Data-Intensive Information Processing Applications — Session #3

MapReduce Algorithm Design

Jimmy Lin University of Maryland

Tuesday, February 9, 2010

Source: Wikipedia (Japanese rock garden)

Today's Agenda

- "The datacenter is the computer"
 - Understanding the design of warehouse-sized computes
- MapReduce algorithm design
 - How do you express everything in terms of m, r, c, p?
 - Toward "design patterns"

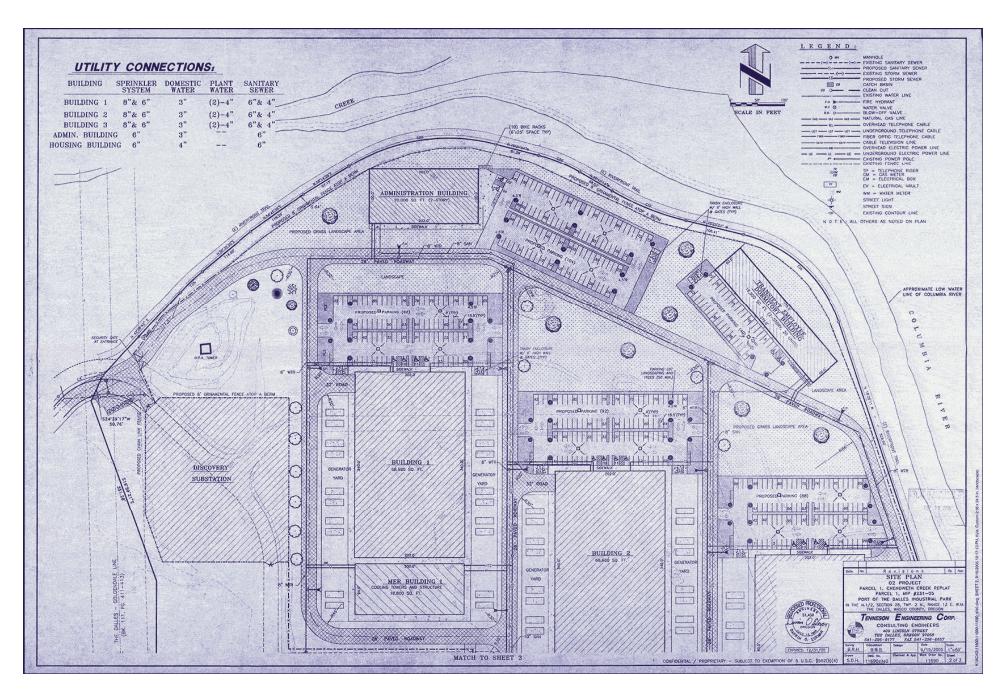
The datacenter is the computer

"Big Ideas"

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

Source: Wikipedia (The Dalles, Oregon)

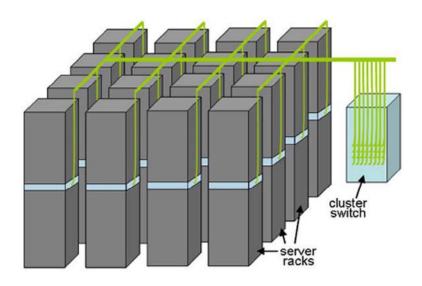
Source: NY Times (6/14/2006)



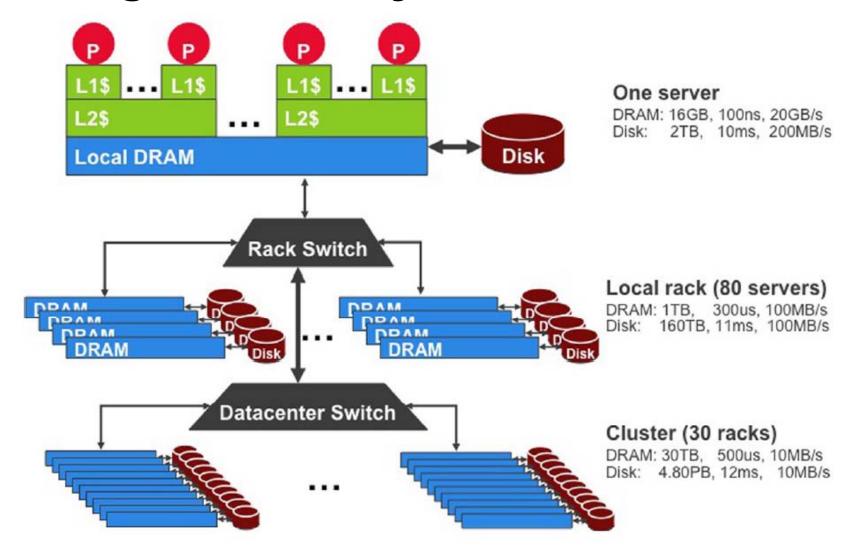
Source: Harper's (Feb, 2008)

Source: Bonneville Power Administration

Building Blocks



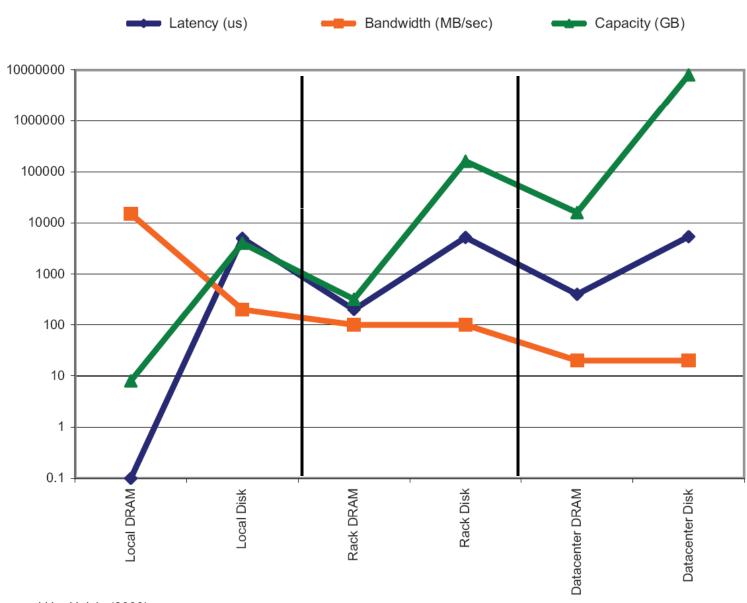
Storage Hierarchy



Funny story about sense of scale...

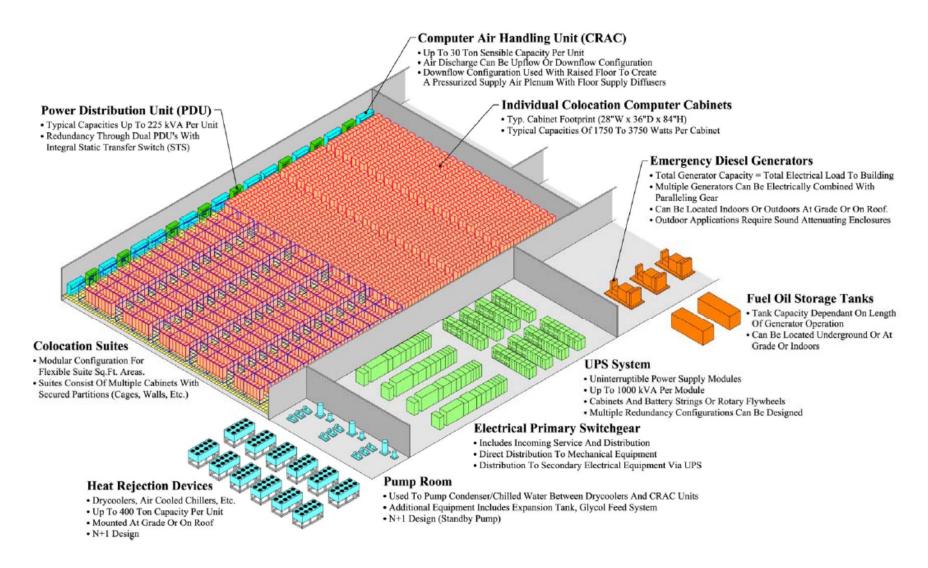
Source: Barroso and Urs Hölzle (2009)

Storage Hierarchy



Source: Barroso and Urs Hölzle (2009)

Anatomy of a Datacenter



Why commodity machines?

	HP INTEGRITY SUPERDOME-ITANIUM2	HP PROLIANT ML350 G5
Processor	64 sockets, 128 cores (dual-threaded), 1.6 GHz Itanium2, 12 MB last-level cache	1 socket, quad-core, 2.66 GHz X5355 CPU, 8 MB last-level cache
Memory	2,048 GB	24 GB
Disk storage	320,974 GB, 7,056 drives	3,961 GB, 105 drives
TPC-C price/performance	\$2.93/tpmC	\$0.73/tpmC
price/performance (server HW only)	\$1.28/transactions per minute	\$0.10/transactions per minute
Price/performance (server HW only) (no discounts)	\$2.39/transactions per minute	\$0.12/transactions per minute

Source: Barroso and Urs Hölzle (2009); performance figures from late 2007

What about communication?

- Nodes need to talk to each other!
 - SMP: latencies ~100 ns
 - LAN: latencies ~100 μs
- Scaling "up" vs. scaling "out"
 - Smaller cluster of SMP machines vs. larger cluster of commodity machines
 - E.g., 8 128-core machines vs. 128 8-core machines
 - Note: no single SMP machine is big enough
- Let's model communication overhead...

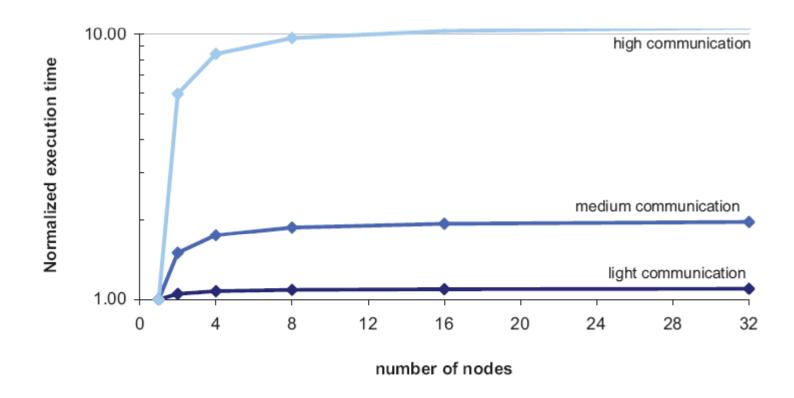
Modeling Communication Costs

- Simple execution cost model:
 - Total cost = cost of computation + cost to access global data
 - Fraction of local access inversely proportional to size of cluster
 - n nodes (ignore cores for now)

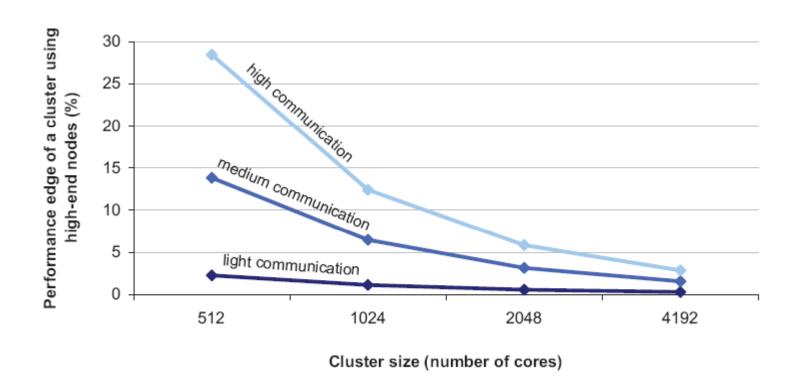
```
1 ms + f \times [100 \text{ ns} \times n + 100 \text{ } \mu\text{s} \times (1 - 1/n)]
```

- Light communication: f = 1
- Medium communication: f = 10
- Heavy communication: f = 100
- What are the costs in parallelization?

Cost of Parallelization



Advantages of scaling "up"



So why not?

Seeks vs. Scans

- Consider a 1 TB database with 100 byte records
 - We want to update 1 percent of the records
- Scenario 1: random access
 - Each update takes ~30 ms (seek, read, write)
 - 10^8 updates = ~35 days
- Scenario 2: rewrite all records
 - Assume 100 MB/s throughput
 - Time = 5.6 hours(!)
- Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list

Justifying the "Big Ideas"

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

Numbers Everyone Should Know*

L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	25 ns
Main memory reference	100 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from disk	20,000,000 ns
Send packet CA → Netherlands → CA	150,000,000 ns

^{*} According to Jeff Dean (LADIS 2009 keynote)

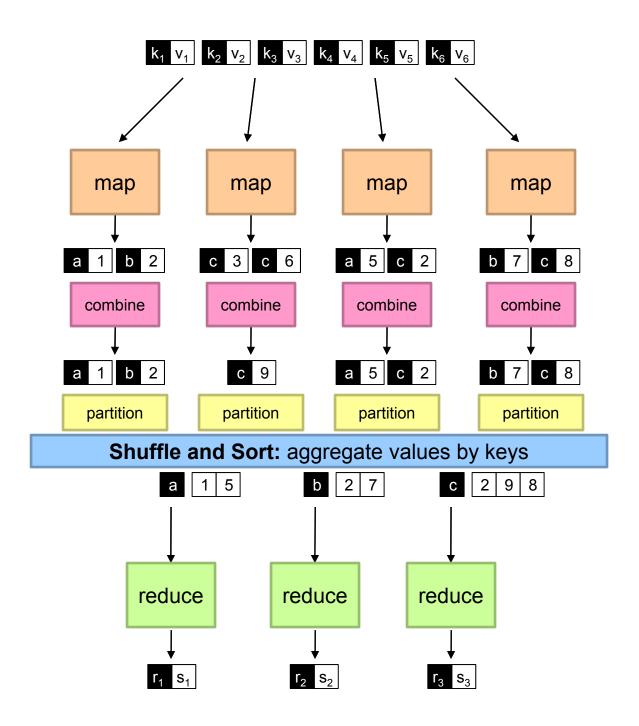
MapReduce Algorithm Design

MapReduce: Recap

• Programmers must specify:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k', v' \rangle^*
```

- All values with the same key are reduced together
- Optionally, also:
 - partition (k', number of partitions) → partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations
 combine (k', v') → <k', v'>*
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic
- The execution framework handles everything else...



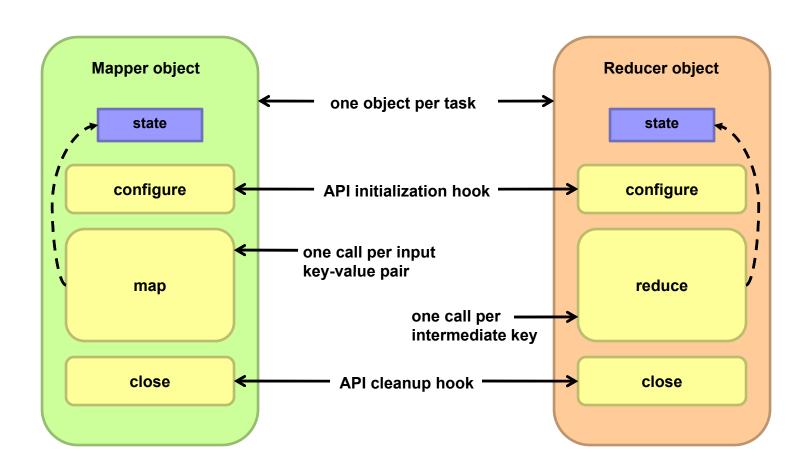
"Everything Else"

- The execution framework handles everything else...
 - Scheduling: assigns workers to map and reduce tasks
 - "Data distribution": moves processes to data
 - Synchronization: gathers, sorts, and shuffles intermediate data
 - Errors and faults: detects worker failures and restarts
- Limited control over data and execution flow
 - All algorithms must expressed in m, r, c, p
- You don't know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing

Tools for Synchronization

- Cleverly-constructed data structures
 - Bring partial results together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Preserving State



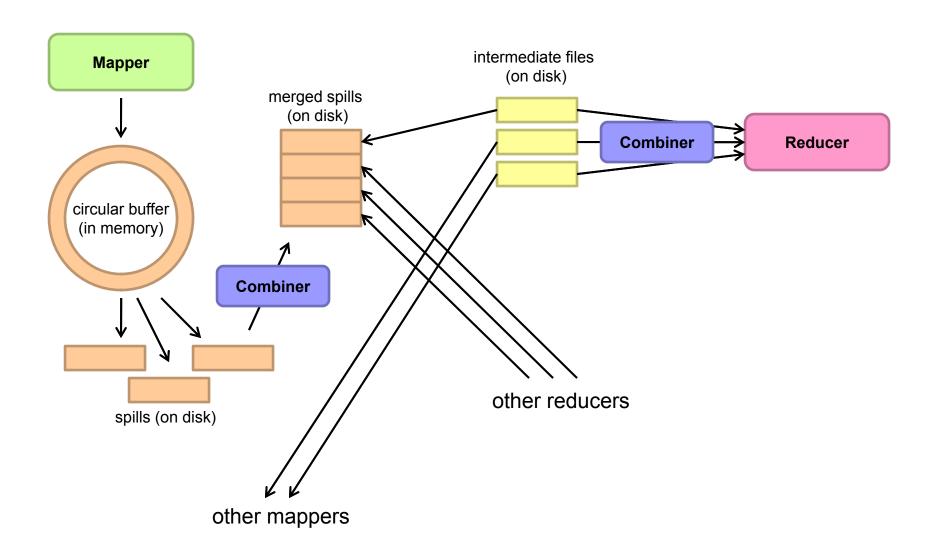
Scalable Hadoop Algorithms: Themes

- Avoid object creation
 - Inherently costly operation
 - Garbage collection
- Avoid buffering
 - Limited heap size
 - Works for small datasets, but won't scale!

Importance of Local Aggregation

- Ideal scaling characteristics:
 - Twice the data, twice the running time
 - Twice the resources, half the running time
- Why can't we achieve this?
 - Synchronization requires communication
 - Communication kills performance
- Thus... avoid communication!
 - Reduce intermediate data via local aggregation
 - Combiners can help

Shuffle and Sort



Word Count: Baseline

```
1: class Mapper
       method Map(docid a, doc d)
2:
          for all term t \in \text{doc } d do
3:
              Emit(term t, count 1)
4:
1: class Reducer
       method Reduce(term t, counts [c_1, c_2, \ldots])
          sum \leftarrow 0
3:
          for all count c \in \text{counts } [c_1, c_2, \ldots] do
4:
              sum \leftarrow sum + c
5:
           Emit(term t, count s)
6:
```

What's the impact of combiners?

Word Count: Version 1

```
1: class Mapper

2: method Map(docid a, doc d)

3: H \leftarrow new AssociativeArray

4: for all term t \in doc d do

5: H\{t\} \leftarrow H\{t\} + 1 \triangleright Tally counts for entire document

6: for all term t \in H do

7: Emit(term t, count H\{t\})
```

Are combiners still needed?

Word Count: Version 2

```
Key: preserve state across
1: class Mapper
                                        input key-value pairs!
      method Initialize
2:
         H \leftarrow \text{new AssociativeArray}
3:
      method Map(docid a, doc d)
4:
          for all term t \in \text{doc } d do
5:
             H\{t\} \leftarrow H\{t\} + 1
                                                        \triangleright Tally counts across documents
6:
      method Close
7:
          for all term t \in H do
8:
             EMIT(term t, count H\{t\})
9:
```

Are combiners still needed?

Design Pattern for Local Aggregation

- "In-mapper combining"
 - Fold the functionality of the combiner into the mapper by preserving state across multiple map calls
- Advantages
 - Speed
 - Why is this faster than actual combiners?
- Disadvantages
 - Explicit memory management required
 - Potential for order-dependent bugs

Combiner Design

- Combiners and reducers share same method signature
 - Sometimes, reducers can serve as combiners
 - Often, not...
- Remember: combiner are optional optimizations
 - Should not affect algorithm correctness
 - May be run 0, 1, or multiple times
- Example: find average of all integers associated with the same key

```
1: class Mapper
      method Map(string t, integer r)
          Emit(string t, integer r)
3:
1: class Reducer
      method Reduce(string t, integers [r_1, r_2, \ldots])
          sum \leftarrow 0
3:
         cnt \leftarrow 0
4:
          for all integer r \in \text{integers } [r_1, r_2, \ldots] do
5:
              sum \leftarrow sum + r
6:
              cnt \leftarrow cnt + 1
7:
          r_{avg} \leftarrow sum/cnt
8:
          Emit(string t, integer r_{avq})
9:
```

Why can't we use reducer as combiner?

```
1: class Mapper
       method Map(string t, integer r)
           Emit(string t, integer r)
3:
1: class Combiner.
       method Combine(string t, integers [r_1, r_2, \ldots])
2:
           sum \leftarrow 0
3:
     cnt \leftarrow 0
   for all integer r \in \text{integers } [r_1, r_2, \ldots] do
5:
               sum \leftarrow sum + r
6:
               cnt \leftarrow cnt + 1
7:
           EMIT(string t, pair (sum, cnt))
                                                                        ▷ Separate sum and count
8:
1: class Reducer
       method Reduce(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
           sum \leftarrow 0
3:
           cnt \leftarrow 0
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
               sum \leftarrow sum + s
6:
               cnt \leftarrow cnt + c
           r_{avg} \leftarrow sum/cnt
8:
           Emit(string t, integer r_{ava})
9:
```

Why doesn't this work?

```
1: class Mapper
       method Map(string t, integer r)
2:
            EMIT(string t, pair (r, 1))
3:
1: class Combiner
       method Combine(string t, pairs [(s_1, c_1), (s_2, c_2)...])
2:
           sum \leftarrow 0
3:
           cnt \leftarrow 0
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
           EMIT(string t, pair (sum, cnt))
8:
1: class Reducer
       method Reduce(string t, pairs [(s_1, c_1), (s_2, c_2) \dots])
2:
            sum \leftarrow 0
3:
           cnt \leftarrow 0
4:
           for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
5:
                sum \leftarrow sum + s
6:
                cnt \leftarrow cnt + c
7:
            r_{avg} \leftarrow sum/cnt
            EMIT(string t, pair (r_{ava}, cnt))
9:
```

Fixed?

```
1: class Mapper
       method Initialize
2:
           S \leftarrow \text{new AssociativeArray}
           C \leftarrow \text{new AssociativeArray}
4:
       method Map(string t, integer r)
5:
           S\{t\} \leftarrow S\{t\} + r
6:
           C\{t\} \leftarrow C\{t\} + 1
7:
       method Close
8:
           for all term t \in S do
9:
               Emit(term t, pair (S\{t\}, C\{t\}))
10:
```

Are combiners still needed?

Algorithm Design: Running Example

- Term co-occurrence matrix for a text collection
 - M = N x N matrix (N = vocabulary size)
 - M_{ij}: number of times i and j co-occur in some context (for concreteness, let's say context = sentence)

• Why?

- Distributional profiles as a way of measuring semantic distance
- Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems

- Term co-occurrence matrix for a text collection
 specific instance of a large counting problem
 - A large event space (number of terms)
 - A large number of observations (the collection itself)
 - Goal: keep track of interesting statistics about the events
- Basic approach
 - Mappers generate partial counts
 - Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: "Pairs"

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For all pairs, emit $(a, b) \rightarrow count$
- Reducers sum up counts associated with these pairs
- Use combiners!

Pairs: Pseudo-Code

```
1: class Mapper
       method Map(docid a, doc d)
2:
           for all term w \in \operatorname{doc} d do
3:
               for all term u \in NEIGHBORS(w) do
4:
                   Emit count for each co-occurrence \triangleright Emit count for each co-occurrence
5:
1: class Reducer
       method Reduce(pair p, counts [c_1, c_2, \ldots])
2:
           s \leftarrow 0
3:
           for all count c \in \text{counts } [c_1, c_2, \ldots] do
4:
               s \leftarrow s + c

⊳ Sum co-occurrence counts

5:
           EMIT(pair p, count s)
6:
```

"Pairs" Analysis

- Advantages
 - Easy to implement, easy to understand
- Disadvantages
 - Lots of pairs to sort and shuffle around (upper bound?)
 - Not many opportunities for combiners to work

Another Try: "Stripes"

Idea: group together pairs into an associative array

```
(a, b) \rightarrow 1

(a, c) \rightarrow 2

(a, d) \rightarrow 5

(a, e) \rightarrow 3

(a, f) \rightarrow 2

a \rightarrow \{ b: 1, c: 2, d: 5, e: 3, f: 2 \}
```

- Each mapper takes a sentence:
 - Generate all co-occurring term pairs
 - For each term, emit a \rightarrow { b: count_b, c: count_c, d: count_d ... }
- Reducers perform element-wise sum of associative arrays

$$\begin{array}{c} a \rightarrow \{ \text{ b: 1,} & \text{ d: 5, e: 3} \} \\ + & a \rightarrow \{ \text{ b: 1, c: 2, d: 2,} & \text{ f: 2} \} \\ \hline & a \rightarrow \{ \text{ b: 2, c: 2, d: 7, e: 3, f: 2} \} \\ & \text{ Key: } \\ & \text{ brings together partial results} \end{array}$$

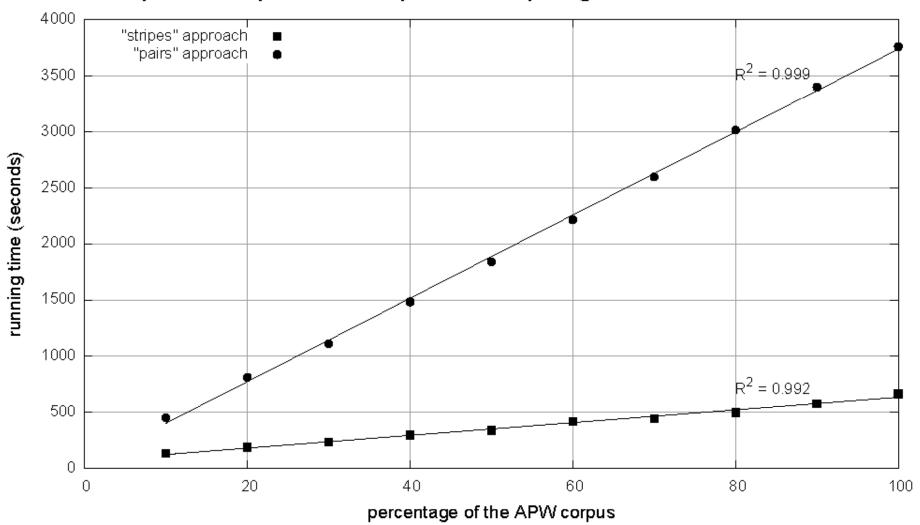
Stripes: Pseudo-Code

```
1: class Mapper
       method Map(docid a, doc d)
           for all term w \in \text{doc } d do
3:
               H \leftarrow \text{new AssociativeArray}
4:
               for all term u \in \text{Neighbors}(w) do
5:
                  H\{u\} \leftarrow H\{u\} + 1
                                                           \triangleright Tally words co-occurring with w
6:
               Emit(Term w, Stripe H)
7:
1: class Reducer
       method Reduce(term w, stripes [H_1, H_2, H_3, \ldots])
2:
           H_f \leftarrow \text{new AssociativeArray}
3:
           for all stripe H \in \text{stripes } [H_1, H_2, H_3, \ldots] do
4:
               Sum(H_f, H)
                                                                            ▷ Element-wise sum
5:
           EMIT(term w, stripe H_f)
6:
```

"Stripes" Analysis

- Advantages
 - Far less sorting and shuffling of key-value pairs
 - Can make better use of combiners
- Disadvantages
 - More difficult to implement
 - Underlying object more heavyweight
 - Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices

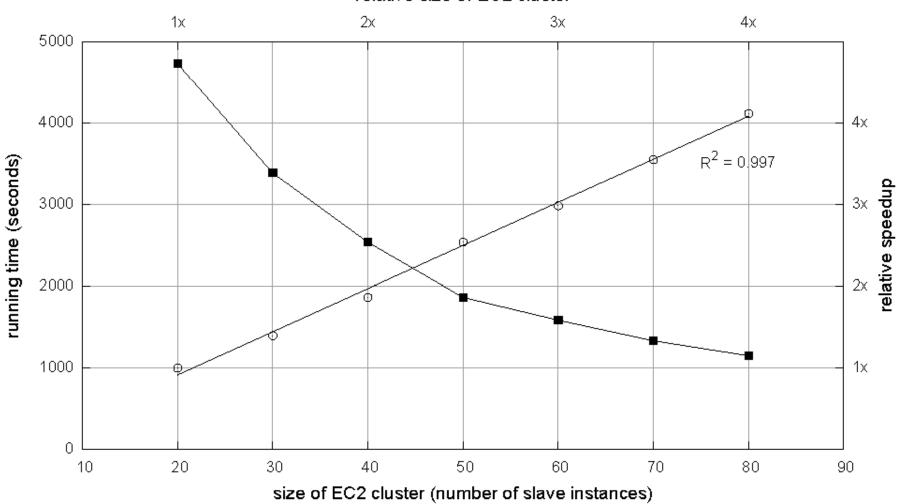


Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Effect of cluster size on "stripes" algorithm

relative size of EC2 cluster



Relative Frequencies

• How do we estimate relative frequencies from counts?

$$f(B \mid A) = \frac{\text{count}(A, B)}{\text{count}(A)} = \frac{\text{count}(A, B)}{\sum_{B'} \text{count}(A, B')}$$

- Why do we want to do this?
- How do we do this with MapReduce?

f(B|A): "Stripes"

$$a \rightarrow \{b_1:3, b_2:12, b_3:7, b_4:1, \dots\}$$

• Easy!

- One pass to compute (a, *)
- Another pass to directly compute f(B|A)

f(B|A): "Pairs"

 $(a, *) \rightarrow 32$ Reducer holds this value in memory

$$(a, b_1) \rightarrow 3$$

 $(a, b_2) \rightarrow 12$
 $(a, b_3) \rightarrow 7$
 $(a, b_4) \rightarrow 1$

(a,
$$b_1$$
) $\rightarrow 3 / 32$
(a, b_2) $\rightarrow 12 / 32$
(a, b_3) $\rightarrow 7 / 32$
(a, b_4) $\rightarrow 1 / 32$

For this to work:

- Must emit extra (a, *) for every b_n in mapper
- Must make sure all a's get sent to same reducer (use partitioner)
- Must make sure (a, *) comes first (define sort order)
- Must hold state in reducer across different key-value pairs

"Order Inversion"

- Common design pattern
 - Computing relative frequencies requires marginal counts
 - But marginal cannot be computed until you see all counts
 - Buffering is a bad idea!
 - Trick: getting the marginal counts to arrive at the reducer before the joint counts

Optimizations

- Apply in-memory combining pattern to accumulate marginal counts
- Should we apply combiners?

Synchronization: Pairs vs. Stripes

- Approach 1: turn synchronization into an ordering problem
 - Sort keys into correct order of computation
 - Partition key space so that each reducer gets the appropriate set of partial results
 - Hold state in reducer across multiple key-value pairs to perform computation
 - Illustrated by the "pairs" approach
- Approach 2: construct data structures that bring partial results together
 - Each reducer receives all the data it needs to complete the computation
 - Illustrated by the "stripes" approach

Secondary Sorting

- MapReduce sorts input to reducers by key
 - Values may be arbitrarily ordered
- What if want to sort value also?
 - E.g., $k \rightarrow (v_1, r), (v_3, r), (v_4, r), (v_8, r)...$

Secondary Sorting: Solutions

Solution 1:

- Buffer values in memory, then sort
- Why is this a bad idea?

Solution 2:

- "Value-to-key conversion" design pattern: form composite intermediate key, (k, v₁)
- Let execution framework do the sorting
- Preserve state across multiple key-value pairs to handle processing
- Anything else we need to do?

Recap: Tools for Synchronization

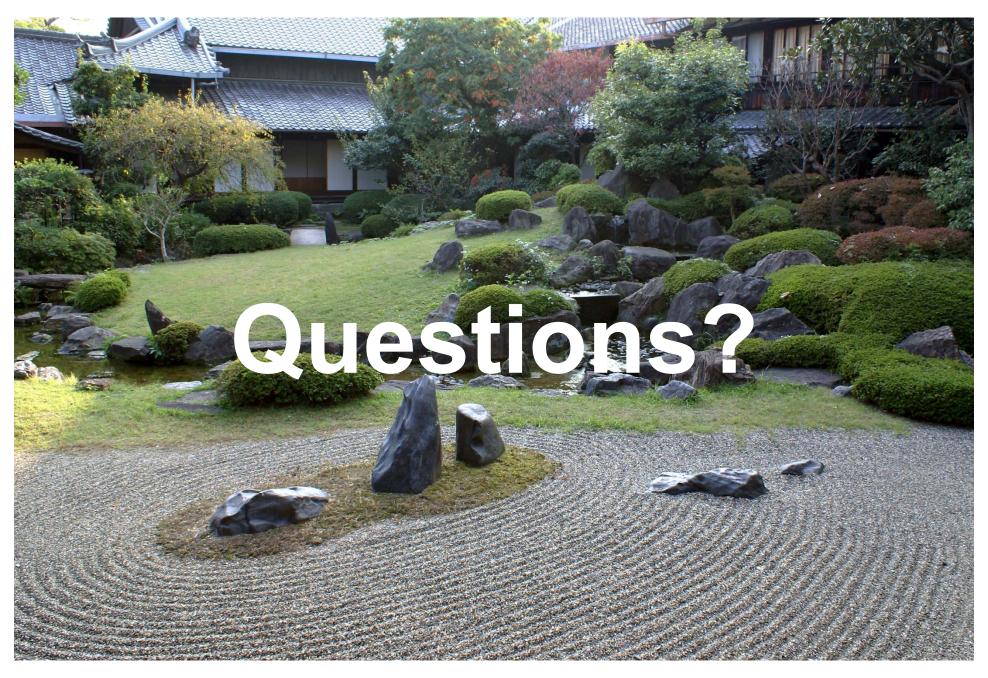
- Cleverly-constructed data structures
 - Bring data together
- Sort order of intermediate keys
 - Control order in which reducers process keys
- Partitioner
 - Control which reducer processes which keys
- Preserving state in mappers and reducers
 - Capture dependencies across multiple keys and values

Issues and Tradeoffs

- Number of key-value pairs
 - Object creation overhead
 - Time for sorting and shuffling pairs across the network
- Size of each key-value pair
 - De/serialization overhead
- Local aggregation
 - Opportunities to perform local aggregation varies
 - Combiners make a big difference
 - Combiners vs. in-mapper combining
 - RAM vs. disk vs. network

Debugging at Scale

- Works on small datasets, won't scale... why?
 - Memory management issues (buffering and object creation)
 - Too much intermediate data
 - Mangled input records
- Real-world data is messy!
 - Word count: how many unique words in Wikipedia?
 - There's no such thing as "consistent data"
 - Watch out for corner cases
 - Isolate unexpected behavior, bring local



Source: Wikipedia (Japanese rock garden)