
Hidden Markov Models & EM 
Data-Intensive Information Processing Applications ― Session #8 

Nitin Madnani 
University of Maryland 

Tuesday, March 30, 2010 

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States 
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details 



Source: Wikipedia (Japanese rock garden) 



Today’s Agenda 
  Need to cover lots of background material 

  Introduction to Statistical Models 
  Hidden Markov Models 
  Part of Speech Tagging 
  Applying HMMs to POS tagging 
  Expectation-Maximization (EM) Algorithm 

  Now on to the Map Reduce stuff 
  Training HMMs using MapReduce 

•  Supervised training of HMMs 
•  Rough conceptual sketch of unsupervised training using EM 



Introduction to statistical models 
  Until the 1990s, text processing relied on rule-based 

systems 

  Advantages 
  More predictable 
  Easy to understand 
  Easy to identify errors and fix them 

  Disadvantages 
  Extremely labor-intensive to create 
  Not robust to out of domain input 
  No partial output or analysis when failure occurs 



Introduction to statistical models 
  A better strategy is to use data-driven methods 

  Basic idea: learn from a large corpus of examples of what 
we wish to model (Training Data) 

  Advantages 
  More robust to the complexities of real-world input 
  Creating training data is usually cheaper than creating rules 

•  Even easier today thanks to Amazon Mechanical Turk 
•  Data may already exist for independent reasons 

  Disadvantages 
  Systems often behave differently compared to expectations 
  Hard to understand the reasons for errors or debug errors 



Introduction to statistical models 
  Learning from training data usually means estimating the 

parameters of the statistical model 

  Estimation usually carried out via machine learning 

  Two kinds of machine learning algorithms 

  Supervised learning 
  Training data consists of the inputs and respective outputs (labels) 
  Labels are usually created via expert annotation (expensive) 
  Difficult to annotate when predicting more complex outputs 

  Unsupervised learning 
  Training data just consists of inputs. No labels. 
  One example of such an algorithm: Expectation Maximization 



Hidden Markov Models (HMMs) 

A very useful and popular statistical model 



Finite State Machines 
  What do we need to specify an FSM formally ? 

  Finite number of states 
  Transitions 
  Input alphabet 
  Start state 
  Final state(s) 



Real World Knowledge 

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’ 
‘c’ is three times as likely to be seen in state 2 as ‘a’ 

Weighted FSMs 

2 

1 

1 

1 

3 

1 

What do we get out of it ? 

score(‘ab’) = 2, score(‘bc’) = 3 



Real World Knowledge 

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’ 
‘c’ is three times as likely to be seen in state 2 as ‘a’ 

Probabilistic FSMs 

What do we get out of it ? 

P(‘ab’) = 0.50 * 1.00 = 0.5, P(‘bc’) = 0.25 * 0.75 = 0.1875 

0.5 

0.25 

0.25 

0.25 

0.75 

1.0 



Markov Chains 
  This not a valid prob. FSM! 

  No start states 
  Use prior probabilities 
  Note that prob. of being in 

any state ONLY depends on 
previous state ,i.e., the (1st 
order) Markov assumption 

  This extension of a prob. 
FSM is called a Markov 
Chain or an Observed 
Markov Model 

  Each state corresponds to 
an observable physical 
event 

0.5!

0.2! 0.3!



Are states always observable? 

1, 2, 3, 4, 5, 6 Day: 

Bu, Be, S, Be, S, Bu 

 Bu:  Bull Market 
 Be:  Bear Market 
 S  :  Static Market 

Here’s what you actually observe: 

1, 2, 3, 4, 5, 6 Day:  ↑:  Market is up 
 ↓:  Market is down 
 ↔: Market hasn’t changed 

↑ ↓  ↔ ↑ ↓ ↔ 

↑  ↓  ↔  ↑  ↓  ↔ 



Hidden Markov Models 
  Markov chains are usually inadequate 

  Need to model problems where observed events don’t 
correspond to states directly 

  Instead observations = fp(states) for some p.d.f p 

  Solution: A Hidden Markov Model (HMM) 
  Assume two probabilistic processes 
  Underlying process is hidden (states = hidden events) 
  Second process produces sequence of observed events 



Formalizing HMMs 
  An HMM λ = (A, B, ∏) is characterized by: 

  Set of N states {q1, q2, ..., qN} 
  N x N Transition probability matrix A = [aij] 

  Sequence of observations o1, o2, ... oT, each drawn from a given 
set of symbols (vocabulary V) 

  N x |V| Emission probability matrix, B = [bit] 

  N x 1 Prior probabilities vector ∏ = { ∏1, ∏2, ..., ∏N }  



Things to know about HMMs 
  The (first-order) Markov assumption holds 

  The probability of an output symbol depends only on the 
state generating it 

  The number of states (N) does not have to equal the 
number of observations (T) 



Stock Market HMM 

States ✓ 
Transitions ✓ 

Valid ✓ 

Vocabulary ✓ 




P (↑ |Bear) = 0.1
P (↓ |Bear) = 0.6
P (↔ |Bear) = 0.3








P (↑ |Bull) = 0.7
P (↓ |Bull) = 0.1
P (↔ |Bull) = 0.2








P (↑ |Static) = 0.3
P (↓ |Static) = 0.3
P (↔ |Static) = 0.4





Emissions ✓ 
Valid ✓ 

∏1=0.5! ∏2=0.2! ∏3=0.3!

Priors ✓ 
Valid ✓ 



Applying HMMs 
  3 problems to solve before HMMs can be useful 

  Given an HMM λ = (A, B, ∏), and a sequence of observed events 
O, find P(O| λ) [ Likelihood ] 

  Given an HMM λ = (A, B, ∏), and an observation sequence O, find 
the most likely (hidden) state sequence [ Decoding ] 

  Given a set of observation sequences and the set of states Q in λ, 
compute the parameters A and B. [ Training ] 



Computing Likelihood 

1 2 3 4 5 6  

↑ ↓ ↔ ↑ ↓ ↔ 

t: 

O: 

Assuming λstock models the stock market, how likely is it  
that on day 1, the market is up, on day 2, it’s down etc. ? 




P (↑ |Bear) = 0.1
P (↓ |Bear) = 0.6
P (↔ |Bear) = 0.3








P (↑ |Bull) = 0.7
P (↓ |Bull) = 0.1
P (↔ |Bull) = 0.2








P (↑ |Static) = 0.3
P (↓ |Static) = 0.3
P (↔ |Static) = 0.4





∏1=
0.5!

∏2=
0.2!

∏3=
0.3!

Markov Chain? 

λstock 



Computing Likelihood 
  Sounds easy! 

  Sum over all possible ways in which we could generate O 
from λ 

Takes exponential (∝ NT) time to compute ! 
Right idea, wrong algorithm ! 



Computing Likelihood 
  What are we doing wrong ? 

  State sequences may have a lot of overlap 

  We are recomputing the shared bits every time 

  Need to store intermediate computation results somehow 
so that they can be used 

  Requires a Dynamic Programming algorithm 

20 



Forward Algorithm 
  Use an N x T trellis or chart [αtj] 

  αtj or αt(j) = P(being in state j after seeing t observations) = 
p(o1, o2, ... ot, qt=j) 

  Each cell = ∑ extensions of all paths from other cells 

  αt-1(i): forward path probability until (t-1) 
  aij : transition probability of going from state i to j 
  bj(ot) : probability of emitting symbol ot in state j 

  P(O|λ) = ∑i αT(i) 

  Polynomial time (∝ N2T) 



Forward Algorithm 
  Formal Definition 

  Initialization 

  Recursion 

  Termination 

22 



2
3 

Forward Algorithm 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

↑ ↓ ↑ O = 

find P(O|λstock) 



2
4 

Forward Algorithm (Initialization) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 



2
5 

Forward Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0145 

α1(Bu) * aBuBu * bBu(↓) 
0.14 * 0.6 * 0.1=0.0084 

∑ 

.... and so on 



2
6 

Forward Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0145 

0.0312 

0.0249 

0.024 

0.0014
75 

0.0064
77 



2
7 

Forward Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0145 

0.0312 

0.0249 

0.024 

0.0014
75 

0.0064
77 

∑ 
P(O) = 0.03195 



Decoding 

1 2 3 4 5 6  

↑ ↓ ↔ ↑ ↓ ↔ 

t: 

O: 

Given λstock as our model and O as our observations, what are the most 
likely states the market went through to produce O ? 




P (↑ |Bear) = 0.1
P (↓ |Bear) = 0.6
P (↔ |Bear) = 0.3








P (↑ |Bull) = 0.7
P (↓ |Bull) = 0.1
P (↔ |Bull) = 0.2








P (↑ |Static) = 0.3
P (↓ |Static) = 0.3
P (↔ |Static) = 0.4





∏1=
0.5!

∏2=
0.2!

∏3=
0.3!

λstock 



Decoding 
  “Decoding” because states are hidden 

  There’s a simple way to do it 
  For each possible hidden state sequence, compute P(O) using 

“forward algorithm” 
  Pick the one that gives the highest P(O) 

  Will this give the right answer ? 

  Is it practical ? 

29 



Viterbi Algorithm 
  Another dynamic programming algorithm 

  Same idea as the forward algorithm 
  Store intermediate computation results in a trellis 
  Build new cells from existing cells 

  Efficient (polynomial vs. exponential) 

30 



Viterbi Algorithm 
  Use an N x T trellis [vtj] 

  vtj or vt(j) = P(in state j after seeing t observations & 
passing through the most likely state sequence so far)  
= p(q1, q2, ..., qt-1, qt=j, o1, o2, ... ot) 

  Each cell = extension of most likely path from other cells 

  vt-1(i): viterbi probability until time (t-1) 
  aij : transition probability of going from state i to j 
  bj(ot) : probability of emitting symbol ot in state j 

  P = maxi vT(i) 

31 



Viterbi Algorithm 
  Maximization instead of summation over previous paths 

  This algorithm is still missing something ! 

  Unlike forward alg., we need something else in addition to 
the probability !  
  Need to keep track which previous cell we chose 
  At the end, follow the chain of backpointers and we have the most 

likely state sequence too ! 
  qT* = argmaxi vT(i); qt* = the state qt+1* points to 

32 



Viterbi Algorithm 
  Formal Definition 

  Initialization 

  Recursion 

  Termination Why no b() ? 



3
4 

Viterbi Algorithm 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

↑ ↓ ↑ O = 
find most likely given state sequence 



3
5 

Viterbi Algorithm (Initialization) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 



3
6 

Viterbi Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

v1(Bu) * aBuBu * bBu(↓) 
0.14 * 0.6 * 0.1=0.0084 

max 



3
7 

Viterbi Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

.... and so on 



3
8 

Viterbi Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

0.0168 

0.0135 

0.0058
8 

0.0005
04 

0.0020
2 



3
9 

Viterbi Algorithm (Termination) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

0.0168 

0.0135 

0.0058
8 

0.0005
04 

0.0020
2 



4
0 

Viterbi Algorithm (Termination) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

0.0168 

0.0135 

0.0058
8 

0.0005
04 

0.0020
2 

Most likely state sequence 
 [ Bull, Bear, Bull ], P = 0.00588 



Why are HMMs useful? 
  Models of data that is ordered sequentially 

  Recall sequence of market up/down/static observations 

  Other more useful sequences 
  Words in a sentence 
  Base pairs in a gene 
  Letters in a word 

  Have been used for almost everything 
  Automatic speech recognition 
  Stock market forecasting (you thought I was joking?!) 
  Aligning words in a bilingual parallel text 
  Tagging words with parts of speech 

Md. Rafiul Hassan and Baikunth Nath. Stock Market Forecasting Using Hidden Markov Models: A New Approach. 
Proceedings of the International Conference on Intelligent Systems Design and Applications. 



Part of Speech Tagging 



Part of Speech (POS) Tagging 
  Parts of speech are well recognized linguistic entities 

  The Art of Grammar circa 100 B.C. 
  Written to allow post-Classical Greek speakers to understand 

Odyssey and other classical poets 
  8 classes of words 

[Noun, Verb, Pronoun, Article, Adverb, Conjunction, Participle, 
Preposition] 

  Remarkably enduring list 

  Occur in almost every language 

  Defined primarily in terms of syntactic and morphological 
criteria (affixes) 



Part of Speech (POS) Tagging 
  Two broad categories of POS tags 

  Closed Class: 
  Relatively fixed membership 
  Conjunctions, Prepositions, Auxiliaries, Determiners, Pronouns … 
  Function words: short and used primarily for structuring 

  Open Class: 
  Nouns, Verbs, Adjectives, Adverbs 
  Frequent neologisms (borrowed/coined) 



Part of Speech (POS) Tagging 
  Several English tagsets have been developed 

  Vary in number of tags 
  Brown Tagset (87) 
  Penn Treebank (45) [More common] 

  Language specific 
  Simple morphology = more ambiguity = smaller tagset 

  Size depends on language and purpose 



Part of Speech (POS) Tagging 

POS Tagging: The process of assigning “one” POS or other lexical  
class marker to each word in a corpus 



Why do POS tagging? 
  Corpus-based Linguistic Analysis & Lexicography 

  Information Retrieval & Question Answering 

  Automatic Speech Synthesis 

  Word Sense Disambiguation 

  Shallow Syntactic Parsing  

  Machine Translation 



Why is POS tagging hard? 
  Not really a lexical problem 

  Sequence labeling problem 

  Treating it as lexical problem runs us smack into the wall 
of ambiguity 

I thought that you ...   (that: conjunction) 
That day was nice      (that: determiner) 
You can go that far     (that: adverb) 



HMMs & POS Tagging 



Modeling the problem 
  What should the HMM look like? 

  States: Part-of-Speech Tags (t1, t2, … tN) 
  Output symbols: Words (w1, w2, …, wM) 

  Can an HMM find the best tagging for a given sentence ? 
  Yes ! Viterbi Decoding (best = most likely) 

  Once we have an HMM model, tagging lots of data is 
embarrassingly parallel: a tagger in each mapper 

  The HMM machinery gives us (almost) everything we 
need to solve the problem 



HMM Training 
  Almost everything ? 

  Before HMMs can decode, they must be trained, i.e., (A, 
B, ∏) must be computed 

  Recall the two types of training? 

  Supervised training: Use a large corpus of already tagged words 
as training data; count stuff;  estimate model parameters 

  Unsupervised training: Use a corpus of untagged words; bootstrap 
parameter estimates; improve estimates iteratively  



Supervised Training 
  We have training data, i.e., thousands of sentences with 

their words already tagged 

  Given this data, we already have the set of states and 
symbols 

  Next, compute Maximum Likelihood Estimates (MLEs) for 
the various parameters 

  Those estimates of the parameters that maximize the 
likelihood that the training data was actually generated by 
our model 

52 



Supervised Training 
  Transition Probabilities 

  Any P(ti | ti-1) = C(ti-1ti)/Σt’C(ti-1t’) from the training data 
  For P(NN|VB), count how many times a noun follows a verb and 

divide by the the number of times anything else follows a verb 

  Emission Probabilities 
  Any P(wi | ti) = C(wi,ti)/Σw’C(w’, ti) from the training data 
  For P(bank|NN), count how many times the word bank was seen 

tagged as a noun and divide by the number of times anything was 
seen tagged as a noun 

  Priors 
  The prior probability of any state (tag) 
  For ∏noun, count the number of times a noun occurs and divide by 

the total number of words in the corpus 

53 



Supervised Training in MapReduce 
  Recall that we computed relative frequencies of words in 

MapReduce using the Stripes design 

  Estimating HMM parameters via supervised training is 
identical   

f(B|A) =
c(A,B)�
B� c(A,B�)

(Eqn 3.1, p. 51) 

p(ti|ti−1) =
c(ti−1, ti)�
t� c(ti−1, t�)

p(wi|ti) =
c(wi, ti)�
w� c(w�, ti)

πi =
c(ti)

N
Priors is like counting words 



Unsupervised Training 
  No labeled/tagged training data 

  No way to compute MLEs directly 

  Make an initial guess for parameter values 

  Use this guess to get a better estimate 

  Iteratively improve the estimate until some convergence 
criterion is met 

EXPECTATION MAXIMIZATION (EM) 



Expectation Maximization 
  A fundamental tool for unsupervised machine learning 

techniques 

  Forms basis of state-of-the-art systems in MT, Parsing, 
WSD,  Speech Recognition and more  

  Seminal paper (with a very instructive title) 
Maximum Likelihood from Incomplete Data via the EM 
algorithm, JRSS, Dempster et al., 1977 

56 



Motivating Example 
  Let observed events be the grades given out in, say, this 

class 

  Assume grades are generated by a probabilistic model 
described by single parameter µ 

  P(A) = 1/2, P(B) = µ, P(C) = 2µ, P(D) = 1/2 - 3µ 

  Number of ‘A’s observed = ‘a’, ‘b’ number of ‘B’s etc. 

  Compute MLE of µ given ‘a’, ‘b’, ‘c’ and ‘d’ 

Adapted from Andrew Moore’s Slides 
http://www.autonlab.org/tutorials/gmm.html 



Motivating Example 
  Recall the definition of MLE 

“.... maximizes likelihood of data given the model.” 

  P(data|model)= P(a,b,c,d|µ) = K(1/2)a(µ)b(2µ)c(1/2-3µ)d 
[independent and identically distributed] 

  L = log-likelihood = log P(a,b,c,d|µ)  
    = a log(1/2) + b log µ + c log 2µ + d log(1/2-3µ)  

  How to maximize L w.r.t µ ? [ Think Calculus ] 

  δL/δµ = 0; (b/µ) + (2c/2µ) - (3d/(1/2 - 3µ)) = 0 

  µ = (b+c)/6(b+c+d) [Note missing ‘a’ ] 

  We got our answer without EM. Boring ! 



Motivating Example 
  P(A) = 1/2, P(B) = µ, P(C) = 2µ, P(D) = 1/2 - 3µ 

  Number of ‘A’s and ‘B’s = h, c ‘C’s and d ‘D’s 

  Part of the observable information is hidden 

  Can we compute the MLE for µ now? 

  If we knew ‘b’ (and hence ‘a’), we could compute the MLE 
for µ. But we need to know µ to know how the model 
generates ‘a’ and ‘b’. 

  Circular enough for you? 



The EM Algorithm 
   Start with an initial guess for µ (µ0) 

   t = 1; Repeat 
    bt = µ(t-1)h/(1/2 + µ(t-1)) 

        [E-step: Compute expected value of b given µ ] 

    µt = (bt + c)/6(bt + c + d)  
        [M-step: Compute MLE of µ given b ] 

    t = t + 1 

   Until some convergence criterion is met 



The EM Algorithm 
  Algorithm to compute MLEs for model parameters when 

information is hidden 

  Iterate between Expectation (E-step) and Maximization 
(M-step) 

  Each iteration is guaranteed to increase the log-likelihood 
of the data (improve the estimate) 

  Good news: It will always converge to a maximum 

  Bad news: It will always converge to a maximum 

61 



Applying EM to HMMs 
  Just the intuition; No gory details 

  Hidden information (the state sequence) 

  Model Parameters: A, B & ∏ 

  Introduce two new observation statistics: 
  Number of transitions from qi to qj (ξ) 
  Number of times in state qi (γ) 

  The EM algorithm should now apply perfectly  

62 



Applying EM to HMMs 
  Start with initial guesses for A, B and ∏ 

  t = 1; Repeat 
   E-step: Compute expected values of ξ, γ using At, Bt, ∏t 

   M-step: Compute MLE of A, B and ∏ using ξt, γt 

    t = t + 1 

  Until some specified convergence criterion is met 

  Optional: Read Section 6.2 in Lin & Dyer for gory details 

6
3 

Baum-Welch Algorithm 



EM in MapReduce 
  Each iteration of EM is one MapReduce job 

  A driver program spawns MR jobs, keeps track of the 
number of iterations and convergence criteria 

  Model parameters static for the duration of each job are 
loaded by each mapper from HDFS 

  Mappers map over independent instances from training 
data to do computations from E-step 

  Reducers sum together stuff from mappers to solve 
equations from M-step 

  Combiners are important to sum together the training 
instances in memory and reduce disk I/O 



Source: Wikipedia (Japanese rock garden) 

Questions? 


