Data-Intensive Information Processing Applications — Session #2

Hadoop: Nuts and Bolts

Jimmy Lin University of Maryland

Tuesday, February 2, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Hadoop Programming

- Remember "strong Java programming" as pre-requisite?
- But this course is *not* about programming!
 - Focus on "thinking at scale" and algorithm design
 - We'll expect you to pick up Hadoop (quickly) along the way
- How do I learn Hadoop?
 - This session: brief overview
 - White's book
 - RTFM, RTFC(!)

Source: Wikipedia (Mahout)

Basic Hadoop API*

- Mapper
 - void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter)
 - void configure(JobConf job)
 - void close() throws IOException
- Reducer/Combiner
 - void reduce(K2 key, Iterator<V2> values, OutputCollector<K3,V3> output, Reporter reporter)
 - void configure(JobConf job)
 - void close() throws IOException
- Partitioner
 - void getPartition(K2 key, V2 value, int numPartitions)

Data Types in Hadoop

"Hello World": Word Count

Map(String docid, String text):

for each word w in text: Emit(w, 1);

Reduce(String term, Iterator<Int> values):

int sum = 0; for each v in values: sum += v; Emit(term, value);

Three Gotchas

- Avoid object creation, at all costs
- Execution framework reuses value in reducer
- Passing parameters into mappers and reducers
 - DistributedCache for larger (static) data

Complex Data Types in Hadoop

- How do you implement complex data types?
- The easiest way:
 - Encoded it as Text, e.g., (a, b) = "a:b"
 - Use regular expressions to parse and extract data
 - Works, but pretty hack-ish
- The hard way:
 - Define a custom implementation of WritableComprable
 - Must implement: readFields, write, compareTo
 - Computationally efficient, but slow for rapid prototyping
- Alternatives:
 - Cloud⁹ offers two other choices: Tuple and JSON
 - (Actually, not that useful in practice)

Basic Cluster Components

- One of each:
 - Namenode (NN)
 - Jobtracker (JT)
- Set of each per slave machine:
 - Tasktracker (TT)
 - Datanode (DN)

Putting everything together...

Anatomy of a Job

- MapReduce program in Hadoop = Hadoop job
 - Jobs are divided into map and reduce tasks
 - An instance of running a task is called a task attempt
 - Multiple jobs can be composed into a workflow
- Job submission process
 - Client (i.e., driver program) creates a job, configures it, and submits it to job tracker
 - JobClient computes input splits (on client end)
 - Job data (jar, configuration XML) are sent to JobTracker
 - JobTracker puts job data in shared location, enqueues tasks
 - TaskTrackers poll for tasks
 - Off to the races...

Input and Output

- InputFormat:
 - TextInputFormat
 - KeyValueTextInputFormat
 - SequenceFileInputFormat
 - ...
- OutputFormat:
 - TextOutputFormat
 - SequenceFileOutputFormat
 - ...

Shuffle and Sort in Hadoop

- Probably the most complex aspect of MapReduce!
- Map side
 - Map outputs are buffered in memory in a circular buffer
 - When buffer reaches threshold, contents are "spilled" to disk
 - Spills merged in a single, partitioned file (sorted within each partition): combiner runs here
- Reduce side
 - First, map outputs are copied over to reducer machine
 - "Sort" is a multi-pass merge of map outputs (happens in memory and on disk): combiner runs here
 - Final merge pass goes directly into reducer

Hadoop Workflow

On Amazon: With EC2

Uh oh. Where did the data go?

On Amazon: EC2 and S3

Debugging Hadoop

- First, take a deep breath
- Start small, start locally
- Strategies
 - Learn to use the webapp
 - Where does println go?
 - Don't use println, use logging
 - Throw RuntimeExceptions

Recap

- Hadoop data types
- Anatomy of a Hadoop job
- Hadoop jobs, end to end
- Software development workflow

Source: Wikipedia (Japanese rock garden)