
MapReduce and databases
Data-Intensive Information Processing Applications ― Session #7

Jimmy LinJimmy Lin
University of Maryland

Tuesday, March 23, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source: Wikipedia (Japanese rock garden)

Today’s Agenda
Role of relational databases in today’s organizations

Where does MapReduce fit in?

MapReduce algorithms for processing relational data
How do I perform a join, etc.?

Evolving roles of relational databases and MapReduce
What’s in store for the future?

Big Data Analysis
Peta-scale datasets are everywhere:

Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
eBay has 6.5 PB of user data + 50 TB/day (5/2009)
…

A lot of these datasets are (mostly) structuredA lot of these datasets are (mostly) structured
Query logs
Point-of-sale records
User data (e.g., demographics)
…

H d f d t l i t l ?How do we perform data analysis at scale?
Relational databases and SQL
MapReduce (Hadoop)p (p)

Relational Databases vs. MapReduce
Relational databases:

Multipurpose: analysis and transactions; batch and interactive
Data integrity via ACID transactions
Lots of tools in software ecosystem (for ingesting, reporting, etc.)
Supports SQL (and SQL integration, e.g., JDBC)Supports SQL (and SQL integration, e.g., JDBC)
Automatic SQL query optimization

MapReduce (Hadoop):
Designed for large clusters, fault tolerant
Data is accessed in “native format”
Supports many query languagesSupports many query languages
Programmers retain control over performance
Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)

Database Workloads
OLTP (online transaction processing)

Typical applications: e-commerce, banking, airline reservations
User facing: real-time, low latency, highly-concurrent
Tasks: relatively small set of “standard” transactional queries
Data access pattern: random reads, updates, writes (involvingData access pattern: random reads, updates, writes (involving
relatively small amounts of data)

OLAP (online analytical processing)
Typical applications: business intelligence, data mining
Back-end processing: batch workloads, less concurrency
Tasks: complex analytical queries, often ad hocas s co p e a a yt ca que es, o te ad oc
Data access pattern: table scans, large amounts of data involved
per query

One Database or Two?
Downsides of co-existing OLTP and OLAP workloads

Poor memory management
Conflicting data access patterns
Variable latency

Solution: separate databasesSolution: separate databases
User-facing OLTP database for high-volume transactions
Data warehouse for OLAP workloads
How do we connect the two?

OLTP/OLAP Architecture

ETL

OLTP OLAP
ETL

(Extract, Transform, and Load)

OLTP/OLAP Integration
OLTP database for user-facing transactions

Retain records of all activity
Periodic ETL (e.g., nightly)

Extract-Transform-Load (ETL)
Extract records from source
Transform: clean data, check integrity, aggregate, etc.
Load into OLAP database

OLAP database for data warehousing
Business intelligence: reporting, ad hoc queries, data mining, etc.
Feedback to improve OLTP services

Business Intelligence
Premise: more data leads to better business decisions

Periodic reporting as well as ad hoc queries
Analysts, not programmers (importance of tools and dashboards)

Examples:
Slicing-and-dicing activity by different dimensions to better
understand the marketplace
Analyzing log data to improve OLTP experience
Analyzing log data to better optimize ad placement
Analyzing purchasing trends for better supply-chain management
Mining for correlations between otherwise unrelated activitiesg o co e at o s bet ee ot e se u e ated act t es

OLTP/OLAP Architecture: Hadoop?

ETL

OLTP OLAP
ETL

(Extract, Transform, and Load)

OLTP/OLAP/Hadoop Architecture

ETL

OLTP OLAP
ETL

(Extract, Transform, and Load)

Hadoop

ETL Bottleneck
Reporting is often a nightly task:

ETL is often slow: why?
What happens if processing 24 hours of data takes longer than 24
hours?

Hadoop is perfect:Hadoop is perfect:
Most likely, you already have some data warehousing solution
Ingest is limited by speed of HDFS
Scales out with more nodes
Massively parallel
Ability to use any processing toolb ty to use a y p ocess g too
Much cheaper than parallel databases
ETL is a batch process anyway!

MapReduce algorithms
for processing relational data

Design Pattern: Secondary Sorting
MapReduce sorts input to reducers by key

Values are arbitrarily ordered

What if want to sort value also?
E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

Secondary Sorting: Solutions
Solution 1:

Buffer values in memory, then sort
Why is this a bad idea?

Solution 2:
“Value-to-key conversion” design pattern: form composite
intermediate key, (k, v1)
Let execution framework do the sorting
Preserve state across multiple key-value pairs to handle
processing
Anything else we need to do?

Value-to-Key Conversion

Before
k → (v1, r), (v4, r), (v8, r), (v3, r)…

Before

Values arrive in arbitrary order…

(k, v1) → (v1, r)
After

Values arrive in sorted order…(, 1) (1,)
(k, v3) → (v3, r)
(k, v4) → (v4, r)
(k v8) → (v8 r)

Process by preserving state across multiple keys
Remember to partition correctly!

(k, v8) → (v8, r)
…

Working Scenario
Two tables:

User demographics (gender, age, income, etc.)
User page visits (URL, time spent, etc.)

Analyses we might want to perform:
Statistics on demographic characteristics
Statistics on page visits
Statistics on page visits by URL
Statistics on page visits by demographic characteristic
…

Relational Algebra
Primitives

Projection (π)
Selection (σ)
Cartesian product (×)
Set union (∪)Set union (∪)
Set difference (−)
Rename (ρ)

Other operations
Join ()
Group by aggregationGroup by… aggregation
…

Projection

R1

R2

R1

R2

πR3

R4

R3

R44

R5

4

R5

Projection in MapReduce
Easy!

Map over tuples, emit new tuples with appropriate attributes
No reducers, unless for regrouping or resorting tuples
Alternatively: perform in reducer, after some other processing

Basically limited by HDFS streaming speedsBasically limited by HDFS streaming speeds
Speed of encoding/decoding tuples becomes important
Relational databases take advantage of compression
Semistructured data? No problem!

Selection

R1

R2
R

σR3

R4

R1

R3

4

R5

Selection in MapReduce
Easy!

Map over tuples, emit only tuples that meet criteria
No reducers, unless for regrouping or resorting tuples
Alternatively: perform in reducer, after some other processing

Basically limited by HDFS streaming speedsBasically limited by HDFS streaming speeds
Speed of encoding/decoding tuples becomes important
Relational databases take advantage of compression
Semistructured data? No problem!

Group by… Aggregation
Example: What is the average time spent per URL?

In SQL:SQ
SELECT url, AVG(time) FROM visits GROUP BY url

In MapReduce:
Map over tuples, emit time, keyed by url
Framework automatically groups values by keys
Compute average in reducerCompute average in reducer
Optimize with combiners

Relational Joins

Source: Microsoft Office Clip Art

Relational Joins

R1

R

S1

SR2

R3

S2

S3

R4 S4

R1 S2

R2 S4

R3 S1

R4 S3

Types of Relationships

One-to-OneOne-to-ManyMany-to-Many

Join Algorithms in MapReduce
Reduce-side join

Map-side joinap s de jo

In-memory join
Striped variantStriped variant
Memcached variant

Reduce-side Join
Basic idea: group by join key

Map over both sets of tuples
Emit tuple as value with join key as the intermediate key
Execution framework brings together tuples sharing the same key
Perform actual join in reducerPerform actual join in reducer
Similar to a “sort-merge join” in database terminology

Two variants
1-to-1 joins
1-to-many and many-to-many joins

Reduce-side Join: 1-to-1

R R

keys values
Map

R1

R4

S

R1

R4

SS2

S3

S2

S3

keys values

Reduce

R1

R4

S2

S3

keys values

Note: no guarantee if R is going to come first or S

Reduce-side Join: 1-to-many

R R

keys values
Map

R1

S2

S

R1

S2

SS3 S3

S9S9

keys values

Reduce

R1 S2

keys values

S3 …

Reduce-side Join: V-to-K Conversion

In reducer…

R1

keys values

S

New key encountered: hold in memory

Cross with records from other setS2

S3

Cross with records from other set

S9

R4 New key encountered: hold in memory

S3

S7

Cross with records from other set

Reduce-side Join: many-to-many

In reducer…

R1

keys values

R Hold in memoryR5

R8

S2

S3

Cross with records from other set

S9

Map-side Join: Basic Idea
Assume two datasets are sorted by the join key:

R1

R2

S2

S4

R3

R4

S1

S3

3 1

A sequential scan through both datasets to join
(called a “merge join” in database terminology)

Map-side Join: Parallel Scans
If datasets are sorted by join key, join can be
accomplished by a scan over both datasets

How can we accomplish this in parallel?
Partition and sort both datasets in the same manner

In MapReduce:
Map over one dataset, read from other corresponding partition
No reducers necessary (unless to repartition or resort)No reducers necessary (unless to repartition or resort)

Consistently partitioned datasets: realistic to expect?

In-Memory Join
Basic idea: load one dataset into memory, stream over
other dataset

Works if R << S and R fits into memory
Called a “hash join” in database terminology

MapReduce implementationMapReduce implementation
Distribute R to all nodes
Map over S, each mapper loads R in memory, hashed by join key
For every tuple in S, look up join key in R
No reducers, unless for regrouping or resorting tuples

In-Memory Join: Variants
Striped variant:

R too big to fit into memory?
Divide R into R1, R2, R3, … s.t. each Rn fits into memory
Perform in-memory join: ∀n, Rn S
Take the union of all join resultsTake the union of all join results

Memcached join:
Load R into memcached
Replace in-memory hash lookup with memcached lookup

Memcached

Caching servers: 15 million requests per second,

Database layer: 800 eight-core Linux servers
running MySQL (40 TB user data)

95% handled by memcache (15 TB of RAM)

Source: Technology Review (July/August, 2008)

Memcached Join
Memcached join:

Load R into memcached
Replace in-memory hash lookup with memcached lookup

Capacity and scalability?
Memcached capacity >> RAM of individual node
Memcached scales out with cluster

Latency?Latency?
Memcached is fast (basically, speed of network)
Batch requests to amortize latency costs

Source: See tech report by Lin et al. (2009)

Which join to use?
In-memory join > map-side join > reduce-side join

Why?

Limitations of each?
In-memory join: memory
Map-side join: sort order and partitioning
Reduce-side join: general purpose

Processing Relational Data: Summary
MapReduce algorithms for processing relational data:

Group by, sorting, partitioning are handled automatically by
shuffle/sort in MapReduce
Selection, projection, and other computations (e.g., aggregation),
are performed either in mapper or reducer
Multiple strategies for relational joins

Complex operations require multiple MapReduce jobs
Example: top ten URLs in terms of average time spent
Opportunities for automatic optimization

Evolving roles for
relational database and MapReduce

OLTP/OLAP/Hadoop Architecture

ETL

OLTP OLAP
ETL

(Extract, Transform, and Load)

Hadoop

Need for High-Level Languages
Hadoop is great for large-data processing!

But writing Java programs for everything is verbose and slow
Analysts don’t want to (or can’t) write Java

Solution: develop higher-level data processing languages
Hive: HQL is like SQL
Pig: Pig Latin is a bit like Perl

Hive and Pig
Hive: data warehousing application in Hadoop

Query language is HQL, variant of SQL
Tables stored on HDFS as flat files
Developed by Facebook, now open source

Pig: large scale data processing systemPig: large-scale data processing system
Scripts are written in Pig Latin, a dataflow language
Developed by Yahoo!, now open source
Roughly 1/3 of all Yahoo! internal jobs

Common idea:
Provide higher-level language to facilitate large-data processing
Higher-level language “compiles down” to Hadoop jobs

Hive: Example
Hive looks similar to an SQL database

Relational join on two tables:e at o a jo o t o tab es
Table of word counts from Shakespeare collection
Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135

Source: Material drawn from Cloudera training VM

my 11297 4135
in 10797 12445
is 8882 6884

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s freq DESC LIMIT 10;ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)
(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

Hive: Behind the Scenes
STAGE DEPENDENCIES:

Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1

Map Reduce

Stage: Stage-2
Map Reduce

Alias -> Map Operator Tree:
hdfs://localhost:8022/tmp/hive-training/364214370/10002

Reduce Output Operator
key expressions:p

Alias -> Map Operator Tree:
s

TableScan
alias: s
Filter Operator

predicate:
expr: (freq >= 1)
type: boolean

Reduce Output Operator

key expressions:
expr: _col1
type: int

sort order: -
tag: -1
value expressions:

expr: _col0
type: string
expr: _col1
type: intkey expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

tag: 0
value expressions:

f

Reduce Operator Tree:
Join Operator

condition map:
Inner Join 0 to 1

condition expressions:

type: int
expr: _col2
type: int

Reduce Operator Tree:
Extract

Limit
File Output Operator

compressed: false
GlobalTableId: 0
table:expr: freq

type: int
expr: word
type: string

k
TableScan

alias: k
Filter Operator

predicate:
expr: (freq >= 1)

0 {VALUE._col0} {VALUE._col1}
1 {VALUE._col0}

outputColumnNames: _col0, _col1, _col2
Filter Operator

predicate:
expr: ((_col0 >= 1) and (_col2 >= 1))
type: boolean

Select Operator
expressions:

table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator

limit: 10

expr: (freq >= 1)
type: boolean

Reduce Output Operator
key expressions:

expr: word
type: string

sort order: +
Map-reduce partition columns:

expr: word
type: string

expr: _col1
type: string
expr: _col0
type: int
expr: _col2
type: int

outputColumnNames: _col0, _col1, _col2
File Output Operator

compressed: false
GlobalTableId 0type: string

tag: 1
value expressions:

expr: freq
type: int

GlobalTableId: 0
table:

input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Pig: Example

Visits Url Info

Task: Find the top 10 most visited pages in each category

User Url Time Url Category PageRank

Visits Url Info

Amy cnn.com 8:00

Amy bbc com 10:00

cnn.com News 0.9

bbc com News 0 8Amy bbc.com 10:00

Amy flickr.com 10:05

bbc.com News 0.8

flickr.com Photos 0.7

Fred cnn.com 12:00 espn.com Sports 0.9

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Query Plan

Load Visits

Group by url

Foreach url
generate count Load Url Info

Join on url

GGroup by category

Foreach category
generate top10(urls)generate top10(urls)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Script

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Script in Hadoop

Load Visits
Map1

Group by url
Reduce1

Map2
Foreach url

generate count Load Url Info

p2

Join on url

G

Reduce2
Map3Group by category

Foreach category
generate top10(urls)

p3

Reduce3
generate top10(urls)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Parallel Databases ↔ MapReduce
Lots of synergy between parallel databases and
MapReduce

Communities have much to learn from each other

Bottom line: use the right tool for the job!

Questions?

Source: Wikipedia (Japanese rock garden)

