Data-Intensive Information Processing Applications — Session #8

Hidden Markov Models & EM

Nitin Madnani

@ University of Maryland

Tuesday, March 30, 2010

‘@ ®®@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

=

—
=
S
SN

S —

g\
G

S
N

—
o

St
S
-
SSSSES

o
=

e

——
——
=

=
o

dia (Japanese rock garden)

ikipe

il a_u.s%_ﬂ
L
e

)
"5,

i j

Source: W

i

Today’s Agenda

o Need to cover lots of background material

e Introduction to Statistical Models
e Hidden Markov Models

e Part of Speech Tagging

e Applying HMMs to POS tagging

e Expectation-Maximization (EM) Algorithm

o Now on to the Map Reduce stuff

e Training HMMs using MapReduce

» Supervised training of HMMs
* Rough conceptual sketch of unsupervised training using EM

Introduction to statistical models

o Until the 1990s, text processing relied on rule-based
systems

o Advantages

e More predictable
e Easy to understand
e Easy to identify errors and fix them

o Disadvantages

e Extremely labor-intensive to create
e Not robust to out of domain input
e No partial output or analysis when failure occurs

Introduction to statistical models

o A better strategy is to use data-driven methods

o Basic idea: learn from a large corpus of examples of what
we wish to model (Training Data)

o Advantages

e More robust to the complexities of real-world input
e Creating training data is usually cheaper than creating rules

« Even easier today thanks to Amazon Mechanical Turk
- Data may already exist for independent reasons

o Disadvantages

e Systems often behave differently compared to expectations
e Hard to understand the reasons for errors or debug errors

Introduction to statistical models

o Learning from training data usually means estimating the
parameters of the statistical model

o Estimation usually carried out via machine learning
o Two kinds of machine learning algorithms

o Supervised learning

e Training data consists of the inputs and respective outputs (labels)
e Labels are usually created via expert annotation (expensive)
e Difficult to annotate when predicting more complex outputs

o Unsupervised learning

e Training data just consists of inputs. No labels.
e One example of such an algorithm: Expectation Maximization

Hidden Markov Models (HMMs)

A very useful and popular statistical model

Finite State Machines

o What do we need to specify an FSM formally ?

e Finite number of states
e Transitions

e Input alphabet

e Start state

e Final state(s)

a

OO0y 0

Real World Knowledge

Weighted FSMs

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’

‘c’ is three times as likely to be seen in state 2 as ‘@’

What do we get out of it ?

score(‘ab’) = 2, score(‘bc’) =3

Real World Knowledge

Probabilistic FSMs

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’

‘c’ is three times as likely to be seen in state 2 as ‘@’

What do we get out of it ?

P(‘ab’) = 0.50 * 1.00 = 0.5, P(‘bc’) = 0.25 * 0.75 = 0.1875

Markov Chains

o This not a valid prob. FSM!
e No start states

o Use prior probabilities

o Note that prob. of being in
any state ONLY depends on
previous state ,i.e., the (18t
order) Markov assumption

P(qilg1,q2,--.,9i—1) = P(qi|gi-1)

o This extension of a prob.
FSM is called a Markov
Chain or an Observed
Markov Model

o Each state corresponds to
an observable physical
event

Are states always observable?

Day: 1,2,3,4,5,6

Bu, Be, S, Be, S, Bu

Bu: Bull Market
Be: Bear Market
S : Static Market

Here’s what you actually observe:

Day: 1,2,3,4,5,6

Tlell]l e

T: Market is up
}: Market is down
«—: Market hasn’t changed

Hidden Markov Models

o Markov chains are usually inadequate

o Need to model problems where observed events don't
correspond to states directly

o Instead observations = f (states) for some p.d.f p
o Solution: A Hidden Markov Model (HMM)

e Assume two probabilistic processes
e Underlying process is hidden (states = hidden events)
e Second process produces sequence of observed events

Formalizing HMMs

o An HMM A = (A, B, []) is characterized by:
e Set of N states {q4, 95, --.-, O}

e N x N Transition probability matrix A = [aij]
a;; = p(g;l:); Zazg =1 Vi

e Sequence of observatlons 04, O,, ... O, €ach drawn from a given
set of symbols (vocabulary V)

e N x |V| Emission probability matrix, B = [by]
bit = bi(0:) = p(ot|g:)
e N x 1 Prior probabilities vector [1= {1+, T2 ---» [x }

N
E m; = 1
i=1

Things to know about HMMs

o The (first-order) Markov assumption holds
P(qilq1, 2, - --,qi-1) = P(gilgi-1)

o The probability of an output symbol depends only on the
state generating it

P(Ot|QIaQ2a°°°3qN301902)°°°)0T) :P(OtIQZ)

o The number of states (N) does not have to equal the
number of observations (T)

Stock Market HVMM

P(1 |Bear) = 0.1
P(| |Bear) = 0.6
P(+ |Bear) = 0.3

|

P(71 |Static) = 0.3
P({ |Static) = 0.3
P(+ |Static) = 0.4

(} |Bull) = 0.1

P(1|Bull) = 0.7
P
P(« |Bull) = 0.2

V={Nl <}

|

States v
Transitions v
Valid v

Vocabulary v
Emissions v
Valid v

Priors v
Valid v

Applying HMMs

o 3 problems to solve before HMMs can be useful

e Givenan HMM A = (A, B, []), and a sequence of observed events
O, find P(O| A) [Likelihood]

e Givenan HMM A = (A, B, []), and an observation sequence O, find
the most likely (hidden) state sequence [Decoding]

e Given a set of observation sequences and the set of states Q in A,
compute the parameters A and B. [Training]

Computing Likelihood

t: 123456
O tletle

P(1 |Bull) = 0.7
P(} |Bull) = 0.1
P(+ |Bull) = 0.2

(4 |Static) = 0.3
< |Static) = 0.4

Tuv

(1 |Static) = 0.3]

)\stock

Assuming Astock models the stock market, how likely is it
that on day 1, the market is up, on day 2, it’s down etc. ?

Markov Chain?

Computing Likelihood

O Sounds easy!

o Sum over all possible ways in which we could generate O
from A

P(OI)) = ZPOQM) > _P(OIQ,)P@QN)
Q

= Z g, bgy (Ol)afhfh c Qg _1q70qr (OT)
q1,492...9T

Takes exponential (« NT) time to compute !
Right idea, wrong algorithm !

Computing Likelihood

o What are we doing wrong ?
o State sequences may have a lot of overlap
o We are recomputing the shared bits every time

o Need to store intermediate computation results somehow
so that they can be used

o Requires a Dynamic Programming algorithm

Forward Algorithm

o Use an N x T trellis or chart [oy]

o ayor a,(j) = P(being in state j after seeing t observations) =
P(04, Oy, ... Oy, Q)

o Each cell =) extensions of all paths from other cells
N
a:(j) = Z ai—1(2)aizb;(ot)

e q,4(i): forward path probability until (t-1)
e g; : transition probability of going from state i to
e b,(o,) : probability of emitting symbol ot in state j

o P(O[A) = 2, a(i)

o Polynomial time (o< N<T)

Forward Algorithm

o Formal Definition

e [nitialization

a1(j) = m;bi(01),1<j< N “ t

9t-1)® o)

e Recursion

a(§) =) op_1(d)asbi(0);1 <j< N,2<t<T
i=1
° Termlnatlon

P(O|)) = ZQT

Forward Algorithm

Static

g Ber o= 111

@ find P(O|Astock)
Bull

time

t=3

Forward Algorithm (Initialization)

. 0.3*0.3
Static
0.5*0.1
Bear

a1(Bu)
Bull 0.2*0.7
=0.14

states

t=1 t= t=

time

Forward Algorithm (Recursion)

Static

Bear
.... and so on

states

Bull

t=1 t=2 t=3

time

Forward Algorithm (Recursion)

. 0.3*0.3
Static
0.5*0.1
Bear

a1(Bu)
Bull 0.2*0.7
=0.14

states

0.0249

i=

time

0.0064
77
0.0014
75

i=

Forward Algorithm (Recursion)

. 0.3*0.3 0.0064
Static 0.0249
Bear o_.5 0.1 0.0014
=0.05 75 Z

P(O) = 0.03195

a1(Bu)
Bull 0.2*0.7
=0.14

states

time

Decoding

t: 123456
O tletle

P(} |Bear) = 0.1 P(t |Bull) = 0.7 P(1 |Static) = 0.3
P(} |Bear) = 0.6 P(}|Bull) = 0.1 P(] | Static) = 0.3
P(+ |Bear) =0.3 P(«+ |Bull) =0.2 P(+ |Static) = 0.4

)\stock

Given Astock @s our model and O as our observations, what are the most
likely states the market went through to produce O ?

Decoding

o “Decoding” because states are hidden

o There’s a simple way to do it

e For each possible hidden state sequence, compute P(O) using
“forward algorithm”

e Pick the one that gives the highest P(O)
o Will this give the right answer ?

o Is it practical ?

Viterbi Algorithm

o Another dynamic programming algorithm

o Same idea as the forward algorithm

e Store intermediate computation results in a trellis
e Build new cells from existing cells

o Efficient (polynomial vs. exponential)

Viterbi Algorithm

o Usean N x T trellis [vtj]

O vy or v(j) = P(in state j after seeing t observations &
passing through the most likely state sequence so far)

= p(Q4, dps ---» Qi.q» 9¢=)s O, O, ... O)
o Each cell = extension of most likely path from other cells
: N .
ve(J) = maxve—1(i)ai;b; (o)
e v, ,(i): viterbi probability until time (t-1)
e g, : transition probability of going from state i to
e b(o,) : probability of emitting symbol ot in state j

o P = max; v(i)

Viterbi Algorithm

o Maximization instead of summation over previous paths

o This algorithm is still missing something !

o Unlike forward alg., we need something else in addition to
the probability !
e Need to keep track which previous cell we chose

e At the end, follow the chain of backpointers and we have the most
likely state sequence too !

e ;" = argmax; v.(i); q,* = the state q,,,* points to

Viterbi Algorithm

o Formal Definition

e Initialization

’Ul(’l/) = ’szbz(Ol),l SZ SN
(t-1) t
e Recursion e 0
w(f) = max[v1(i)ay)b;(0);1 SE<N,2<t<T
. N .
BT:(j) = argmax(v;—1(i)as;]
e Termination Why no b() ?
* N .
pPT = max vr (i)
N
gr = argmaxuvr(i)

Viterbi Algorithm

Static
g Bemr o= 11
“7’ find most likely given state sequence
Bull

t=1 t=2 t=3

time

Viterbi Algorithm (Initialization)

. 0.3*0.3
Static
0.5*0.1
Bear

vi(Bu)
Bull 0.2*0.7
=0.14

states

t=1 t=

time

t=

Viterbi Algorithm (Recursion)

Static

Bear

states

Bull

t=1 t=2 t=3

time

Viterbi Algorithm (Recursion)

. 0.3*0.3

Static
0.5%0.1

Bear

....and so on
vi(Bu)
Bull 0.2*0.7 0.0084

=0.14

t=1 t= t=

states

time

Viterbi Algorithm (Recursion)

. 0.3%0.3 H 0.0020
0.5%0.1 0.0005

Bear 0.0168
Bull 0.0084 g.ooss

states

time

Viterbi Algorithm (Termination)

. 0.3%0.3 H 0.0020
0.5%0.1 0.0005

Bear 0.0168
Bull 0.0084 2'0058

states

time

Viterbi Algorithm (Termination)

Static

Most likely state sequence
[Bull, Bear, Bull], P = 0.00588

Bear 0.0168

Bull

states

0.0058
8

time

Why are HMMs useful?

o Models of data that is ordered sequentially

e Recall sequence of market up/down/static observations

o Other more useful sequences

e Words in a sentence
e Base pairs in a gene
e Letters in a word

o Have been used for almost everything

Automatic speech recognition

Stock market forecasting (you thought | was joking?!)
Aligning words in a bilingual parallel text

Tagging words with parts of speech

Md. Rafiul Hassan and Baikunth Nath. Stock Market Forecasting Using Hidden Markov Models: A New Approach.
Proceedings of the International Conference on Intelligent Systems Design and Applications.

Part of Speech Tagging

Part of Speech (POS) Tagging

o Parts of speech are well recognized linguistic entities

o The Art of Grammar circa 100 B.C.

e Written to allow post-Classical Greek speakers to understand
Odyssey and other classical poets

e 8 classes of words

[Noun, Verb, Pronoun, Article, Adverb, Conjunction, Participle,
Preposition]

e Remarkably enduring list

o Occur in almost every language

o Defined primarily in terms of syntactic and morphological
criteria (affixes)

Part of Speech (POS) Tagging

o Two broad categories of POS tags

o Closed Class:

e Relatively fixed membership
e Conjunctions, Prepositions, Auxiliaries, Determiners, Pronouns ...
e Function words: short and used primarily for structuring

o Open Class:

e Nouns, Verbs, Adjectives, Adverbs
e Frequent neologisms (borrowed/coined)

Part of Speech (POS) Tagging

o Several English tagsets have been developed

o Vary in number of tags

e Brown Tagset (87)
e Penn Treebank (45) [More common]

o Language specific
e Simple morphology = more ambiguity = smaller tagset

o Size depends on language and purpose

Part of Speech (POS) Tagging

POS Tagging: The process of assigning “one” POS or other lexical
class marker to each word in a corpus

Why do POS tagging?
Corpus-based Linguistic Analysis & Lexicography

Information Retrieval & Question Answering

Word Sense Disambiguation

o
o
o Automatic Speech Synthesis
o
o Shallow Syntactic Parsing

o

Machine Translation

Why is POS tagging hard?
o Not really a lexical problem

o Sequence labeling problem

o Treating it as lexical problem runs us smack into the wall
of ambiguity

I thought that you ... (that: conjunction)
That day was nice (that: determiner)
You can go that far (that: adverb)

HMMs & POS Tagging

Modeling the problem

o What should the HMM look like?

e States: Part-of-Speech Tags (t,, t, ... ty)
e Output symbols: Words (w4, W,, ..., Wy)

o Can an HMM find the best tagging for a given sentence ?
e Yes ! Viterbi Decoding (best = most likely)

o Once we have an HMM model, tagging lots of data is
embarrassingly parallel: a tagger in each mapper

o The HMM machinery gives us (almost) everything we
need to solve the problem

HMM Training

o Almost everything ?

o Before HMMs can decode, they must be trained, i.e., (A,
B, []) must be computed

o Recall the two types of training?

e Supervised training: Use a large corpus of already tagged words
as training data; count stuff; estimate model parameters

e Unsupervised training: Use a corpus of untagged words; bootstrap
parameter estimates; improve estimates iteratively

Supervised Training

o We have training data, i.e., thousands of sentences with
their words already tagged

o Given this data, we already have the set of states and
symbols

o Next, compute Maximum Likelihood Estimates (MLEs) for
the various parameters

o Those estimates of the parameters that maximize the
likelihood that the training data was actually generated by
our model

Supervised Training

o Transition Probabilities
e Any P(t | t_;) = C(t_4t)/Z,C(t_,t') from the training data

e For P(NN|VB), count how many times a noun follows a verb and
divide by the the number of times anything else follows a verb

o Emission Probabilities
e Any P(w, | t) = C(w,,t)/%,C(W, t) from the training data
e For P(bank|NN), count how many times the word bank was seen

tagged as a noun and divide by the number of times anything was
seen tagged as a noun

o Priors

e The prior probability of any state (tag)

e For []..un count the number of times a noun occurs and divide by
the total number of words in the corpus

Supervised Training in MapReduce

o Recall that we computed relative frequencies of words in
MapReduce using the Stripes design

o Estimating HMM parameters via supervised training is
identical

(Egn 3.1, p. 51)

Unsupervised Training

No labeled/tagged training data
No way to compute MLEs directly

o
o
o Make an initial guess for parameter values
o Use this guess to get a better estimate

o

Iteratively improve the estimate until some convergence
criterion is met

EXPECTATION MAXIMIZATION (EM)

Expectation Maximization

o A fundamental tool for unsupervised machine learning
techniques

o Forms basis of state-of-the-art systems in MT, Parsing,
WSD, Speech Recognition and more

o Seminal paper (with a very instructive title)
Maximum Likelihood from Incomplete Data via the EM
algorithm, JRSS, Dempster et al., 1977

Motivating Example

o Let observed events be the grades given out in, say, this
class

o Assume grades are generated by a probabilistic model
described by single parameter u

o P(A)=1/2, P(B) = u, P(C)=2u, P(D)=1/2-3pu
o Number of ‘A’s observed = ‘a’, ‘b’ number of ‘B’s etc.

o Compute MLE of u given ‘a’, ‘b’, ‘c’ and ‘'d’

Adapted from Andrew Moore’s Slides
http://www.autonlab.org/tutorials/gmm.html

Motivating Example

o Recall the definition of MLE
“.... maximizes likelihood of data given the model.”

o P(datajmodel)= P(a,b,c,d|p) = K(1/2)23(u)°(2u)%(1/2-3p)d
[independent and identically distributed]

o L =log-likelihood = log P(a,b,c,d|u)
=alog(1/2) + blog y + clog 2u + d log(1/2-3u)

o How to maximize L w.r.t y ? [Think Calculus]
o OL/dou = 0; (b/y) + (2c/2u) - (3d/(1/2 - 3u)) =0
o M = (b+c)/6(b+c+d) [Note missing ‘a’ |

o We got our answer without EM. Boring !

Motivating Example
o P(A)=1/2, P(B) = u, P(C) =2u, P(D) =1/2 - 3u
o Number of ‘A'sand ‘B's=h,c'C'sandd D’s
o Part of the observable information is hidden
o Can we compute the MLE for y now?
o

If we knew ‘b’ (and hence ‘a’), we could compute the MLE
for u. But we need to know p to know how the model
generates ‘a’ and b’.

o Circular enough for you?

The EM Algorithm

o Start with an initial guess for u (u0)

o t=1; Repeat
o by =Peh/(1/2 + iy
[E-step: Compute expected value of b given y]

o p=(b +c)b(b +c+d)
[M-step: Compute MLE of u given b]

o t=t+1
o Until some convergence criterion is met

The EM Algorithm

o Algorithm to compute MLEs for model parameters when
information is hidden

o lterate between Expectation (E-step) and Maximization
(M-step)

o Each iteration is guaranteed to increase the log-likelihood
of the data (improve the estimate)

o Good news: It will always converge to a maximum

o Bad news: It will always converge to a maximum

Applying EM to HMMs

o Just the intuition; No gory details
o Hidden information (the state sequence)

o Model Parameters: A, B &[]

o Introduce two new observation statistics:

e Number of transitions from g; to q; (§)
e Number of times in state q; (y)

o The EM algorithm should now apply perfectly

Applying EM to HMMs

o Start with initial guesses for A, B and []

o t=1; Repeat

e E-step: Compute expected values of &, y using A,, B;, [];
e M-step: Compute MLE of A, B and [] using &, v,
o t=t+1

o Until some specified convergence criterion is met

o Optional: Read Section 6.2 in Lin & Dyer for gory details

EM in MapReduce

o

o

Each iteration of EM is one MapReduce job

A driver program spawns MR jobs, keeps track of the
number of iterations and convergence criteria

Model parameters static for the duration of each job are
loaded by each mapper from HDFS

Mappers map over independent instances from training
data to do computations from E-step

Reducers sum together stuff from mappers to solve
equations from M-step

Combiners are important to sum together the training
instances in memory and reduce disk 1/O

il
(TSt
(1?&} |

> e
= =
= =
—— —
o
———
A

(e

e e St
e s
RS
e e SmRmN
S
SN S
N e e

‘_\Q
n,

S

Source: Wikipedia (Japanese rock garden)

