γ using A_t , B_t , \prod_t
 - M-step: Compute MLE of A, B and \prod using ξ_t , γ_t
 - t = t + 1
- Until some specified convergence criterion is met
- Optional: Read Section 6.2 in Lin & Dyer for gory details

EM in MapReduce

- Each iteration of EM is one MapReduce job
- A driver program spawns MR jobs, keeps track of the number of iterations and convergence criteria
- Model parameters static for the duration of each job are loaded by each mapper from HDFS
- Mappers map over independent instances from training data to do computations from E-step
- Reducers sum together stuff from mappers to solve equations from M-step
- Combiners are important to sum together the training instances in memory and reduce disk I/O

Source: Wikipedia (Japanese rock garden)