Data-Intensive Information Processing Applications — Session #3

MapReduce Algorithm Design

Jimmy Lin
University of Maryland

PR b I S
SRERSITE

Tuesday, February 9, 2010

@ @@@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source: Wikipedia (Japanese rock garden)

Today’s Agenda

o “The datacenter is the computer”

e Understanding the design of warehouse-sized computes

o MapReduce algorithm design

e How do you express everything in terms of m, r, ¢, p?
e Toward “design patterns”

The datacenter is the computer

“Big ldeas”

o Scale “out”, not “up”

e Limits of SMP and large shared-memory machines

o Move processing to the data
e Cluster have limited bandwidth

o Process data sequentially, avoid random access
e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour

Source: Wikipedia (The Dalles, Oregon)

Source: NY Times (6/14/2006)

o JSE |

UTILITY CONNECTIONS:

BUILDING =~ SPRINKLER DOMESTIC PLANT = SANITARY
SYSTEM WATER WATER SEWER

[o CATCH BASIN

our
e e EXISTING WATER LINE

BUILDING 1 8"% 6" s (2)-4" 6”& 4"

BUILDING 2 8”& g" i (2)-4" 6"& 4"

BUILDING 3 8"% 6" 5 (2)-4" 6" 4"
ADMIN. BUILDING 6" a1 B 6"
HOUSING BUILDING 6" 1" - 6"

— . —— i —— g — UNDERGROUND ELECTRIC POWER LIME
- EXSTING POWER POLE
N as e x—— DMCTING FENET LNC

T8 = TELEPHONE RISER
GM = GAS METER
EM - ELECTRICAL BOX
OV = ELECTHICAL VAULF
WM = WATER METER
STREET LIGHT
STREET 16N
EXISTING CONTOUR UNE

{ ML OTHERS AS KOTED ON PLAN

APPROXIMATE LOW WATER
UNE OF COLUMBLA RIVER

i '&'é%‘»:tw'
b

e
S

G

o

R

o

A

{11
TIHTT

1
PROPOSEDLPARING (88)

Cj LD)
y WIFITHTHET

e

BT

N

'_'li o4

22 i

z T It

H.!l PARCEL 1. CHINOWETH CREEK REPLAT

= PARCIL 1, MIP §Z31-0%

8!"— PORT OF TME DALLES INDUSTRIAL PARK
tes

i

B TNC W1/2. SECTION 78, TWR. 2 N, RANGE 13 £ wak|
THE DALLES, WASCO COLTY, OREGoM

Tenneson Enciveervg Cone.
CONSULTING ENGINEERS

A |

{8k 1

THE DALLES

THE DALLES, ORKGON 57058
1 Ed 1 Sar-396-$177 FAX Ge1=208-Ee5T
v 4 5 B =2
; i : HRu
FARY — SUSUECT TO EXEMPTION OF 5 US.C. §iss2(tis) | SOH. |11 it i L1630 .2 of 3
e T R e o =

 RAACADY1 000100 090, 4 . SHEET 2. BVR006 121 T P K, Cuntom 2:36 % 24.5 . ancacace)

Source: Harper’s (Feb, 2008)

Source: Bonneville Power Administration

Building Blocks

Source: Barroso and Urs Holzle (2009)

Storage Hierarchy

One server
DRAM: 16GB, 100ns, 20GB/s
Disk: 2TB, 10ms, 200MB/s

Local DRAM

" Rack Switch

Local rack (80 servers)

, DRAM: 1TB, 300us, 100MB/s
- Disk: 160TB, 11ms, 100MB/s

Cluster (30 racks)

DRAM: 30TB, 500us, 10MB/s
Disk: 4.80PB, 12ms, 10MB/s

Funny story about sense of scale...

Source: Barroso and Urs Holzle (2009)

Storage Hierarchy

smpmw | atency (us) ==l=» Bandwidth (MB/sec) snipm Capacity (GB)

10000000

1000000

100000

10000

1000

100

10

0.1

Local DRAM
Local Disk
Rack DRAM
Rack Disk

Datacenter DRAM
Datacenter Disk

Source: Barroso and Urs Holzle (2009)

Anatomy of a Datacenter

Computer Air Handling Unit (CRAC)

. UP Tao 30 Ton Sensible city Per Unit

«» Air Discharge Can Be Up r Downflow Configuration

» Downflow Configuration Used With Raised Floor To Create
A Pressurized Supply Air Plenum With Floor Supply Diffusers

Individual Colocation Computer Cabinets
+ Typ. Cahinet Footprint (28"W x 36"D x 84"H)
* Typical Capacities OF 1750 To 3750 Watts Per Cabinet

Power Distribution Unit (PDU)
Typical Capacitics Up To 225 kVA Per Unit
+ Redundancy Through Dual PDU's With
Integral Static Transfer Switch (STS)
Emergency Diescl Generators
+ Total Generator Capacity = Total Electrical Load To Building
+ Multiple Generators Can Be Electrically Combined With
Paralleling Gear
» Can Be Located Indoors Or Outdoors At Grade Or On Roof,
= Outdoor Applications Require Sound Attenuating Enclosures

Fuel Oil Storage Tanks

= Tank Capacity Dependant On Length
Of Generator Operation

+ Can Be Located Underground Or At
Grade Or Indoors

~UPS System

= Uninterruptible Power Supply Modules
« Up To 1000 kWA Per Module

/ « Cabinets And Battery Strings Or Rotary Flywheels
« Multiple Redundancy Configurations Can Be Designed

-~
- Electrical Primary Switchgear

= Modular Configuration For
Flexible Suite Sq.Ft. Areas. 4

* Suites Consist [JfFMultipl: Cabinets With =
Secured Partitions (Cages, Walls, Etc.)

- = Includes Incoming Service And Distribution
S » Direct Distribution To Mechanical Equipment
/’ » Distribution To Secondary Electrical Equipment Via LIPS
Pump Room

Heat Rejection Devices &
+ Drycoolers, Air Cooled Chillers, Etc.
+ Up To 400 Ton Capacity Per Unit

= Mounted At Grade Or On Roof

+ N+1 Design

* Used To Pump Condenser/Chilled Water Between Drycoolers And CRAC Units
= Additional Equipment Includes Expansion Tank, Glyeol Feed System
« N+1 Design (Standby Pump)

Source: Barroso and Urs Holzle (2009)

Why commodity machines?

HP INTEGRITY HP PROLIANT
SUPERDOME-ITANIUM2 ML350 G5
Processor 64 sockets, 128 cores 1 socket, quad-core,
(dual-threaded), 1.6 GHz 2.66 GHz X5355 CPU,
Itanium2, 12 MB 8 MB last-level cache
last-level cache
Memory 2,048 GB 24 GB
Disk storage 320,974 GB, 7,056 drives 3,961 GB, 105 drives
TPC-C price/performance $2.93/tpmC $0.73/tpmC
price/performance $1.28/transactions $0.10/transactions
(server HW only) per minute per minute
Price/performance $2.39/transactions $0.12/transactions
(server HW only) per minute per minute

(no discounts)

Source: Barroso and Urs Holzle (2009); performance figures from late 2007

What about communication?

o Nodes need to talk to each other!

e SMP: |latencies ~100 ns
e LAN: latencies ~100 us

o Scaling “up” vs. scaling “out”

e Smaller cluster of SMP machines vs. larger cluster of commodity
machines

e E.g., 8 128-core machines vs. 128 8-core machines
e Note: no single SMP machine is big enough

o Let's model communication overhead...

Source: analysis on this an subsequent slides from Barroso and Urs Holzle (2009)

Modeling Communication Costs

o Simple execution cost model:

e Total cost = cost of computation + cost to access global data
e Fraction of local access inversely proportional to size of cluster
e n nodes (ignore cores for now)

1ms+fx[100ns xn+ 100 us x (1 -1/n)]

 Light communication: f =1
* Medium communication: f =10
* Heavy communication: f =100

o What are the costs in parallelization?

Cost of Parallelization

Normalized execution time

10.00 T

1.00

medium communication

high communication

number of nodes

R P L
//‘-" light communication
tl——— & o J

4 8 12 16 20 24 28 32

Advantages of scaling “up”

g 30,

g)

5 25 - 9.

58 7,

O ow 2|:| - ‘5':.:,_

m _g ‘t.‘:;&_

= ()

S © Z

] _g 15 msm;u

g E Z

@ _E: 10 A

g

= 5 - :

o light Communication

‘Tt - ——
E 0 ' : — Ig—‘

512 1024 2048 4192

Cluster size (number of cores)

So why not?

Seeks vs. Scans

o Consider a 1 TB database with 100 byte records

e We want to update 1 percent of the records

o Scenario 1: random access

e Each update takes ~30 ms (seek, read, write)
e 108 updates = ~35 days

o Scenario 2: rewrite all records

e Assume 100 MB/s throughput
e Time = 5.6 hours(!)

o Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list

Justifying the “Big ldeas”

o Scale “out”, not “up”
e Limits of SMP and large shared-memory machines

o Move processing to the data
e Cluster have limited bandwidth

o Process data sequentially, avoid random access
e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA — Netherlands — CA

* According to Jeff Dean (LADIS 2009 keynote)

Numbers Everyone Should Know*

0.5 ns

o5 ns

7 ns

25 ns

100 ns

20,000 ns
250,000 ns
500,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

MapReduce Algorithm Design

MapReduce: Recap

o Programmers must specify:

map (k, v) — <k’, v’>*
reduce (k’, V') — <k’, v’>*
e All values with the same key are reduced together

o Optionally, also:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic

o The execution framework handles everything else...

combine

-l - B

partition

Shuffle and Sort: aggregate values by keys

combine

)
B

partition

1

5

|

reduce

!
- B

|

reduce

!

combine

-H - B

partition

>

combine

[

partition

2|7

2

9

8

|

!

A A

reduce

“Everything Else”

o The execution framework handles everything else...

e Scheduling: assigns workers to map and reduce tasks

e “Data distribution”. moves processes to data

e Synchronization: gathers, sorts, and shuffles intermediate data
e Errors and faults: detects worker failures and restarts

o Limited control over data and execution flow

e All algorithms must expressedinm, r, c, p

o You don’t know:

e \Where mappers and reducers run

e When a mapper or reducer begins or finishes

e Which input a particular mapper is processing

e Which intermediate key a particular reducer is processing

Tools for Synchronization

o Cleverly-constructed data structures

e Bring partial results together

o Sort order of intermediate keys

e Control order in which reducers process keys

o Partitioner

e Control which reducer processes which keys

o Preserving state in mappers and reducers

e Capture dependencies across multiple keys and values

Preserving State

Mapper object
» state
/
/
/
I configure
|
|
|
\
\ map
close

<€— one object per task —>

<€— APl initialization hook =————>

<€— one call per input
key-value pair

one call per —>
intermediate key

<€+ API cleanup hook >

Reducer object

configure

reduce

close

state -

Scalable Hadoop Algorithms: Themes

o Avoid object creation

e Inherently costly operation
e Garbage collection

o Avoid buffering

e Limited heap size
e Works for small datasets, but won'’t scale!

Importance of Local Aggregation

o ldeal scaling characteristics:

e Twice the data, twice the running time
e Twice the resources, half the running time

o Why can’t we achieve this?

e Synchronization requires communication
e Communication kills performance

o Thus... avoid communication!

e Reduce intermediate data via local aggregation
e Combiners can help

Shuffle and Sort

Mapper intermediate files
(on disk)
merged spills
l (on disk) / — -
é %
Combiner > Reducer]
—>
/

circular buffer
(in memory)

7

Combiner

l\\[/

other reducers
spills (on disk)

other mappers

Word Count: Baseline

1: class MAPPER

2: method MAap(docid a, doc d)

3: for all term ¢ € doc d do

4: EMIT(term ¢, count 1)

1: class REDUCER

2 method REDUCE(term ¢, counts [c, ¢, . . .])
3 sum «— 0

4 for all count ¢ € counts [¢1,c2,...] do

5 SUMm < sum + ¢

6 EMIT(term £, count s)

What’s the impact of combiners?

Word Count: Version 1

1: class MAPPER
2 method MAap(docid a, doc d)
3: H — new ASSOCIATIVEARRAY
4 for all term 7 € doc d do
5 H{t}y — H{t} +1 > Tally counts for entire document
for all term t € H do
EwMIT(term #, count H{t})

D@

Are combiners still needed?

Word Count: Version 2

class MAPPER)
method INITIALIZE ° g\a‘e

H «— new ASSOCIATIVEARRAY GQGN
method MAap(docid a. doc d)
for all term ¢ € doc d do

H{t} — H{t} +1 W

> Tally counts across documents

T method CLOSE
8: for all term t € H do
9 EmIT(term ¢, count H{t})

Are combiners still needed?

Design Pattern for Local Aggregation

o “In-mapper combining”

e Fold the functionality of the combiner into the mapper by
preserving state across multiple map calls

o Advantages

e Speed
e Why is this faster than actual combiners?

o Disadvantages

e Explicit memory management required
e Potential for order-dependent bugs

Combiner Design

o Combiners and reducers share same method signature

e Sometimes, reducers can serve as combiners
e Often, not...

o Remember:. combiner are optional optimizations

e Should not affect algorithm correctness
e May be run 0, 1, or multiple times

o Example: find average of all integers associated with the
same key

Computing the Mean: Version 1

1: class MAPPER

2: method Map(string ¢, integer r)

3: EMIT(string t, integer r)

1: class REDUCER

2 method REDUCE(string ¢, integers [ry,7s,...])
3 sum — 0

4: cnt — 0

5 for all integer r € integers [ry,72,...] do
6 sum «— sum +r

7 cnt — ent + 1

8: Tapg < Sum/ent

0: EMIT(string ¢, integer r,,,)

Why can’t we use reducer as combiner?

Computing the Mean: Version 2

1: class MAPPER

2: method MAp(string ¢, integer r)

3: EMIT(string 7, integer r)

1: class COMBINER

2 method COMBINE(string 7, integers [ry, rs, .. .])

3 sum — 0

4: cnt «— 0

5 for all integer r € integers [ry,72,...] do

6 SUIM «— sum —|— r

7 cnt — ent + 1

8: EMIT(string ¢, pair (sum, cnt)) > Separate sum and count
1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1.¢1). (s2.¢2)...])
3 sum — 0

4: cnt «— 0

5 for all pair (s,c) € pairs [(s;,¢1),(S2.¢2)...] do
6 SUm < sum + s

7 cnt — ent + ¢

[4]

Tavg *— SUIn, lent
0: EmiT (wtung t,integer rayq)

Why doesn’t this work?

Computing the Mean: Version 3

1: class MAPPER

2: method MAP(string ¢, integer r)

3: EmMiT(string ¢, pair (r. 1))

1: class COMBINER

2 method COMBINE(string ¢, pairs [(sq,¢1). (S2.¢3)...])
3 sum «— 0

4: cnt — 0

5 for all pair (s,c) € pairs [(s1,¢1). (s2.¢2)...] do
6 SUIm < sum —+ s

7 cnt — ent + ¢

8: EnMiT(string ¢, pair (sum, cnt))

1: class REDUCER

2 method REDUCE(string ¢, pairs [(s1.¢1). (s2.¢2) ...])
3 sum «— 0

4: cnt — 0

5 for all pair (s,c) € pairs [(s1,¢1), (s2.¢2)...] do
6 Sum < sum —+ s

7 cent — ent + ¢

8: Favg < sum/cnt

0: EMIT(string ¢, pair (raug, cnt))

Computing the Mean: Version 4

1: class MAPPER

2: method INITIALIZE

3: S +— new ASSOCIATIVEA RRAY

4: (' — new ASSOCIATIVEARRAY

I method MAP(string ¢, integer r)

6: S{t} — S{t} +r

7: C{t} — C{t} +1

8: method CLOSE

o: for all term £ € S do

10: EMIT(term t, pair (S{t},C{t}))

Are combiners still needed?

Algorithm Design: Running Example

o Term co-occurrence matrix for a text collection

e M =N x N matrix (N = vocabulary size)

e M;: number of times i and j co-occur in some context
(for concreteness, let’'s say context = sentence)

o Why?

e Distributional profiles as a way of measuring semantic distance
e Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems

o Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

e A large event space (number of terms)
e A large number of observations (the collection itself)
e Goal: keep track of interesting statistics about the events

o Basic approach

e Mappers generate partial counts
e Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: “Pairs”

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For all pairs, emit (a, b) — count

o Reducers sum up counts associated with these pairs

o Use combiners!

Pairs: Pseudo-Code

1: class MAPPER

2 method MAap(docid a, doc d)

3: for all term w € doc d do

4 for all term u € NEIGHBORS(w) do

5 EMiT(pair (w, «),count 1) > Emit count for each co-occurrence
1: class REDUCER

2 method REDUCE(pair p, counts [cq, ca, .. .])

3 s« 0

4: for all count ¢ € counts [¢y,ca....] do

5 s—s+c > Sum co-occurrence counts
6 EMIT(pair p. count s)

“Pairs” Analysis

o Advantages

e Easy to implement, easy to understand

o Disadvantages

e Lots of pairs to sort and shuffle around (upper bound?)
e Not many opportunities for combiners to work

Another Try: “Stripes”

o ldea: group together pairs into an associative array

(a, b) —» 1
(a,c) — 2
(a,d)— 5 a—{b:1,c:2,d:5e:3,12}
(a,e) > 3
(a,f) —» 2

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For each term, emit a — { b: count,, c: count_, d: count; ... }

o Reducers perform element-wise sum of associative arrays

(e
a—{b:1 d: 5, e:3} tasﬁuc‘“
+ a—{b1,c2d2 f2) red 92
5 : e WS
a—{b:2,c.2,d:7,e:3, 1.2} \\J‘GO“S‘{\a\‘eu
P o
pring

Stripes: Pseudo-Code

1: class MAPPER

2 method MAp(docid a, doc d)

3 for all term w € doc d do

4: H — new ASSOCIATIVEARRAY

5 for all term u € NEIGHBORS(w) do

6 H{u} — H{u} +1 > Tally words co-occurring with w

Emir(Term w, Stripe H)

=1

1: class REDUCER

2 method REDUCE(term w, stripes [Hy, Hy, Hj,...])

3: Hy¢ +— new ASSOCIATIVEARRAY

4 for all stripe H < stripes [Hy,H», Hs,...] do

5 SUM(H ;. H) > Element-wise sum

6: EMIT(term w, stripe H¢)

“Stripes” Analysis

o Advantages

e Far less sorting and shuffling of key-value pairs
e Can make better use of combiners

o Disadvantages

e More difficult to implement
e Underlying object more heavyweight
e Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices
4000

I
"stipes" approach m
"pairs" approach ®

3500 -
3000
2500
2000

1500

running time (seconds)

1000

500

0 | | | |
0 20 40 60 g0 100

percentage of the APW corpus

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

running time (seconds)

5000

4000

3000

2000

1000

Effect of cluster size on "stripes" algorithm

relative size of EC2 cluster

Tx 2% 3x 4x
I I I I
— — dx
= — 3%
L - X
= — 1%
| | | | | | |
10 20 30 40 50 60 70 &0 90

size of EC2 cluster (number of slave instances)

relative speedup

Relative Frequencies

o How do we estimate relative frequencies from counts?

_count(A,B) count(A,B)

f(BlA)= count(A) Zcount(A, B')

o Why do we want to do this?

o How do we do this with MapReduce?

f(B|A): “Stripes”
a— {b;:3,b,:12,b;:7,b,:1, ...}

o Easy!

e One pass to compute (a, *)
e Another pass to directly compute f(B|A)

f(B|A): “Pairs”

*) — 32 Reducer holds this value in memory

(a,

(a, by) — (a,by) > 3/32
(a, b2)—>12 (a, by,) > 12732
(a, by) — (a,bs) — 71732
(a, b,) — (a, b,) — 1/32

o For this to work:

e Must emit extra (a, *) for every b, in mapper

e Must make sure all a’s get sent to same reducer (use partitioner)
e Must make sure (a, *) comes first (define sort order)

e Must hold state in reducer across different key-value pairs

“Order Inversion”

o Common design pattern

e Computing relative frequencies requires marginal counts
e But marginal cannot be computed until you see all counts

e Buffering is a bad idea!

e Trick: getting the marginal counts to arrive at the reducer before
the joint counts

o Optimizations
e Apply in-memory combining pattern to accumulate marginal counts
e Should we apply combiners?

Synchronization: Pairs vs. Stripes

o Approach 1: turn synchronization into an ordering problem

e Sort keys into correct order of computation

e Partition key space so that each reducer gets the appropriate set
of partial results

e Hold state in reducer across multiple key-value pairs to perform
computation

e lllustrated by the “pairs” approach

o Approach 2: construct data structures that bring partial
results together

e Each reducer receives all the data it needs to complete the
computation

e lllustrated by the “stripes” approach

Secondary Sorting

o MapReduce sorts input to reducers by key

e Values may be arbitrarily ordered
o What if want to sort value also?

o E.g.,k— (vq,), (V3, 1), (Vg, 1), (Vg, I)...

Secondary Sorting: Solutions

o Solution 1:

e Buffer values in memory, then sort
e Why is this a bad idea?

o Solution 2:
e “Value-to-key conversion” design pattern: form composite
intermediate key, (k, v4)
e Let execution framework do the sorting

e Preserve state across multiple key-value pairs to handle
processing

e Anything else we need to do?

Recap: Tools for Synchronization

o Cleverly-constructed data structures
e Bring data together

o Sort order of intermediate keys

e Control order in which reducers process keys

o Partitioner

e Control which reducer processes which keys

o Preserving state in mappers and reducers

e Capture dependencies across multiple keys and values

Issues and Tradeoffs

o Number of key-value pairs

e Object creation overhead
e Time for sorting and shuffling pairs across the network

o Size of each key-value pair

e De/serialization overhead

o Local aggregation

Opportunities to perform local aggregation varies
Combiners make a big difference

Combiners vs. in-mapper combining

RAM vs. disk vs. network

Debugging at Scale

o Works on small datasets, won't scale... why?

e Memory management issues (buffering and object creation)
e Too much intermediate data

e Mangled input records
o Real-world data is messy!

e Word count: how many unique words in Wikipedia?
e There’s no such thing as “consistent data”
e Watch out for corner cases

e Isolate unexpected behavior, bring local

Source: Wikipedia (Japanese rock garden)

