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Source: Wikipedia (Japanese rock garden)




Today’s Agenda

o Introduction to information retrieval
o Basics of indexing and retrieval
o Inverted indexing in MapReduce

o Retrieval at scale



First, nomenclature...

o Information retrieval (IR)

e Focus on textual information (= text/document retrieval)
e Other possibilities include image, video, music, ...
o What do we search?

e Generically, “collections”
e Less-frequently used, “corpora”

o What do we find?

e Generically, “documents”

e Even though we may be referring to web pages, PDFs,
PowerPoint slides, paragraphs, etc.



Information Retrieval Cycle
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The Central Problem 1n Search

Searcher

‘)

Concepts Concepts
Query Terms Document Terms
“tragic love story” “fateful star-crossed romance”

Do these represent the same concepts?
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How do we represent text?

o Remember: computers don’t “understand” anything!

o “Bag of words”

e Treat all the words in a document as index terms

e Assign a “weight” to each term based on “importance”
(or, in simplest case, presence/absence of word)

e Disregard order, structure, meaning, etc. of the words
e Simple, yet effective!

o Assumptions

e Term occurrence is independent
e Document relevance is independent
e “Words” are well-defined



What's a word?
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Sample Document

McDonald's slims down spuds

Fast-food chain to reduce certain types of
fat in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as
it moves to make all its fried menu items
healthier.

But does that mean the popular shoestring fries
won't taste the same? The company says no. "It's
a win-win for our customers because they are
getting the same great french-fry taste along with
an even healthier nutrition profile," said Mike
Roberts, president of McDonald's USA.

But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use,
but at least one nutrition expert says playing with
the formula could mean a different taste.

Shares of Oak Brook, lll.-based McDonald's
(MCD: down $0.54 to $23.22, Research,
Estimates) were lower Tuesday afternoon. It was
unclear Tuesday whether competitors Burger
King and Wendy's International (WEN: down
$0.80 to $34.91, Research, Estimates) would
follow suit. Neither company could immediately
be reached for comment.

“Bag of Words”

14 x McDonalds

12 x fat

11 x fries

8 X new

7 x french

6 X company, said, nutrition

5 x food, oll, percent, reduce,
taste, Tuesday



Counting Words...

Documents

case folding, tokenization, stopword removal, stemming

Bag of
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Boolean Retrieval

o Users express gqueries as a Boolean expression

e AND, OR, NOT
e Can be arbitrarily nested

o Retrieval is based on the notion of sets

e Any given query divides the collection into two sets:
retrieved, not-retrieved

e Pure Boolean systems do not define an ordering of the results



Inverted Index: Boolean Retrieval

Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham

1 2 3 4

blue 1 blue —» 2
cat 1 cat — 3
€gg 1 €gg — 4
fish 1)1 fish — 1 —» 2
green 1 green — 4
ham 1 ham — 4
hat 1 hat — 3
one 1 one — 1
red 1 red —» 2
two 1 two — 1




Boolean Retrieval

o To execute a Boolean query:

e Build query syntax tree

OR
. /\
( blue AND fish ) OR ham ham AND
e For each clause, look up postings blue fish
blue —> 2
fish — — 12

e Traverse postings and apply Boolean operator

o Efficiency analysis

e Postings traversal is linear (assuming sorted postings)
e Start with shortest posting first



Strengths and Weaknesses

o Strengths

e Precise, if you know the right strategies
e Precise, if you have an idea of what you're looking for
e Implementations are fast and efficient

o Weaknesses

Users must learn Boolean logic
Boolean logic insufficient to capture the richness of language
No control over size of result set: either too many hits or none

When do you stop reading? All documents in the result set are
considered “equally good”

e What about partial matches? Documents that “don’t quite match”
the query may be useful also



Ranked Retrieval

o Order documents by how likely they are to be relevant to
the information need

o Estimate relevance(q, d)
e Sort documents by relevance
e Display sorted results

o User model

e Present hits one screen at a time, best results first
e At any point, users can decide to stop looking

o How do we estimate relevance?

e Assume document is relevant if it has a lot of query terms
e Replace relevance(q, d)) with sim(q, d)
e Compute similarity of vector representations



Vector Space Model

Assumption: Documents that are “close together” in
vector space “talk about” the same things

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~ “closeness”)



Similarity Metric

o Use “angle” between the vectors:

o Or, more generally, inner products:

sim(d;,d, d —Z_l W



Term Weighting

o Term weights consist of two components

e Local: how important is the term in this document?
e Global: how important is the term in the collection?

o Here’s the intuition:

e Terms that appear often in a document should get high weights
e Terms that appear in many documents should get low weights

o How do we capture this mathematically?

e Term frequency (local)
e Inverse document frequency (global)



TF.IDF Term Weighting

N

W, ; =tfi,j-log—
Nn.

W, j weight assigned to term i in document j

tfi j number of occurrence of term i in document |
N  number of documents in entire collection

N. number of documents with term i



Inverted Index: TF.IDF

Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham

tf
1 2 3 4 df

blue 1 1 blue -1 —>2 1
cat 1 1 cat —»1—->3 1
egg 11 egg -+ 1 >4 1
fish 2 | 2 2 fish > 2—>1 2—>2 2
green 11 green —»1—+4 1
ham 1|1 ham —» 141
hat 1 1 hat - 1—+31
one 1 1 one 111
red 1 1 red > 121
two 1 1 two > 1—>1 1




Positional Indexes

o Store term position in postings
O Supports richer queries (e.g., proximity)

o Naturally, leads to larger indexes...



Inverted Index: Positional Information

Doc 1 Doc 2 Doc 3 Doc 4
one fish, two fish red fish, blue fish cat in the hat green eggs and ham

tf
1 2 3 4 df

blue 1 1 blue —> 1> 21|06
cat 1 1 cat 13 1 1
egg 11 egg =1 >4 1]
fish 212 2 fish —> 2 > 112 |24 2|2 |24
green 11 green =14 1|0
ham 1|1 ham 1 >4 1]|B6
hat 1 1 hat »1—>31|[@
one 1 1 one 11 101
red 1 1 red 12 1]|WM
two 1 1 two 1111 B3




Retrieval in a Nutshell

o Look up postings lists corresponding to query terms
o Traverse postings for each query term
o Store partial query-document scores in accumulators

o Select top k results to return



Retrieval: Document-at-a-Time

o Evaluate documents one at a time (score all query terms)

blue 9 2 21 1 35 1

fish 1 2,9 1. 21 3, 34 1 35 2 80 3

Document score in top k?

Accu.m_ulators Yes: Insert document score, extract-min if queue too large
(e.g. priority queue) No: Do nothing

o Tradeoffs

e Small memory footprint (good)
e Must read through all postings (bad), but skipping possible
e More disk seeks (bad), but blocking possible



Retrieval: Query-At-A-Time

o Evaluate documents one guery term at a time

e Usually, starting from most rare term (often with tf-sorted postings)

blue

fish

o Tradeoffs

9

2

21

1

35

1

Score,_,,(docn) =s

21

34

1 35

80

e Early termination heuristics (good)
e Large memory footprint (bad), but filtering heuristics possible

Accumulators
(e.g., hash)



MapReduce Iit?

o The indexing problem

Scalability is critical PerfeCt for Ma
Must be relatively fast, but need not be real time
Fundamentally a batch operation

Incremental updates may or may not be important
For the web, crawling is a challenge in itself

o The retrieval problem

Must have sub-second response time
For the web, only need relatively few results

Uh... hot sO good...



Indexing: Performance Analysis

o Fundamentally, a large sorting problem

e Terms usually fit in memory
e Postings usually don’t

o How is it done on a single machine?
o How can it be done with MapReduce?

o First, let's characterize the problem size:

e Size of vocabulary
e Size of postings



VVocabulary Size: Heaps’ Law

b M is vocabulary size
I\/I —_— kT T is collection size (number of documents)
k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

o Heaps’' Law: linear in log-log space

o Vocabulary size grows unbounded!



Heaps’ Law for RCV1

k=44
b =0.49

log10 M

- - First 1,000,020 terms:
Predicted = 38,323
Actual = 38,365

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Manning, Raghavan, Schiitze, Introduction to Information Retrieval (2008)



Postings Size: Zipf's Law

C

Cf —_— cf is the collection frequency of i-th common term
I - Cc is a constant

o Zipf's Law: (also) linear in log-log space
e Specific case of Power Law distributions
o In other words:

e A few elements occur very frequently
e Many elements occur very infrequently



Zipf's Law for RCV1

log10 cf

Fitisn’t that good...
but good enough!

log10 rank

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Manning, Raghavan, Schiitze, Introduction to Information Retrieval (2008)
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MapReduce: Index Construction

o Map over all documents

e Emit term as key, (docno, tf) as value
e Emit other information as necessary (e.g., term position)

o Sort/shuffle: group postings by term

o Reduce

e Gather and sort the postings (e.g., by docno or tf)
e Write postings to disk

o MapReduce does all the heavy lifting!



Inverted Indexing with MapReduce

Doc 1 Doc 2 Doc 3
one fish, two fish red fish, blue fish cat in the hat
one 1 . red 2 . cat 3 .
Map two I. blue | 2 . hat E.
fish [1]2] fish [2]2]
Shuffle and Sort: aggregate values by keys
cat |3 .
_ blue
Reduce fish [1]2]/2]2] .
one 1
[1] -

red z.




Inverted Indexing: Pseudo-Code

1: class MAPPER
2 procedure MAP(docid n,doc d)
3 H < new ASSOCIATIVEARRAY
4 for all term ¢ € doc d do
5 H {f} — H {f} + 1
for all term t € H do
EMIT(term ¢, posting (n, H{t}))

-1 D

1: class REDUCER

2 procedure REDUCE(term ¢, postings [{ay, f1), (az, f2)...])
3: P « new LIST

4 for all posting (a, f) € postings [{ay, f1), (as, f2)...] do
5 APPEND(P, (a, f))

SORT(DP)
EMIT(term ¢, postings P)

-~



Positional Indexes

Doc 1 Doc 2 Doc 3
one fish, two fish red fish, blue fish cat in the hat

one 1 . [1] red 2 . [1] cat 3 . [1]

Map two |1 [3] blue 2. [3] hat |3
fish [1]2]ea fish [2]2] ra

cat 3 . [1]
Reduce fish 1 [2,4] z. [2,4] )
at
one 1 . [1] o

red 2 [1]

blue




Inverted Indexing: Pseudo-Code

1: class MAPPER

2 procedure MAP(docid n,doc d)
3: H «— new ASSOCIATIVEARRAY
4 for all term ¢ € doc d do

5

H{t} — H{t} +1

6: for all term ¢ € H do

7 EMIT(term ¢, posting (n, H{t}))

1: class REDUCER

2 procedure REDUCE(term ¢, postings [{ay, f1), (az, f2)...])
3: P «— new LIST

4 for ~ all posting (¢, _216 postings [{ay, f1), (as, f2)...] do

S

5 T APPEND(P (a, f)) \\ ob\em?
6: S~ SORT(P) e the pr
TS * \What's

7: EN IIT(Term-f-pt':'fmm, P)



Scalability Bottleneck

o Initial implementation: terms as keys, postings as values

e Reducers must buffer all postings associated with key (to sort)
e What if we run out of memory to buffer postings?

o Uh oh!



Another Try...

(key)

fish

(values)

1

2

34

1

21

35

80

9

[2,4]

[23]

[1,8,22]

[8,41]

[2,9,76]

[9]

(keys)

fish

fish

:: fish
fish

fish

fish

1

9

21

34

35

80

(values)
[2,4]
[9]
[1,8,22]
[23]
[8,41]

[2,9,76]

How is this different?

* Let the framework do the sorting
» Term frequency implicitly stored
* Directly write postings to disk!

Where have we seen this before?



Postings Encoding

Conceptually:

fish 1 2]

9 [1]

21 3]

In Practice:

£l

35 2]

» Don’t encode docnos, encode gaps (or d-gaps)
* But it's not obvious that this save space...

fish 1 2]

8 [1]

12 |3

]

1 [2]

80 3] ...

45 .



Overview of Index Compression

o Byte-aligned vs. bit-aligned

o Non-parameterized bit-aligned

e Unary codes
e y codes
e O codes

o Parameterized bit-aligned

e Golomb codes (local Bernoulli model)

Want more detail? Read Managing Gigabytes by Witten, Moffat, and Bell!



Unary Codes

o X >1is coded as x-1 one bits, followed by 1 zero bit

e 3=110
e 4=1110

o Great for small numbers... horrible for large numbers

e Overly-biased for very small gaps

Watch out! Slightly different definitions in different textbooks



y codes

o X =1 is coded in two parts: length and offset

e Start with binary encoded, remove highest-order bit = offset
e Length is number of binary digits, encoded in unary code
e Concatenate length + offset codes

o Example: 9 in binary is 1001

e Offset = 001
e Length =4, in unary code = 1110
e ycode =1110:001

o Analysis

e Offset =|log x/
o Length =|log x] +1
e Total = 2[log x| +1



O codes

o Similar to y codes, except that length is encoded in y code

o Example: 9 in binary is 1001
e Offset =001
e Length =4, inycode = 11000
e 5 code =11000:001

o y codes = more compact for smaller numbers
0 codes = more compact for larger numbers



Golomb Codes

O X =1, parameter b:

e g+ 1inunary, whereq=[(x-1)/b]

e rin binary, where r=x-qgb -1, inllog b] or|log b] bits
o Example:
b=3,r=0,1,2(0, 10, 11)
b=6,r=0,1, 2, 3,4,5(00, 01, 100, 101, 110, 111)
Xx=9,b=3:.q=2,r=2,code =110:11
X=9,b=6:q=1,r=2,code =10:100
o Optimal b ~ 0.69 (N/df)

e Different b for every term!



Comparison of Coding Schemes

Unary Y ) Golomb

b=3 b=6
1 0 0 0 0:0 0:00
2 10 10:0 100:0 0:10 0:01
3 110 10:1 100:1 0:11 0:100
4 1110 110:00 101:00 10:0 0:101
5 11110 110:01 101:01 10:10 0:110
6 111110 110:10 101:10 10:11 0:111
7 1111110 110:11 101:11 110:0 10:00
8 11111110 1110:000 11000:000 110:10 10:01
9 111111110 1110:001 11000:001 110:11 10:100
10 1111111110 1110:010 11000:010 1110:0 10:101

Witten, Moffat, Bell, Managing Gigabytes (1999)



Index Compression: Performance

Comparison of Index Size (bits per pointer)

Bible TREC
Unary 262 1918
Binary 15 20
Y 6.51 6.63
d 6.23 6.38
Golomb 6.09 5.84 <-Recommend best practice

Bible: King James version of the Bible; 31,101 verses (4.3 MB)
TREC: TREC disks 1+2; 741,856 docs (2070 MB)

Witten, Moffat, Bell, Managing Gigabytes (1999)



Chicken and Egg?

(key)

fish

fish

fish

fish

fish

fish

1

9

21

34

35

80

(value)
[2,4]
[9]
[1,8,22]
[23]
[8,41]

[2,9,76]

v

Write directly to disk

But wait! How do we set the
Golomb parameter b?

Recall: optimal b ~ 0.69 (N/df)
We need the df to set b...

But we don’t know the df until we’ve
seen all postings!

Sound familiar?



Getting the df

o In the mapper:

e Emit “special” key-value pairs to keep track of df

o In the reducer:

e Make sure “special” key-value pairs come first: process them to
determine df

o Remember: proper partitioning!



Getting the df: Modified Mapper

Doc 1
one fish, two fish Input document...

(key) (value)
fish | 1 [2,4] Emit normal key-value pairs...
one| 1 [1]
two | 1 [3]
fish | % [1] Emit “special” key-value pairs to keep track of df...
one| % [1]

two | % [1]



Getting the df: Modified Reducer

(key)

fish

fish

fish

fish

fish

fish

fish

*

21

34

35

80

(value)

First, compute the df by summing contributions

[63] | [82] | [27] . C :
from all “special” key-value pair...

Compute Golomb parameter b...

[2,4]

[9]

[1,8,22] Important: properly define sort order to make
sure “special” key-value pairs come first!

[23]

[8,41]

[2,9,76]

7 Write postings directly to disk

Where have we seen this before?



MapReduce it?

o The indexing problem Just covered

e Scalability is paramount

e Must be relatively fast, but need not be real time
e Fundamentally a batch operation

e Incremental updates may or may not be important
e For the web, crawling is a challenge in itself

o The retrieval problem Now

e Must have sub-second response time
e For the web, only need relatively few results



Retrieval with MapReduce?

o MapReduce is fundamentally batch-oriented

e Optimized for throughput, not latency
e Startup of mappers and reducers is expensive

o MapReduce is not suitable for real-time queries!

e Use separate infrastructure for retrieval...



Important Ildeas

o Partitioning (for scalability)
o Replication (for redundancy)
o Caching (for speed)

o Routing (for load balancing)

The rest is just details!



Term vs. Document Partitioning

D
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Term
Partitioning
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http://katta.sourceforge.net/

Katta Architecture

(Distributed Lucene)

hadoop cluster or
single server

HDFS, NAS or shared
local filesystem

™ create index
F and copy to shared filesystem

< fail over

Y
command line
management

A A\
-
@ — java API

assign download
shards shards

server nodes in the
grid

multicast query

shard replication
(plug-able policy) multicast query

distributed ranking
plug-able selection
policy (custom load
balancing)

java client AP1



Source: Wikipedia (Japanese rock garden)




