Data-Intensive Information Processing Applications — Session #7

MapReduce and databases

Jimmy Lin University of Maryland

Tuesday, March 23, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source: Wikipedia (Japanese rock garden)

Today's Agenda

- Role of relational databases in today's organizations
 - Where does MapReduce fit in?
- MapReduce algorithms for processing relational data
 - How do I perform a join, etc.?
- Evolving roles of relational databases and MapReduce
 - What's in store for the future?

Big Data Analysis

- Peta-scale datasets are everywhere:
 - Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
 - eBay has 6.5 PB of user data + 50 TB/day (5/2009)

• ...

- A lot of these datasets are (mostly) structured
 - Query logs
 - Point-of-sale records
 - User data (e.g., demographics)

• ...

- How do we perform data analysis at scale?
 - Relational databases and SQL
 - MapReduce (Hadoop)

Relational Databases vs. MapReduce

- Relational databases:
 - Multipurpose: analysis and transactions; batch and interactive
 - Data integrity via ACID transactions
 - Lots of tools in software ecosystem (for ingesting, reporting, etc.)
 - Supports SQL (and SQL integration, e.g., JDBC)
 - Automatic SQL query optimization
- MapReduce (Hadoop):
 - Designed for large clusters, fault tolerant
 - Data is accessed in "native format"
 - Supports many query languages
 - Programmers retain control over performance
 - Open source

Database Workloads

- OLTP (online transaction processing)
 - Typical applications: e-commerce, banking, airline reservations
 - User facing: real-time, low latency, highly-concurrent
 - Tasks: relatively small set of "standard" transactional queries
 - Data access pattern: random reads, updates, writes (involving relatively small amounts of data)
- OLAP (online analytical processing)
 - Typical applications: business intelligence, data mining
 - Back-end processing: batch workloads, less concurrency
 - Tasks: complex analytical queries, often ad hoc
 - Data access pattern: table scans, large amounts of data involved per query

One Database or Two?

- Downsides of co-existing OLTP and OLAP workloads
 - Poor memory management
 - Conflicting data access patterns
 - Variable latency
- Solution: separate databases
 - User-facing OLTP database for high-volume transactions
 - Data warehouse for OLAP workloads
 - How do we connect the two?

OLTP/OLAP Architecture

OLTP/OLAP Integration

- OLTP database for user-facing transactions
 - Retain records of all activity
 - Periodic ETL (e.g., nightly)
- Extract-Transform-Load (ETL)
 - Extract records from source
 - Transform: clean data, check integrity, aggregate, etc.
 - Load into OLAP database
- OLAP database for data warehousing
 - Business intelligence: reporting, ad hoc queries, data mining, etc.
 - Feedback to improve OLTP services

Business Intelligence

- Premise: more data leads to better business decisions
 - Periodic reporting as well as ad hoc queries
 - Analysts, not programmers (importance of tools and dashboards)
- Examples:
 - Slicing-and-dicing activity by different dimensions to better understand the marketplace
 - Analyzing log data to improve OLTP experience
 - Analyzing log data to better optimize ad placement
 - Analyzing purchasing trends for better supply-chain management
 - Mining for correlations between otherwise unrelated activities

OLTP/OLAP Architecture: Hadoop?

OLTP/OLAP/Hadoop Architecture

ETL Bottleneck

- Reporting is often a nightly task:
 - ETL is often slow: why?
 - What happens if processing 24 hours of data takes longer than 24 hours?
- Hadoop is perfect:
 - Most likely, you already have some data warehousing solution
 - Ingest is limited by speed of HDFS
 - Scales out with more nodes
 - Massively parallel
 - Ability to use any processing tool
 - Much cheaper than parallel databases
 - ETL is a batch process anyway!

MapReduce algorithms for processing relational data

Design Pattern: Secondary Sorting

- MapReduce sorts input to reducers by key
 - Values are arbitrarily ordered
- What if want to sort value also?
 - E.g., $k \to (v_1, r), (v_3, r), (v_4, r), (v_8, r)...$

Secondary Sorting: Solutions

- Solution 1:
 - Buffer values in memory, then sort
 - Why is this a bad idea?
- Solution 2:
 - "Value-to-key conversion" design pattern: form composite intermediate key, (k, v₁)
 - Let execution framework do the sorting
 - Preserve state across multiple key-value pairs to handle processing
 - Anything else we need to do?

Value-to-Key Conversion

Before

$$k \rightarrow (v_1, r), (v_4, r), (v_8, r), (v_3, r)...$$

Values arrive in arbitrary order...

After

$$(k, v_1) \rightarrow (v_1, r)$$
$$(k, v_3) \rightarrow (v_3, r)$$
$$(k, v_4) \rightarrow (v_4, r)$$
$$(k, v_8) \rightarrow (v_8, r)$$

. . .

Values arrive in sorted order... Process by preserving state across multiple keys Remember to partition correctly!

Working Scenario

- Two tables:
 - User demographics (gender, age, income, etc.)
 - User page visits (URL, time spent, etc.)
- Analyses we might want to perform:
 - Statistics on demographic characteristics
 - Statistics on page visits
 - Statistics on page visits by URL
 - Statistics on page visits by demographic characteristic

• ...

Relational Algebra

- Primitives
 - Projection (π)
 - Selection (σ)
 - Cartesian product (×)
 - Set union (\cup)
 - Set difference (-)
 - Rename (ρ)
- Other operations
 - Join (⋈)
 - Group by... aggregation
 - ...

Projection

Projection in MapReduce

- Easy!
 - Map over tuples, emit new tuples with appropriate attributes
 - No reducers, unless for regrouping or resorting tuples
 - Alternatively: perform in reducer, after some other processing
- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semistructured data? No problem!

Selection

Selection in MapReduce

- Easy!
 - Map over tuples, emit only tuples that meet criteria
 - No reducers, unless for regrouping or resorting tuples
 - Alternatively: perform in reducer, after some other processing
- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semistructured data? No problem!

Group by... Aggregation

- Example: What is the average time spent per URL?
- In SQL:
 - SELECT url, AVG(time) FROM visits GROUP BY url
- In MapReduce:
 - Map over tuples, emit time, keyed by url
 - Framework automatically groups values by keys
 - Compute average in reducer
 - Optimize with combiners

Source: Microsoft Office Clip Art

Relational Joins

Types of Relationships

Many-to-Many

One-to-Many

One-to-One

Join Algorithms in MapReduce

- Reduce-side join
- Map-side join
- In-memory join
 - Striped variant
 - Memcached variant

Reduce-side Join

- Basic idea: group by join key
 - Map over both sets of tuples
 - Emit tuple as value with join key as the intermediate key
 - Execution framework brings together tuples sharing the same key
 - Perform actual join in reducer
 - Similar to a "sort-merge join" in database terminology
- Two variants
 - 1-to-1 joins
 - 1-to-many and many-to-many joins

Reduce-side Join: 1-to-1

Мар

Reduce

Reduce-side Join: 1-to-many

Мар

Reduce

Reduce-side Join: V-to-K Conversion

In reducer...

Reduce-side Join: many-to-many

In reducer...

Map-side Join: Basic Idea

Assume two datasets are sorted by the join key:

A sequential scan through both datasets to join (called a "merge join" in database terminology)

Map-side Join: Parallel Scans

- If datasets are sorted by join key, join can be accomplished by a scan over both datasets
- How can we accomplish this in parallel?
 - Partition and sort both datasets in the same manner
- In MapReduce:
 - Map over one dataset, read from other corresponding partition
 - No reducers necessary (unless to repartition or resort)
- Consistently partitioned datasets: realistic to expect?

In-Memory Join

- Basic idea: load one dataset into memory, stream over other dataset
 - Works if R << S and R fits into memory
 - Called a "hash join" in database terminology
- MapReduce implementation
 - Distribute R to all nodes
 - Map over S, each mapper loads R in memory, hashed by join key
 - For every tuple in S, look up join key in R
 - No reducers, unless for regrouping or resorting tuples

In-Memory Join: Variants

- Striped variant:
 - R too big to fit into memory?
 - Divide R into R_1 , R_2 , R_3 , ... s.t. each R_n fits into memory
 - Perform in-memory join: $\forall n, R_n \bowtie S$
 - Take the union of all join results
- Memcached join:
 - Load R into memcached
 - Replace in-memory hash lookup with memcached lookup

Memcached

Caching servers: 15 million requests per second, 95% handled by memcache (15 TB of RAM)

Database layer: 800 eight-core Linux servers running MySQL (40 TB user data)

Memcached Join

- Memcached join:
 - Load R into memcached
 - Replace in-memory hash lookup with memcached lookup
- Capacity and scalability?
 - Memcached capacity >> RAM of individual node
 - Memcached scales out with cluster
- Latency?
 - Memcached is fast (basically, speed of network)
 - Batch requests to amortize latency costs

Which join to use?

- In-memory join > map-side join > reduce-side join
 - Why?
- Limitations of each?
 - In-memory join: memory
 - Map-side join: sort order and partitioning
 - Reduce-side join: general purpose

Processing Relational Data: Summary

- MapReduce algorithms for processing relational data:
 - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
 - Multiple strategies for relational joins
- Complex operations require multiple MapReduce jobs
 - Example: top ten URLs in terms of average time spent
 - Opportunities for automatic optimization

Evolving roles for relational database and MapReduce

OLTP/OLAP/Hadoop Architecture

Need for High-Level Languages

- Hadoop is great for large-data processing!
 - But writing Java programs for everything is verbose and slow
 - Analysts don't want to (or can't) write Java
- Solution: develop higher-level data processing languages
 - Hive: HQL is like SQL
 - Pig: Pig Latin is a bit like Perl

Hive and Pig

• Hive: data warehousing application in Hadoop

- Query language is HQL, variant of SQL
- Tables stored on HDFS as flat files
- Developed by Facebook, now open source
- Pig: large-scale data processing system
 - Scripts are written in Pig Latin, a dataflow language
 - Developed by Yahoo!, now open source
 - Roughly 1/3 of all Yahoo! internal jobs
- Common idea:
 - Provide higher-level language to facilitate large-data processing
 - Higher-level language "compiles down" to Hadoop jobs

Hive: Example

- Hive looks similar to an SQL database
- Relational join on two tables:
 - Table of word counts from Shakespeare collection
 - Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1 ORDER BY s.freq DESC LIMIT 10;

the	25848	62394	
I	23031	8854	
and	19671	38985	
to	18038	13526	
of	16700	34654	
а	14170	8057	
you	12702	2720	
my	11297	4135	
in	10797	12445	
is	8882	6884	

Source: Material drawn from Cloudera training VM

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1 ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s) word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k) freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

Hive: Behind the Scenes

Stage-1 is a root stage Stage-2 depends on stages: Stage-1 Stage-0 is a root stage STAGE PLANS: Stage: Stage-1 Map Reduce Alias -> Map Operator Tree: s TableScan alias: s Filter Operator predicate: expr: (freq ≥ 1) type: boolean Reduce Output Operator key expressions: expr: word type: string sort order: + Map-reduce partition columns: Reduce Operator Tree: expr: word Join Operator type: string condition map: tag: 0 Inner Join 0 to 1 value expressions: condition expressions: expr: freq 0 {VALUE. col0} {VALUE. col1} type: int 1 {VALUE. col0} expr: word outputColumnNames: _col0, _col1, _col2 type: string Filter Operator k predicate: TableScan expr: ((col0 >= 1) and (col2 >= 1))alias: k type: boolean Filter Operator Select Operator predicate: expressions: expr: (freq ≥ 1) expr: col1 type: boolean type: string Reduce Output Operator expr: col0 key expressions: type: int expr: word expr: _col2 type: string type: int sort order: + outputColumnNames: col0, col1, col2 Map-reduce partition columns: File Output Operator expr: word compressed: false type: string GlobalTableId: 0 tag: 1 table: value expressions: input format: org.apache.hadoop.mapred.SequenceFileInputFormat expr: freq output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat type: int

STAGE DEPENDENCIES:

Stage: Stage-2 Map Reduce Alias -> Map Operator Tree: hdfs://localhost:8022/tmp/hive-training/364214370/10002 Reduce Output Operator key expressions: expr: col1 type: int sort order: tag: -1 value expressions: expr: _col0 type: string expr: col1 type: int expr: col2 type: int Reduce Operator Tree: Extract Limit File Output Operator compressed: false GlobalTableId: 0 table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.gl.io.HiveIgnoreKeyTextOutputFormat Stage: Stage-0 Fetch Operator limit: 10

Pig: Example

Task: Find the top 10 most visited pages in each category

Visits

Url Info

User	Url	Time	Url	Category	PageRank
Amy	cnn.com	8:00	cnn.com	News	0.9
Amy	bbc.com	10:00	bbc.com	News	0.8
Amy	flickr.com	10:05	flickr.com	Photos	0.7
Fred	cnn.com	12:00	espn.com	Sports	0.9
				•	

Pig Query Plan

Pig Script

- visits = load '/data/visits' as (user, url, time);
- gVisits = group visits by url;
- visitCounts = foreach gVisits generate url, count(visits);
- urlInfo = load '/data/urlInfo' as (url, category, pRank);
- visitCounts = join visitCounts by url, urlInfo by url;
- gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into '/data/topUrls';

Pig Script in Hadoop

Parallel Databases ↔ MapReduce

- Lots of synergy between parallel databases and MapReduce
- Communities have much to learn from each other
- Bottom line: use the right tool for the job!

Source: Wikipedia (Japanese rock garden)