
Hidden Markov Models & EM 
Data-Intensive Information Processing Applications ― Session #8 

Nitin Madnani 
University of Maryland 

Tuesday, March 30, 2010 

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States 
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details 



Source: Wikipedia (Japanese rock garden) 



Today’s Agenda 
  Need to cover lots of background material 

  Introduction to Statistical Models 
  Hidden Markov Models 
  Part of Speech Tagging 
  Applying HMMs to POS tagging 
  Expectation-Maximization (EM) Algorithm 

  Now on to the Map Reduce stuff 
  Training HMMs using MapReduce 

•  Supervised training of HMMs 
•  Rough conceptual sketch of unsupervised training using EM 



Introduction to statistical models 
  Until the 1990s, text processing relied on rule-based 

systems 

  Advantages 
  More predictable 
  Easy to understand 
  Easy to identify errors and fix them 

  Disadvantages 
  Extremely labor-intensive to create 
  Not robust to out of domain input 
  No partial output or analysis when failure occurs 



Introduction to statistical models 
  A better strategy is to use data-driven methods 

  Basic idea: learn from a large corpus of examples of what 
we wish to model (Training Data) 

  Advantages 
  More robust to the complexities of real-world input 
  Creating training data is usually cheaper than creating rules 

•  Even easier today thanks to Amazon Mechanical Turk 
•  Data may already exist for independent reasons 

  Disadvantages 
  Systems often behave differently compared to expectations 
  Hard to understand the reasons for errors or debug errors 



Introduction to statistical models 
  Learning from training data usually means estimating the 

parameters of the statistical model 

  Estimation usually carried out via machine learning 

  Two kinds of machine learning algorithms 

  Supervised learning 
  Training data consists of the inputs and respective outputs (labels) 
  Labels are usually created via expert annotation (expensive) 
  Difficult to annotate when predicting more complex outputs 

  Unsupervised learning 
  Training data just consists of inputs. No labels. 
  One example of such an algorithm: Expectation Maximization 



Hidden Markov Models (HMMs) 

A very useful and popular statistical model 



Finite State Machines 
  What do we need to specify an FSM formally ? 

  Finite number of states 
  Transitions 
  Input alphabet 
  Start state 
  Final state(s) 



Real World Knowledge 

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’ 
‘c’ is three times as likely to be seen in state 2 as ‘a’ 

Weighted FSMs 
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What do we get out of it ? 

score(‘ab’) = 2, score(‘bc’) = 3 



Real World Knowledge 

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’ 
‘c’ is three times as likely to be seen in state 2 as ‘a’ 

Probabilistic FSMs 

What do we get out of it ? 

P(‘ab’) = 0.50 * 1.00 = 0.5, P(‘bc’) = 0.25 * 0.75 = 0.1875 
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0.25 

0.25 

0.25 

0.75 
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Markov Chains 
  This not a valid prob. FSM! 

  No start states 
  Use prior probabilities 
  Note that prob. of being in 

any state ONLY depends on 
previous state ,i.e., the (1st 
order) Markov assumption 

  This extension of a prob. 
FSM is called a Markov 
Chain or an Observed 
Markov Model 

  Each state corresponds to 
an observable physical 
event 

0.5!

0.2! 0.3!



Are states always observable? 

1, 2, 3, 4, 5, 6 Day: 

Bu, Be, S, Be, S, Bu 

 Bu:  Bull Market 
 Be:  Bear Market 
 S  :  Static Market 

Here’s what you actually observe: 

1, 2, 3, 4, 5, 6 Day:  ↑:  Market is up 
 ↓:  Market is down 
 ↔: Market hasn’t changed 

↑ ↓  ↔ ↑ ↓ ↔ 

↑  ↓  ↔  ↑  ↓  ↔ 



Hidden Markov Models 
  Markov chains are usually inadequate 

  Need to model problems where observed events don’t 
correspond to states directly 

  Instead observations = fp(states) for some p.d.f p 

  Solution: A Hidden Markov Model (HMM) 
  Assume two probabilistic processes 
  Underlying process is hidden (states = hidden events) 
  Second process produces sequence of observed events 



Formalizing HMMs 
  An HMM λ = (A, B, ∏) is characterized by: 

  Set of N states {q1, q2, ..., qN} 
  N x N Transition probability matrix A = [aij] 

  Sequence of observations o1, o2, ... oT, each drawn from a given 
set of symbols (vocabulary V) 

  N x |V| Emission probability matrix, B = [bit] 

  N x 1 Prior probabilities vector ∏ = { ∏1, ∏2, ..., ∏N }  



Things to know about HMMs 
  The (first-order) Markov assumption holds 

  The probability of an output symbol depends only on the 
state generating it 

  The number of states (N) does not have to equal the 
number of observations (T) 



Stock Market HMM 

States ✓ 
Transitions ✓ 

Valid ✓ 

Vocabulary ✓ 




P (↑ |Bear) = 0.1
P (↓ |Bear) = 0.6
P (↔ |Bear) = 0.3








P (↑ |Bull) = 0.7
P (↓ |Bull) = 0.1
P (↔ |Bull) = 0.2








P (↑ |Static) = 0.3
P (↓ |Static) = 0.3
P (↔ |Static) = 0.4





Emissions ✓ 
Valid ✓ 

∏1=0.5! ∏2=0.2! ∏3=0.3!

Priors ✓ 
Valid ✓ 



Applying HMMs 
  3 problems to solve before HMMs can be useful 

  Given an HMM λ = (A, B, ∏), and a sequence of observed events 
O, find P(O| λ) [ Likelihood ] 

  Given an HMM λ = (A, B, ∏), and an observation sequence O, find 
the most likely (hidden) state sequence [ Decoding ] 

  Given a set of observation sequences and the set of states Q in λ, 
compute the parameters A and B. [ Training ] 



Computing Likelihood 

1 2 3 4 5 6  

↑ ↓ ↔ ↑ ↓ ↔ 

t: 

O: 

Assuming λstock models the stock market, how likely is it  
that on day 1, the market is up, on day 2, it’s down etc. ? 




P (↑ |Bear) = 0.1
P (↓ |Bear) = 0.6
P (↔ |Bear) = 0.3








P (↑ |Bull) = 0.7
P (↓ |Bull) = 0.1
P (↔ |Bull) = 0.2








P (↑ |Static) = 0.3
P (↓ |Static) = 0.3
P (↔ |Static) = 0.4





∏1=
0.5!

∏2=
0.2!

∏3=
0.3!

Markov Chain? 

λstock 



Computing Likelihood 
  Sounds easy! 

  Sum over all possible ways in which we could generate O 
from λ 

Takes exponential (∝ NT) time to compute ! 
Right idea, wrong algorithm ! 



Computing Likelihood 
  What are we doing wrong ? 

  State sequences may have a lot of overlap 

  We are recomputing the shared bits every time 

  Need to store intermediate computation results somehow 
so that they can be used 

  Requires a Dynamic Programming algorithm 

20 



Forward Algorithm 
  Use an N x T trellis or chart [αtj] 

  αtj or αt(j) = P(being in state j after seeing t observations) = 
p(o1, o2, ... ot, qt=j) 

  Each cell = ∑ extensions of all paths from other cells 

  αt-1(i): forward path probability until (t-1) 
  aij : transition probability of going from state i to j 
  bj(ot) : probability of emitting symbol ot in state j 

  P(O|λ) = ∑i αT(i) 

  Polynomial time (∝ N2T) 



Forward Algorithm 
  Formal Definition 

  Initialization 

  Recursion 

  Termination 

22 



2
3 

Forward Algorithm 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

↑ ↓ ↑ O = 

find P(O|λstock) 



2
4 

Forward Algorithm (Initialization) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 



2
5 

Forward Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0145 

α1(Bu) * aBuBu * bBu(↓) 
0.14 * 0.6 * 0.1=0.0084 

∑ 

.... and so on 



2
6 

Forward Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0145 

0.0312 

0.0249 

0.024 

0.0014
75 

0.0064
77 



2
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Forward Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0145 

0.0312 

0.0249 

0.024 

0.0014
75 

0.0064
77 

∑ 
P(O) = 0.03195 



Decoding 

1 2 3 4 5 6  

↑ ↓ ↔ ↑ ↓ ↔ 

t: 

O: 

Given λstock as our model and O as our observations, what are the most 
likely states the market went through to produce O ? 




P (↑ |Bear) = 0.1
P (↓ |Bear) = 0.6
P (↔ |Bear) = 0.3








P (↑ |Bull) = 0.7
P (↓ |Bull) = 0.1
P (↔ |Bull) = 0.2








P (↑ |Static) = 0.3
P (↓ |Static) = 0.3
P (↔ |Static) = 0.4





∏1=
0.5!

∏2=
0.2!

∏3=
0.3!

λstock 



Decoding 
  “Decoding” because states are hidden 

  There’s a simple way to do it 
  For each possible hidden state sequence, compute P(O) using 

“forward algorithm” 
  Pick the one that gives the highest P(O) 

  Will this give the right answer ? 

  Is it practical ? 

29 



Viterbi Algorithm 
  Another dynamic programming algorithm 

  Same idea as the forward algorithm 
  Store intermediate computation results in a trellis 
  Build new cells from existing cells 

  Efficient (polynomial vs. exponential) 

30 



Viterbi Algorithm 
  Use an N x T trellis [vtj] 

  vtj or vt(j) = P(in state j after seeing t observations & 
passing through the most likely state sequence so far)  
= p(q1, q2, ..., qt-1, qt=j, o1, o2, ... ot) 

  Each cell = extension of most likely path from other cells 

  vt-1(i): viterbi probability until time (t-1) 
  aij : transition probability of going from state i to j 
  bj(ot) : probability of emitting symbol ot in state j 

  P = maxi vT(i) 
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Viterbi Algorithm 
  Maximization instead of summation over previous paths 

  This algorithm is still missing something ! 

  Unlike forward alg., we need something else in addition to 
the probability !  
  Need to keep track which previous cell we chose 
  At the end, follow the chain of backpointers and we have the most 

likely state sequence too ! 
  qT* = argmaxi vT(i); qt* = the state qt+1* points to 
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Viterbi Algorithm 
  Formal Definition 

  Initialization 

  Recursion 

  Termination Why no b() ? 



3
4 

Viterbi Algorithm 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

↑ ↓ ↑ O = 
find most likely given state sequence 



3
5 

Viterbi Algorithm (Initialization) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 



3
6 

Viterbi Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

v1(Bu) * aBuBu * bBu(↓) 
0.14 * 0.6 * 0.1=0.0084 

max 



3
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Viterbi Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

.... and so on 



3
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Viterbi Algorithm (Recursion) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

α1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

0.0168 

0.0135 

0.0058
8 

0.0005
04 

0.0020
2 



3
9 

Viterbi Algorithm (Termination) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

0.0168 

0.0135 

0.0058
8 

0.0005
04 

0.0020
2 



4
0 

Viterbi Algorithm (Termination) 

Bear 

Bull 

Static 

st
at

es
 

time 

↑ ↓ ↑ 
t=1! t=2! t=3!

v1(Bu)
0.2*0.7
=0.14 

0.5*0.1 
=0.05 

0.3*0.3 
=0.09 

0.0084 

0.0168 

0.0135 

0.0058
8 

0.0005
04 

0.0020
2 

Most likely state sequence 
 [ Bull, Bear, Bull ], P = 0.00588 



Why are HMMs useful? 
  Models of data that is ordered sequentially 

  Recall sequence of market up/down/static observations 

  Other more useful sequences 
  Words in a sentence 
  Base pairs in a gene 
  Letters in a word 

  Have been used for almost everything 
  Automatic speech recognition 
  Stock market forecasting (you thought I was joking?!) 
  Aligning words in a bilingual parallel text 
  Tagging words with parts of speech 

Md. Rafiul Hassan and Baikunth Nath. Stock Market Forecasting Using Hidden Markov Models: A New Approach. 
Proceedings of the International Conference on Intelligent Systems Design and Applications. 



Part of Speech Tagging 



Part of Speech (POS) Tagging 
  Parts of speech are well recognized linguistic entities 

  The Art of Grammar circa 100 B.C. 
  Written to allow post-Classical Greek speakers to understand 

Odyssey and other classical poets 
  8 classes of words 

[Noun, Verb, Pronoun, Article, Adverb, Conjunction, Participle, 
Preposition] 

  Remarkably enduring list 

  Occur in almost every language 

  Defined primarily in terms of syntactic and morphological 
criteria (affixes) 



Part of Speech (POS) Tagging 
  Two broad categories of POS tags 

  Closed Class: 
  Relatively fixed membership 
  Conjunctions, Prepositions, Auxiliaries, Determiners, Pronouns … 
  Function words: short and used primarily for structuring 

  Open Class: 
  Nouns, Verbs, Adjectives, Adverbs 
  Frequent neologisms (borrowed/coined) 



Part of Speech (POS) Tagging 
  Several English tagsets have been developed 

  Vary in number of tags 
  Brown Tagset (87) 
  Penn Treebank (45) [More common] 

  Language specific 
  Simple morphology = more ambiguity = smaller tagset 

  Size depends on language and purpose 



Part of Speech (POS) Tagging 

POS Tagging: The process of assigning “one” POS or other lexical  
class marker to each word in a corpus 



Why do POS tagging? 
  Corpus-based Linguistic Analysis & Lexicography 

  Information Retrieval & Question Answering 

  Automatic Speech Synthesis 

  Word Sense Disambiguation 

  Shallow Syntactic Parsing  

  Machine Translation 



Why is POS tagging hard? 
  Not really a lexical problem 

  Sequence labeling problem 

  Treating it as lexical problem runs us smack into the wall 
of ambiguity 

I thought that you ...   (that: conjunction) 
That day was nice      (that: determiner) 
You can go that far     (that: adverb) 



HMMs & POS Tagging 



Modeling the problem 
  What should the HMM look like? 

  States: Part-of-Speech Tags (t1, t2, … tN) 
  Output symbols: Words (w1, w2, …, wM) 

  Can an HMM find the best tagging for a given sentence ? 
  Yes ! Viterbi Decoding (best = most likely) 

  Once we have an HMM model, tagging lots of data is 
embarrassingly parallel: a tagger in each mapper 

  The HMM machinery gives us (almost) everything we 
need to solve the problem 



HMM Training 
  Almost everything ? 

  Before HMMs can decode, they must be trained, i.e., (A, 
B, ∏) must be computed 

  Recall the two types of training? 

  Supervised training: Use a large corpus of already tagged words 
as training data; count stuff;  estimate model parameters 

  Unsupervised training: Use a corpus of untagged words; bootstrap 
parameter estimates; improve estimates iteratively  



Supervised Training 
  We have training data, i.e., thousands of sentences with 

their words already tagged 

  Given this data, we already have the set of states and 
symbols 

  Next, compute Maximum Likelihood Estimates (MLEs) for 
the various parameters 

  Those estimates of the parameters that maximize the 
likelihood that the training data was actually generated by 
our model 

52 



Supervised Training 
  Transition Probabilities 

  Any P(ti | ti-1) = C(ti-1ti)/Σt’C(ti-1t’) from the training data 
  For P(NN|VB), count how many times a noun follows a verb and 

divide by the the number of times anything else follows a verb 

  Emission Probabilities 
  Any P(wi | ti) = C(wi,ti)/Σw’C(w’, ti) from the training data 
  For P(bank|NN), count how many times the word bank was seen 

tagged as a noun and divide by the number of times anything was 
seen tagged as a noun 

  Priors 
  The prior probability of any state (tag) 
  For ∏noun, count the number of times a noun occurs and divide by 

the total number of words in the corpus 

53 



Supervised Training in MapReduce 
  Recall that we computed relative frequencies of words in 

MapReduce using the Stripes design 

  Estimating HMM parameters via supervised training is 
identical   

f(B|A) =
c(A,B)�
B� c(A,B�)

(Eqn 3.1, p. 51) 

p(ti|ti−1) =
c(ti−1, ti)�
t� c(ti−1, t�)

p(wi|ti) =
c(wi, ti)�
w� c(w�, ti)

πi =
c(ti)

N
Priors is like counting words 



Unsupervised Training 
  No labeled/tagged training data 

  No way to compute MLEs directly 

  Make an initial guess for parameter values 

  Use this guess to get a better estimate 

  Iteratively improve the estimate until some convergence 
criterion is met 

EXPECTATION MAXIMIZATION (EM) 



Expectation Maximization 
  A fundamental tool for unsupervised machine learning 

techniques 

  Forms basis of state-of-the-art systems in MT, Parsing, 
WSD,  Speech Recognition and more  

  Seminal paper (with a very instructive title) 
Maximum Likelihood from Incomplete Data via the EM 
algorithm, JRSS, Dempster et al., 1977 
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Motivating Example 
  Let observed events be the grades given out in, say, this 

class 

  Assume grades are generated by a probabilistic model 
described by single parameter µ 

  P(A) = 1/2, P(B) = µ, P(C) = 2µ, P(D) = 1/2 - 3µ 

  Number of ‘A’s observed = ‘a’, ‘b’ number of ‘B’s etc. 

  Compute MLE of µ given ‘a’, ‘b’, ‘c’ and ‘d’ 

Adapted from Andrew Moore’s Slides 
http://www.autonlab.org/tutorials/gmm.html 



Motivating Example 
  Recall the definition of MLE 

“.... maximizes likelihood of data given the model.” 

  P(data|model)= P(a,b,c,d|µ) = K(1/2)a(µ)b(2µ)c(1/2-3µ)d 
[independent and identically distributed] 

  L = log-likelihood = log P(a,b,c,d|µ)  
    = a log(1/2) + b log µ + c log 2µ + d log(1/2-3µ)  

  How to maximize L w.r.t µ ? [ Think Calculus ] 

  δL/δµ = 0; (b/µ) + (2c/2µ) - (3d/(1/2 - 3µ)) = 0 

  µ = (b+c)/6(b+c+d) [Note missing ‘a’ ] 

  We got our answer without EM. Boring ! 



Motivating Example 
  P(A) = 1/2, P(B) = µ, P(C) = 2µ, P(D) = 1/2 - 3µ 

  Number of ‘A’s and ‘B’s = h, c ‘C’s and d ‘D’s 

  Part of the observable information is hidden 

  Can we compute the MLE for µ now? 

  If we knew ‘b’ (and hence ‘a’), we could compute the MLE 
for µ. But we need to know µ to know how the model 
generates ‘a’ and ‘b’. 

  Circular enough for you? 



The EM Algorithm 
   Start with an initial guess for µ (µ0) 

   t = 1; Repeat 
    bt = µ(t-1)h/(1/2 + µ(t-1)) 

        [E-step: Compute expected value of b given µ ] 

    µt = (bt + c)/6(bt + c + d)  
        [M-step: Compute MLE of µ given b ] 

    t = t + 1 

   Until some convergence criterion is met 



The EM Algorithm 
  Algorithm to compute MLEs for model parameters when 

information is hidden 

  Iterate between Expectation (E-step) and Maximization 
(M-step) 

  Each iteration is guaranteed to increase the log-likelihood 
of the data (improve the estimate) 

  Good news: It will always converge to a maximum 

  Bad news: It will always converge to a maximum 
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Applying EM to HMMs 
  Just the intuition; No gory details 

  Hidden information (the state sequence) 

  Model Parameters: A, B & ∏ 

  Introduce two new observation statistics: 
  Number of transitions from qi to qj (ξ) 
  Number of times in state qi (γ) 

  The EM algorithm should now apply perfectly  
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Applying EM to HMMs 
  Start with initial guesses for A, B and ∏ 

  t = 1; Repeat 
   E-step: Compute expected values of ξ, γ using At, Bt, ∏t 

   M-step: Compute MLE of A, B and ∏ using ξt, γt 

    t = t + 1 

  Until some specified convergence criterion is met 

  Optional: Read Section 6.2 in Lin & Dyer for gory details 

6
3 

Baum-Welch Algorithm 



EM in MapReduce 
  Each iteration of EM is one MapReduce job 

  A driver program spawns MR jobs, keeps track of the 
number of iterations and convergence criteria 

  Model parameters static for the duration of each job are 
loaded by each mapper from HDFS 

  Mappers map over independent instances from training 
data to do computations from E-step 

  Reducers sum together stuff from mappers to solve 
equations from M-step 

  Combiners are important to sum together the training 
instances in memory and reduce disk I/O 



Source: Wikipedia (Japanese rock garden) 

Questions? 


