Data-Intensive Information Processing Applications — Session #5

Graph Algorithms

Jimmy Lin University of Maryland

Tuesday, March 2, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source: Wikipedia (Japanese rock garden)

Today's Agenda

- Graph problems and representations
- Parallel breadth-first search
- PageRank

What's a graph?

- G = (V,E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information
- Different types of graphs:
 - Directed vs. undirected edges
 - Presence or absence of cycles
- Graphs are everywhere:
 - Hyperlink structure of the Web
 - Physical structure of computers on the Internet
 - Interstate highway system
 - Social networks

Source: Wikipedia (Königsberg)

Some Graph Problems

- Finding shortest paths
 - Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
 - Telco laying down fiber
- Finding Max Flow
 - Airline scheduling
- Identify "special" nodes and communities
 - Breaking up terrorist cells, spread of avian flu
- Bipartite matching
 - Monster.com, Match.com
- And of course... PageRank

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Key questions:
 - How do you represent graph data in MapReduce?
 - How do you traverse a graph in MapReduce?

Representing Graphs

- G = (V, E)
- Two common representations
 - Adjacency matrix
 - Adjacency list

Adjacency Matrices

Represent a graph as an *n* x *n* square matrix *M*

- *n* = |V|
- $M_{ij} = 1$ means a link from node *i* to *j*

	1	2	3	4
1	0	1	0	1
2	1	0	1	1
3	1	0	0	0
4	1	0	1	0

Adjacency Matrices: Critique

- Advantages:
 - Amenable to mathematical manipulation
 - Iteration over rows and columns corresponds to computations on outlinks and inlinks
- Disadvantages:
 - Lots of zeros for sparse matrices
 - Lots of wasted space

Adjacency Lists

Take adjacency matrices... and throw away all the zeros

	1	2	3	4	
1	0	1	0	1	1: 2, 4
2	1	0	1	1	2: 1, 3, 4
3	1	0	0	0	3: 1 4: 1, 3
4	1	0	1	0	т. , , , , , , , , , , , , , , , , , , ,

Adjacency Lists: Critique

- Advantages:
 - Much more compact representation
 - Easy to compute over outlinks
- Disadvantages:
 - Much more difficult to compute over inlinks

Single Source Shortest Path

- **Problem:** find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- First, a refresher: Dijkstra's Algorithm

Single Source Shortest Path

- **Problem:** find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- Single processor machine: Dijkstra's Algorithm
- MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
 - Define: *b* is reachable from *a* if *b* is on adjacency list of *a*
 - DISTANCETO(s) = 0
 - For all nodes *p* reachable from *s*,
 DISTANCETO(*p*) = 1
 - For all nodes *n* reachable from some other set of nodes *M*, DISTANCETO(*n*) = 1 + min(DISTANCETO(*m*), $m \in M$)

Source: Wikipedia (Wave)

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
 - Key: node *n*
 - Value: d (distance from start), adjacency list (list of nodes reachable from n)
 - Initialization: for all nodes except for start node, $d = \infty$
- Mapper:
 - $\forall m \in adjacency list: emit (m, d + 1)$
- Sort/Shuffle
 - Groups distances by reachable nodes
- Reducer:
 - Selects minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "known frontier" by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - Multiple iterations are needed to explore entire graph
- Preserving graph structure:
 - Problem: Where did the adjacency list go?
 - Solution: mapper emits (*n*, adjacency list) as well

BFS Pseudo-Code

```
1: class Mapper
        method MAP(nid n, node N)
 2:
             d \leftarrow N.\text{Distance}
 3:
            E_{MIT}(nid n, N)
                                                                        \triangleright Pass along graph structure
 4:
            for all nodeid m \in N. ADJACENCYLIST do
 5:
                 EMIT(nid m, d+1)
                                                               \triangleright Emit distances to reachable nodes
 6:
 1: class Reducer
        method REDUCE(nid m, [d_1, d_2, \ldots])
 2:
            d_{min} \leftarrow \infty
 3:
            M \leftarrow \emptyset
 4:
            for all d \in \text{counts} [d_1, d_2, \ldots] do
 5:
                 if IsNode(d) then
 6:
                     M \leftarrow d
                                                                           \triangleright Recover graph structure
 7:
                 else if d < d_{min} then
                                                                          \triangleright Look for shorter distance
 8:
                     d_{min} \leftarrow d
 9:
             M.DISTANCE \leftarrow d_{min}
                                                                          ▷ Update shortest distance
10:
             EMIT(nid m, node M)
11:
```

Stopping Criterion

- How many iterations are needed in parallel BFS (equal edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path
- Now answer the question...
 - Six degrees of separation?
- Practicalities of implementation in MapReduce

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
 - At any step it only pursues edges from the minimum-cost path inside the frontier
- MapReduce explores all paths in parallel
 - Lots of "waste"
 - Useful work is only done at the "frontier"
- Why can't we do better using MapReduce?

Weighted Edges

- Now add positive weights to the edges
 - Why can't edge weights be negative?
- Simple change: adjacency list now includes a weight w for each edge
 - In mapper, emit $(m, d + w_p)$ instead of (m, d + 1) for each node m
- That's it?

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path Not true!

Additional Complexities

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Practicalities of implementation in MapReduce

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Generic recipe:
 - Represent graphs as adjacency lists
 - Perform local computations in mapper
 - Pass along partial results via outlinks, keyed by destination node
 - Perform aggregation in reducer on inlinks to a node
 - Iterate until convergence: controlled by external "driver"
 - Don't forget to pass the graph structure between iterations

Random Walks Over the Web

- Random surfer model:
 - User starts at a random Web page
 - User randomly clicks on links, surfing from page to page
- PageRank
 - Characterizes the amount of time spent on any given page
 - Mathematically, a probability distribution over pages
- PageRank captures notions of page importance
 - Correspondence to human intuition?
 - One of thousands of features used in web search
 - Note: query-independent

PageRank: Defined

Given page x with inlinks $t_1 \dots t_n$, where

- C(t) is the out-degree of t
- α is probability of random jump
- *N* is the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

Computing PageRank

- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration are local
- Sketch of algorithm:
 - Start with seed *PR_i* values
 - Each page distributes *PR_i* "credit" to all pages it links to
 - Each target page adds up "credit" from multiple in-bound links to compute PR_{i+1}
 - Iterate until values converge

Simplified PageRank

- First, tackle the simple case:
 - No random jump factor
 - No dangling links
- Then, factor in these complexities...
 - Why do we need the random jump?
 - Where do dangling links come from?

Sample PageRank Iteration (1)

Sample PageRank Iteration (2)

PageRank in MapReduce

PageRank Pseudo-Code

```
1: class Mapper.
       method MAP(nid n, node N)
2:
           p \leftarrow N.PageRank/|N.AdjacencyList|
3:
           E_{MIT}(nid n, N)
                                                                  \triangleright Pass along graph structure
4:
           for all nodeid m \in N. ADJACENCYLIST do
5:
               EMIT(nid m, p)
                                                          ▷ Pass PageRank mass to neighbors
6:
1: Class Reducer.
       method REDUCE(nid m, [p_1, p_2, \ldots])
2:
           M \leftarrow \emptyset
3:
           for all p \in \text{counts } [p_1, p_2, \ldots] do
4:
               if IsNode(p) then
5:
                                                                     \triangleright Recover graph structure
                   M \leftarrow p
6:
               else
7:
                   s \leftarrow s + p
                                                  ▷ Sums incoming PageRank contributions
8:
           M.PageRank \leftarrow s
9:
           E_{MIT}(nid \ m, node \ M)
10:
```

Complete PageRank

- Two additional complexities
 - What is the proper treatment of dangling nodes?
 - How do we factor in the random jump factor?
- Solution:
 - Second pass to redistribute "missing PageRank mass" and account for random jumps

$$p' = \alpha \left(\frac{1}{|G|}\right) + (1 - \alpha) \left(\frac{m}{|G|} + p\right)$$

- *p* is PageRank value from before, *p'* is updated PageRank value
- |G| is the number of nodes in the graph
- *m* is the missing PageRank mass

PageRank Convergence

- Alternative convergence criteria
 - Iterate until PageRank values don't change
 - Iterate until PageRank rankings don't change
 - Fixed number of iterations
- Convergence for web graphs?

Beyond PageRank

- Link structure is important for web search
 - PageRank is one of many link-based features: HITS, SALSA, etc.
 - One of many thousands of features used in ranking...
- Adversarial nature of web search
 - Link spamming
 - Spider traps
 - Keyword stuffing
 - ...

Efficient Graph Algorithms

- Sparse vs. dense graphs
- Graph topologies

Figure from: Newman, M. E. J. (2005) "Power laws, Pareto distributions and Zipf's law." Contemporary Physics 46:323–351.

Local Aggregation

- Use combiners!
 - In-mapper combining design pattern also applicable
- Maximize opportunities for local aggregation
 - Simple tricks: sorting the dataset in specific ways

Source: Wikipedia (Japanese rock garden)