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Source: Wikipedia (Japanese rock garden)




Today’s Agenda

o “The datacenter is the computer”

e Understanding the design of warehouse-sized computes

o MapReduce algorithm design

e How do you express everything in terms of m, r, ¢, p?
e Toward “design patterns”



The datacenter is the computer



“Big ldeas”

o Scale “out”, not “up”

e Limits of SMP and large shared-memory machines

o Move processing to the data
e Cluster have limited bandwidth

o Process data sequentially, avoid random access
e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour



Source: Wikipedia (The Dalles, Oregon)




Source: NY Times (6/14/2006)
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Source: Harper’s (Feb, 2008)



Source: Bonneville Power Administration




Building Blocks

Source: Barroso and Urs Holzle (2009)



Storage Hierarchy

One server
DRAM: 16GB, 100ns, 20GB/s
Disk: 2TB, 10ms, 200MB/s

Local DRAM

" Rack Switch

Local rack (80 servers)

, DRAM: 1TB, 300us, 100MB/s
- Disk: 160TB, 11ms, 100MB/s

Cluster (30 racks)

DRAM: 30TB, 500us, 10MB/s
Disk: 4.80PB, 12ms, 10MB/s

Funny story about sense of scale...

Source: Barroso and Urs Holzle (2009)



Storage Hierarchy
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Source: Barroso and Urs Holzle (2009)



Anatomy of a Datacenter

Computer Air Handling Unit (CRAC)

. UP Tao 30 Ton Sensible city Per Unit

«» Air Discharge Can Be Up r Downflow Configuration

» Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Plenum With Floor Supply Diffusers

Individual Colocation Computer Cabinets
+ Typ. Cahinet Footprint (28"W x 36"D x 84"H)
* Typical Capacities OF 1750 To 3750 Watts Per Cabinet

Power Distribution Unit (PDU)
# Typical Capacitics Up To 225 kVA Per Unit
+ Redundancy Through Dual PDU's With
Integral Static Transfer Switch (STS)
Emergency Diescl Generators
+ Total Generator Capacity = Total Electrical Load To Building
+ Multiple Generators Can Be Electrically Combined With
Paralleling Gear
» Can Be Located Indoors Or Outdoors At Grade Or On Roof,
= Outdoor Applications Require Sound Attenuating Enclosures

Fuel Oil Storage Tanks

= Tank Capacity Dependant On Length
Of Generator Operation

+ Can Be Located Underground Or At
Grade Or Indoors

~UPS System

= Uninterruptible Power Supply Modules
« Up To 1000 kWA Per Module

/ « Cabinets And Battery Strings Or Rotary Flywheels
« Multiple Redundancy Configurations Can Be Designed

-~
- Electrical Primary Switchgear

= Modular Configuration For
Flexible Suite Sq.Ft. Areas. 4

* Suites Consist [JfFMultipl: Cabinets With =
Secured Partitions (Cages, Walls, Etc.)

- = Includes Incoming Service And Distribution
S » Direct Distribution To Mechanical Equipment
/’ » Distribution To Secondary Electrical Equipment Via LIPS
Pump Room

Heat Rejection Devices &
+ Drycoolers, Air Cooled Chillers, Etc.
+ Up To 400 Ton Capacity Per Unit

= Mounted At Grade Or On Roof

+ N+1 Design

* Used To Pump Condenser/Chilled Water Between Drycoolers And CRAC Units
= Additional Equipment Includes Expansion Tank, Glyeol Feed System
« N+1 Design (Standby Pump)

Source: Barroso and Urs Holzle (2009)



Why commodity machines?

HP INTEGRITY HP PROLIANT
SUPERDOME-ITANIUM2 ML350 G5
Processor 64 sockets, 128 cores 1 socket, quad-core,
(dual-threaded), 1.6 GHz 2.66 GHz X5355 CPU,
Itanium2, 12 MB 8 MB last-level cache
last-level cache
Memory 2,048 GB 24 GB
Disk storage 320,974 GB, 7,056 drives 3,961 GB, 105 drives
TPC-C price/performance $2.93/tpmC $0.73/tpmC
price/performance $1.28/transactions $0.10/transactions
(server HW only) per minute per minute
Price/performance $2.39/transactions $0.12/transactions
(server HW only) per minute per minute

(no discounts)

Source: Barroso and Urs Holzle (2009); performance figures from late 2007



What about communication?

o Nodes need to talk to each other!

e SMP: |latencies ~100 ns
e LAN: latencies ~100 us

o Scaling “up” vs. scaling “out”

e Smaller cluster of SMP machines vs. larger cluster of commodity
machines

e E.g., 8 128-core machines vs. 128 8-core machines
e Note: no single SMP machine is big enough

o Let's model communication overhead...

Source: analysis on this an subsequent slides from Barroso and Urs Holzle (2009)



Modeling Communication Costs

o Simple execution cost model:

e Total cost = cost of computation + cost to access global data
e Fraction of local access inversely proportional to size of cluster
e n nodes (ignore cores for now)

1ms+fx[100ns xn+ 100 us x (1 -1/n)]

 Light communication: f =1
* Medium communication: f =10
* Heavy communication: f =100

o What are the costs in parallelization?



Cost of Parallelization
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Advantages of scaling “up”
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Seeks vs. Scans

o Consider a 1 TB database with 100 byte records

e We want to update 1 percent of the records

o Scenario 1: random access

e Each update takes ~30 ms (seek, read, write)
e 108 updates = ~35 days

o Scenario 2: rewrite all records

e Assume 100 MB/s throughput
e Time = 5.6 hours(!)

o Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list



Justifying the “Big ldeas”

o Scale “out”, not “up”
e Limits of SMP and large shared-memory machines

o Move processing to the data
e Cluster have limited bandwidth

o Process data sequentially, avoid random access
e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour



L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA — Netherlands — CA

* According to Jeff Dean (LADIS 2009 keynote)

Numbers Everyone Should Know*

0.5 ns

o5 ns

7 ns

25 ns

100 ns

20,000 ns
250,000 ns
500,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns



MapReduce Algorithm Design



MapReduce: Recap

o Programmers must specify:

map (k, v) — <k’, v’>*
reduce (k’, V') — <k’, v’>*
e All values with the same key are reduced together

o Optionally, also:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic

o The execution framework handles everything else...
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“Everything Else”

o The execution framework handles everything else...

e Scheduling: assigns workers to map and reduce tasks

e “Data distribution”. moves processes to data

e Synchronization: gathers, sorts, and shuffles intermediate data
e Errors and faults: detects worker failures and restarts

o Limited control over data and execution flow

e All algorithms must expressedinm, r, c, p

o You don’t know:

e \Where mappers and reducers run

e When a mapper or reducer begins or finishes

e Which input a particular mapper is processing

e Which intermediate key a particular reducer is processing



Tools for Synchronization

o Cleverly-constructed data structures

e Bring partial results together

o Sort order of intermediate keys

e Control order in which reducers process keys

o Partitioner

e Control which reducer processes which keys

o Preserving state in mappers and reducers

e Capture dependencies across multiple keys and values



Preserving State

Mapper object
» state
/
/
/
I configure
|
|
|
\
\ map
close

<€— one object per task —>

<€— APl initialization hook =————>

<€— one call per input
key-value pair

one call per —>
intermediate key

<€+ API cleanup hook >

Reducer object

configure

reduce

close

state -



Scalable Hadoop Algorithms: Themes

o Avoid object creation

e Inherently costly operation
e Garbage collection

o Avoid buffering

e Limited heap size
e Works for small datasets, but won'’t scale!



Importance of Local Aggregation

o ldeal scaling characteristics:

e Twice the data, twice the running time
e Twice the resources, half the running time

o Why can’t we achieve this?

e Synchronization requires communication
e Communication kills performance

o Thus... avoid communication!

e Reduce intermediate data via local aggregation
e Combiners can help



Shuffle and Sort

Mapper intermediate files
(on disk)
merged spills
l (on disk) / — -
é %
Combiner > Reducer ]
—>
/

circular buffer
(in memory)

7

Combiner

l\\[ /

other reducers
spills (on disk)

other mappers



Word Count: Baseline

1: class MAPPER

2: method MAap(docid a, doc d)

3: for all term ¢ € doc d do

4: EMIT(term ¢, count 1)

1: class REDUCER

2 method REDUCE(term ¢, counts [c, ¢, . . .])
3 sum «— 0

4 for all count ¢ € counts [¢1,c2,...] do

5 SUMm < sum + ¢

6 EMIT(term £, count s)

What’s the impact of combiners?



Word Count: Version 1

1: class MAPPER
2 method MAap(docid a, doc d)
3: H — new ASSOCIATIVEARRAY
4 for all term 7 € doc d do
5 H{t}y — H{t} +1 > Tally counts for entire document
for all term t € H do
EwMIT(term #, count H{t})

D@

Are combiners still needed?



Word Count: Version 2

class MAPPER )
method INITIALIZE ° g\a‘e

H «— new ASSOCIATIVEARRAY GQGN
method MAap(docid a. doc d)
for all term ¢ € doc d do

H{t} — H{t} +1 W

> Tally counts across documents

T method CLOSE
8: for all term t € H do
9 EmIT(term ¢, count H{t})

Are combiners still needed?



Design Pattern for Local Aggregation

o “In-mapper combining”

e Fold the functionality of the combiner into the mapper by
preserving state across multiple map calls

o Advantages

e Speed
e Why is this faster than actual combiners?

o Disadvantages

e Explicit memory management required
e Potential for order-dependent bugs



Combiner Design

o Combiners and reducers share same method signature

e Sometimes, reducers can serve as combiners
e Often, not...

o Remember:. combiner are optional optimizations

e Should not affect algorithm correctness
e May be run 0, 1, or multiple times

o Example: find average of all integers associated with the
same key



Computing the Mean: Version 1

1: class MAPPER

2: method Map(string ¢, integer r)

3: EMIT(string t, integer r)

1: class REDUCER

2 method REDUCE(string ¢, integers [ry,7s,...])
3 sum — 0

4: cnt — 0

5 for all integer r € integers [ry,72,...] do
6 sum «— sum +r

7 cnt — ent + 1

8: Tapg < Sum/ent

0: EMIT(string ¢, integer r,,,)

Why can’t we use reducer as combiner?



Computing the Mean: Version 2

1: class MAPPER

2: method MAp(string ¢, integer r)

3: EMIT(string 7, integer r)

1: class COMBINER

2 method COMBINE(string 7, integers [ry, rs, .. .])

3 sum — 0

4: cnt «— 0

5 for all integer r € integers [ry,72,...] do

6 SUIM «— sum —|— r

7 cnt — ent + 1

8: EMIT(string ¢, pair (sum, cnt)) > Separate sum and count
1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1.¢1). (s2.¢2)...])
3 sum — 0

4: cnt «— 0

5 for all pair (s,c) € pairs [(s;,¢1),(S2.¢2)...] do
6 SUm < sum + s

7 cnt — ent + ¢

[ 4]

Tavg *— SUIn, lent
0: EmiT (wtung t,integer rayq)

Why doesn’t this work?



Computing the Mean: Version 3

1: class MAPPER

2: method MAP(string ¢, integer r)

3: EmMiT(string ¢, pair (r. 1))

1: class COMBINER

2 method COMBINE(string ¢, pairs [(sq,¢1). (S2.¢3)...])
3 sum «— 0

4: cnt — 0

5 for all pair (s,c) € pairs [(s1,¢1). (s2.¢2)...] do
6 SUIm < sum —+ s

7 cnt — ent + ¢

8: EnMiT(string ¢, pair (sum, cnt))

1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1.¢1). (s2.¢2) ...])
3 sum «— 0

4: cnt — 0

5 for all pair (s,c) € pairs [(s1,¢1), (s2.¢2)...] do
6 Sum < sum —+ s

7 cent — ent + ¢

8: Favg < sum/cnt

0: EMIT(string ¢, pair (raug, cnt))



Computing the Mean: Version 4

1: class MAPPER

2: method INITIALIZE

3: S +— new ASSOCIATIVEA RRAY

4: (' — new ASSOCIATIVEARRAY

I method MAP(string ¢, integer r)

6: S{t} — S{t} +r

7: C{t} — C{t} +1

8: method CLOSE

o: for all term £ € S do

10: EMIT(term t, pair (S{t},C{t}))

Are combiners still needed?



Algorithm Design: Running Example

o Term co-occurrence matrix for a text collection

e M =N x N matrix (N = vocabulary size)

e M;: number of times i and j co-occur in some context
(for concreteness, let’'s say context = sentence)

o Why?

e Distributional profiles as a way of measuring semantic distance
e Semantic distance useful for many language processing tasks



MapReduce: Large Counting Problems

o Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

e A large event space (number of terms)
e A large number of observations (the collection itself)
e Goal: keep track of interesting statistics about the events

o Basic approach

e Mappers generate partial counts
e Reducers aggregate partial counts

How do we aggregate partial counts efficiently?



First Try: “Pairs”

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For all pairs, emit (a, b) — count

o Reducers sum up counts associated with these pairs

o Use combiners!



Pairs: Pseudo-Code

1: class MAPPER

2 method MAap(docid a, doc d)

3: for all term w € doc d do

4 for all term u € NEIGHBORS(w) do

5 EMiT(pair (w, «),count 1) > Emit count for each co-occurrence
1: class REDUCER

2 method REDUCE(pair p, counts [cq, ca, .. .])

3 s« 0

4: for all count ¢ € counts [¢y,ca....] do

5 s—s+c > Sum co-occurrence counts
6 EMIT(pair p. count s)



“Pairs” Analysis

o Advantages

e Easy to implement, easy to understand

o Disadvantages

e Lots of pairs to sort and shuffle around (upper bound?)
e Not many opportunities for combiners to work



Another Try: “Stripes”

o ldea: group together pairs into an associative array

(a, b) —» 1
(a,c) — 2
(a,d)— 5 a—{b:1,c:2,d:5e:3,12}
(a,e) > 3
(a,f) —» 2

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For each term, emit a — { b: count,, c: count_, d: count; ... }

o Reducers perform element-wise sum of associative arrays

(e
a—{b:1 d: 5, e:3} tasﬁuc‘“
+ a—{b1,c2d2  f2) red 92
5 : e WS
a—{b:2,c.2,d:7,e:3, 1.2} \\J‘GO“S‘{\a\‘eu
P o
pring



Stripes: Pseudo-Code

1: class MAPPER

2 method MAp(docid a, doc d)

3 for all term w € doc d do

4: H — new ASSOCIATIVEARRAY

5 for all term u € NEIGHBORS(w) do

6 H{u} — H{u} +1 > Tally words co-occurring with w

Emir(Term w, Stripe H)

=1

1: class REDUCER

2 method REDUCE(term w, stripes [Hy, Hy, Hj,...])

3: Hy¢ +— new ASSOCIATIVEARRAY

4 for all stripe H < stripes [Hy,H», Hs,...] do

5 SUM(H ;. H) > Element-wise sum

6: EMIT(term w, stripe H¢)



“Stripes” Analysis

o Advantages

e Far less sorting and shuffling of key-value pairs
e Can make better use of combiners

o Disadvantages

e More difficult to implement
e Underlying object more heavyweight
e Fundamental limitation in terms of size of event space



Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices
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which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)
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Relative Frequencies

o How do we estimate relative frequencies from counts?

_count(A,B)  count(A,B)

f(BlA)= count(A) Zcount(A, B')

o Why do we want to do this?

o How do we do this with MapReduce?



f(B|A): “Stripes”
a— {b;:3,b,:12,b;:7,b,:1, ...}

o Easy!

e One pass to compute (a, *)
e Another pass to directly compute f(B|A)



f(B|A): “Pairs”

*) — 32 Reducer holds this value in memory

(a,

(a, by) — (a,by) > 3/32
(a, b2)—>12 (a, by,) > 12732
(a, by) — (a,bs) — 71732
(a, b,) — (a, b,) — 1/32

o For this to work:

e Must emit extra (a, *) for every b, in mapper

e Must make sure all a’s get sent to same reducer (use partitioner)
e Must make sure (a, *) comes first (define sort order)

e Must hold state in reducer across different key-value pairs



“Order Inversion”

o Common design pattern

e Computing relative frequencies requires marginal counts
e But marginal cannot be computed until you see all counts

e Buffering is a bad idea!

e Trick: getting the marginal counts to arrive at the reducer before
the joint counts

o Optimizations
e Apply in-memory combining pattern to accumulate marginal counts
e Should we apply combiners?



Synchronization: Pairs vs. Stripes

o Approach 1: turn synchronization into an ordering problem

e Sort keys into correct order of computation

e Partition key space so that each reducer gets the appropriate set
of partial results

e Hold state in reducer across multiple key-value pairs to perform
computation

e lllustrated by the “pairs” approach

o Approach 2: construct data structures that bring partial
results together

e Each reducer receives all the data it needs to complete the
computation

e lllustrated by the “stripes” approach



Secondary Sorting

o MapReduce sorts input to reducers by key

e Values may be arbitrarily ordered
o What if want to sort value also?

o E.g.,k— (vq, ), (V3, 1), (Vg, 1), (Vg, I)...



Secondary Sorting: Solutions

o Solution 1:

e Buffer values in memory, then sort
e Why is this a bad idea?

o Solution 2:
e “Value-to-key conversion” design pattern: form composite
intermediate key, (k, v4)
e Let execution framework do the sorting

e Preserve state across multiple key-value pairs to handle
processing

e Anything else we need to do?



Recap: Tools for Synchronization

o Cleverly-constructed data structures
e Bring data together

o Sort order of intermediate keys

e Control order in which reducers process keys

o Partitioner

e Control which reducer processes which keys

o Preserving state in mappers and reducers

e Capture dependencies across multiple keys and values



Issues and Tradeoffs

o Number of key-value pairs

e Object creation overhead
e Time for sorting and shuffling pairs across the network

o Size of each key-value pair

e De/serialization overhead

o Local aggregation

Opportunities to perform local aggregation varies
Combiners make a big difference

Combiners vs. in-mapper combining

RAM vs. disk vs. network



Debugging at Scale

o Works on small datasets, won't scale... why?

e Memory management issues (buffering and object creation)
e Too much intermediate data

e Mangled input records
o Real-world data is messy!

e Word count: how many unique words in Wikipedia?
e There’s no such thing as “consistent data”
e Watch out for corner cases

e Isolate unexpected behavior, bring local



Source: Wikipedia (Japanese rock garden)




