Data-Intensive Information Processing Applications - Session \#5
 Graph Algorithms

Jimmy Lin

University of Maryland
Tuesday, March 2, 2010

Source: Wikipedia (Japanese rock garden)

Today's Agenda

- Graph problems and representations
- Parallel breadth-first search
- PageRank

What's a graph?

- $G=(V, E)$, where
- V represents the set of vertices (nodes)
- E represents the set of edges (links)
- Both vertices and edges may contain additional information
- Different types of graphs:
- Directed vs. undirected edges
- Presence or absence of cycles
- Graphs are everywhere:
- Hyperlink structure of the Web
- Physical structure of computers on the Internet
- Interstate highway system
- Social networks

Some Graph Problems

- Finding shortest paths
- Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
- Telco laying down fiber
- Finding Max Flow
- Airline scheduling
- Identify "special" nodes and communities
- Breaking up terrorist cells, spread of avian flu
- Bipartite matching
- Monster.com, Match.com
- And of course... PageRank

Graphs and MapReduce

- Graph algorithms typically involve:
- Performing computations at each node: based on node features, edge features, and local link structure
- Propagating computations: "traversing" the graph
- Key questions:
- How do you represent graph data in MapReduce?
- How do you traverse a graph in MapReduce?

Representing Graphs

- $G=(V, E)$
- Two common representations
- Adjacency matrix
- Adjacency list

Adjacency Matrices

Represent a graph as an $n \times n$ square matrix M

- $n=|\mathrm{V}|$
- $M_{i j}=1$ means a link from node i to j

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

Adjacency Matrices: Critique

- Advantages:
- Amenable to mathematical manipulation
- Iteration over rows and columns corresponds to computations on outlinks and inlinks
- Disadvantages:
- Lots of zeros for sparse matrices
- Lots of wasted space

Adjacency Lists

Take adjacency matrices... and throw away all the zeros

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

$1: 2,4$
2: $1,3,4$
3: 1
4: 1,3

Adjacency Lists: Critique

o Advantages:

- Much more compact representation
- Easy to compute over outlinks
- Disadvantages:
- Much more difficult to compute over inlinks

Single Source Shortest Path

o Problem: find shortest path from a source node to one or more target nodes

- Shortest might also mean lowest weight or cost
- First, a refresher: Dijkstra's Algorithm

Dijkstra's Algorithm Example

Single Source Shortest Path

o Problem: find shortest path from a source node to one or more target nodes

- Shortest might also mean lowest weight or cost
- Single processor machine: Dijkstra's Algorithm
- MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
- Define: b is reachable from a if b is on adjacency list of a
- DISTANCETo(s) $=0$
- For all nodes p reachable from s, DISTANCETo(p) = 1
- For all nodes n reachable from some other set of nodes M, $\operatorname{DISTANCETO}(n)=1+\min (\operatorname{DistancETo}(m), m \in M)$

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
- Key: node n
- Value: d (distance from start), adjacency list (list of nodes reachable from n)
- Initialization: for all nodes except for start node, $d=\infty$
- Mapper:
- $\forall m \in$ adjacency list: emit $(m, d+1)$
- Sort/Shuffle
- Groups distances by reachable nodes
- Reducer:
- Selects minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "known frontier" by one hop
- Subsequent iterations include more and more reachable nodes as frontier expands
- Multiple iterations are needed to explore entire graph
- Preserving graph structure:
- Problem: Where did the adjacency list go?
- Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

```
class Mapper
    method \(\operatorname{Map}(\) nid \(n\), node \(N\) )
        \(d \leftarrow N\).Distance
        \(\operatorname{Emit}(\) nid \(n, N) \quad \triangleright\) Pass along graph structure
        for all nodeid \(m \in N\).AdjacencyList do
            Emit \((\) nid \(m, d+1) \quad \triangleright\) Emit distances to reachable nodes
class Reducer
    method Reduce(nid \(\left.m,\left[d_{1}, d_{2}, \ldots\right]\right)\)
        \(d_{\text {min }} \leftarrow \infty\)
        \(M \leftarrow \emptyset\)
        for all \(d \in\) counts \(\left[d_{1}, d_{2}, \ldots\right.\) ] do
            if IsNode \((d)\) then
                \(M \leftarrow d \quad \triangleright\) Recover graph structure
            else if \(d<d_{\text {min }}\) then
            \(d_{\text {min }} \leftarrow d\)
    \(M\).Distance \(\leftarrow d_{m i n}\)
    Emit(nid \(m\), node \(M\) )
```

\triangleright Recover graph structure
\triangleright Look for shorter distance
\triangleright Update shortest distance

Stopping Criterion

o How many iterations are needed in parallel BFS (equal edge weight case)?
o Convince yourself: when a node is first "discovered", we've found the shortest path

- Now answer the question...
- Six degrees of separation?
- Practicalities of implementation in MapReduce

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
- At any step it only pursues edges from the minimum-cost path inside the frontier
- MapReduce explores all paths in parallel
- Lots of "waste"
- Useful work is only done at the "frontier"
- Why can't we do better using MapReduce?

Weighted Edges

- Now add positive weights to the edges
- Why can't edge weights be negative?
- Simple change: adjacency list now includes a weight w for each edge
- In mapper, emit $\left(m, d+w_{p}\right)$ instead of $(m, d+1)$ for each node m
- That's it?

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path

Additional Complexities

Stopping Criterion

- How many iterations are needed in parallel BFS (positive edge weight case)?
- Practicalities of implementation in MapReduce

Graphs and MapReduce

- Graph algorithms typically involve:
- Performing computations at each node: based on node features, edge features, and local link structure
- Propagating computations: "traversing" the graph
- Generic recipe:
- Represent graphs as adjacency lists
- Perform local computations in mapper
- Pass along partial results via outlinks, keyed by destination node
- Perform aggregation in reducer on inlinks to a node
- Iterate until convergence: controlled by external "driver"
- Don't forget to pass the graph structure between iterations

Random Walks Over the Web

- Random surfer model:
- User starts at a random Web page
- User randomly clicks on links, surfing from page to page
- PageRank
- Characterizes the amount of time spent on any given page
- Mathematically, a probability distribution over pages
- PageRank captures notions of page importance
- Correspondence to human intuition?
- One of thousands of features used in web search
- Note: query-independent

PageRank: Defined

Given page x with inlinks $t_{1} \ldots t_{n}$, where

- $C(t)$ is the out-degree of t
- α is probability of random jump
- N is the total number of nodes in the graph

$$
P R(x)=\alpha\left(\frac{1}{N}\right)+(1-\alpha) \sum_{i=1}^{n} \frac{P R\left(t_{i}\right)}{C\left(t_{i}\right)}
$$

Computing PageRank

- Properties of PageRank
- Can be computed iteratively
- Effects at each iteration are local
- Sketch of algorithm:
- Start with seed $P R_{i}$ values
- Each page distributes $P R_{i}$ "credit" to all pages it links to
- Each target page adds up "credit" from multiple in-bound links to compute $P R_{i+1}$
- Iterate until values converge

Simplified PageRank

- First, tackle the simple case:
- No random jump factor
- No dangling links
- Then, factor in these complexities...
- Why do we need the random jump?
- Where do dangling links come from?

Sample PageRank Iteration (1)

Sample PageRank Iteration (2)

PageRank in MapReduce

PageRank Pseudo-Code

```
class Mapper
    method \(\operatorname{Map}(\) nid \(n\), node \(N\) )
        \(p \leftarrow N\).PageRank/|N.AdjacencyList \(\mid\)
    \(\operatorname{Emit}(\) nid \(n, N) \quad \triangleright\) Pass along graph structure
    for all nodeid \(m \in N\).AdJacencyList do
        Emit (nid \(m, p\) ) \(\triangleright\) Pass PageRank mass to neighbors
class Reducer
    method Reduce(nid \(\left.m,\left[p_{1}, p_{2}, \ldots\right]\right)\)
    \(M \leftarrow \emptyset\)
    for all \(p \in\) counts \(\left[p_{1}, p_{2}, \ldots\right]\) do
            if IsNode \((p)\) then
                \(M \leftarrow p \quad \triangleright\) Recover graph structure
            else
                    \(s \leftarrow s+p\)
                            \(\triangleright\) Sums incoming PageRank contributions
    M.PageRank \(\leftarrow s\)
    Emit(nid \(m\), node \(M\) )
```


Complete PageRank

- Two additional complexities
- What is the proper treatment of dangling nodes?
- How do we factor in the random jump factor?
- Solution:
- Second pass to redistribute "missing PageRank mass" and account for random jumps

$$
p^{\prime}=\alpha\left(\frac{1}{|G|}\right)+(1-\alpha)\left(\frac{m}{|G|}+p\right)
$$

- p is PageRank value from before, p^{\prime} is updated PageRank value
- |G| is the number of nodes in the graph
- m is the missing PageRank mass

PageRank Convergence

- Alternative convergence criteria
- Iterate until PageRank values don't change
- Iterate until PageRank rankings don't change
- Fixed number of iterations
- Convergence for web graphs?

Beyond PageRank

- Link structure is important for web search
- PageRank is one of many link-based features: HITS, SALSA, etc.
- One of many thousands of features used in ranking...
- Adversarial nature of web search
- Link spamming
- Spider traps
- Keyword stuffing
- ...

Efficient Graph Algorithms

- Sparse vs. dense graphs
- Graph topologies

Figure from: Newman, M. E. J. (2005) "Power laws, Pareto distributions and Zipf's law." Contemporary Physics 46:323-351.

Local Aggregation

- Use combiners!
- In-mapper combining design pattern also applicable
- Maximize opportunities for local aggregation
- Simple tricks: sorting the dataset in specific ways

Source: Wikipedia (Japanese rock garden)

