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‘Identity Resolution in Email
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'Why is That Needed?

s Users unfamiliar with discussions
o Lawyers
o Historians
o Police investigators

= Downstream Process
o Expanding ambiguous names at indexing time
o Expert finding
o Social network analysis



‘ Structure of the Problem
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‘ Generative Model

1. Choose “person” ¢ to mention

p(c)

2. Choose appropriate “context” X to mention ¢

p(X|c) GE
Conference
Call
3. Choose a “mention” m /’
p(m | X, c) /
~
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“Easy/Unambiguous” References

pESage-ID: <1494.1584620.JavaMail.evans@thyme>
Date: Mon, 30 Jul 2001 12:40:48 -0700 (PDT)
From: elizabeth.sager@enron.com|

To: sstack@reliant.com |
Subject: RE: Shhhh.... it's a SURPRISE !

X-From:|Sager, Elizabeth|
g Email
Standards
Hope all i1s well.
Count me in for the group present.
veek if not earlier
Email-Client
Behavior

om: ISStack@rellant COM@ENRON |
Sent: Monday, July 30, 2001 2:24 PM
To: [Sager, Elizabeth] Murphy, Harlan;] jcrespo@hess.com;

wfhenze@jonesday.com|

Cc: |nt|IIett@reI|ant com|
Shhhh.... it's a SURPRISE !

User :




‘ Representational Model of Identity

Representational Model
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‘ Computational Model
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‘ Topical Context

him.

Date: Wed Dec 20 08:57:00 EST 2000

From: Kay Mann <kay.mann@enron.com>

To: Suzanne Adams <suzanne.adams@enron.com>
Subject: Re:|GE Conference Call has be rescheduled

Did|Sheilajwant Scott to participate? Looks like the|call

will be too late for

From: david.oxley@enron.com

Date: Fri Dec 15 05:33:00 EST 2000

To: vince | kaminski <vince.kaminski@enron.com>

Cc: sheila walton|sheila.walton@enron.com

Subject: Re: Grant Masson

this for you and if you need me

A J
0..
by
......Illllll
.....
n

Great news. Lets get this moving along.|[Sheila} can you Wc')f'kqgt GE |etter?

Vince, | am in London Monday/Tuesday, back Weds late. I'll ask Sh@

call

me on my cell phone.

L 4
L 4
*
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‘ Social Context

Date: Wed Dec 20 08:57:00 EST 2000
From: Kay Mann fkay.mann@enron.com p
To: Suzanne Adams <suzanne.adams@enron.com>
Subject: Re: GE Conference Call has be rescheduled

Did Sheila want Scott to participate? Looks like the call will be too late for
him.

Date: Tue, 19 Dec 2000 07:07:00 -0800 (PST)
From: rebecca.walker@enron.com

To: [kay.mann@enron.com
Subject: ESA Option Execution

Kay
Can you initial the ESA assignment and assumption agreement or should | ask
Sheila Tweed [0 €0sii? L be]i_e_v_e she is currently en route from Portland.
Thanks, e,

Rebecca
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Contextual Space (Emails)
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‘ Contextual Space (Mentions)
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‘ Context-Free Resolution (Step 0)

ple|m. ) = p(c|m)= p(mpl(%?(c)




‘ Contextual Resolution (Step 1)
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‘ Contextual Resolution (Step 2)

“Sheila Tweed” “Isheilla@enron.com”
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Context
Expansion
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Outline
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‘ Context Expansion (Abstract):
Computing Pairwise Similarity

= Applications:
o Clustering

o Coreference resolution
o “more-like-that” queries

20



Similarity of Documents

Sim(dl' ° d;) = Z Wfadz‘ Wr?dj

=14

= Simple inner product | d,

s Cosine similarity

= Term weights

o Standard problem in IR S
o tf-idf, BM25, etc.




Trivial Solution

Sim(dl' ° d;) = Z Wfadz‘ Wr?dj

=14

= load each vector o(N) times
= load each term o(df?) times

i Goal W

scalable and efficient solution
for large collections
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‘ Better Solution

Each term contributes only if appears in d, Nd,

sim(d,,d ;) = Z WeaWia

ted;Nd,

sim(d,,d )= term_contrib(t.d,.d )

ted,nd

= Load weights for each term once
= Each term contributes o(df,?) partial scores
= Allows efficiency tricks

23



‘ Decomposition = MapReduce

Each term contributes only if appears in d, Nd,

sim(d,,d ) = Z WeaWia

sim(d,.d ) =“i] j )

term_contri b(t,d,.d,

jredir{c?j
{index }
[ map }

= Load weights for each term once
= Each term contributes o(df,?) partial scores
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‘ (a) Standard Inverted Indexing

(&) Map

(b) Shuffle

__(c) Reduce

. doc = tokenize
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‘ Indexing (3-doc toy collection)
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(b) Pairwise Similarity (Example)

(a) Generate pairs

(b) Group pairs

(c) Sum pairs
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(b) Pairwise Similarity

(a) Map (b) Shuffle
posting _, multiply
postlng _ b Sh U ffl I n g
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‘ Experimental Setup

o Open sourceMapReduce Implementation
= Cluster of 19 machines
o Each w/two processors (single core)

= Aquaint-2 collection
o 906K documents

= Okapi BM25
m Subsets of collection
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‘ Efficiency (disk space)

Aquaint-2 Collection, ~ 906k docs

8 trillion
intermediate pairs

Intermediate Pairs (billions)

7T\ I I I I I I
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80

90

100

Hadoop, 19 PCs, each: 2 single-core processors, 4GB memory, 100GB disk
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“Terms: Zipfian Distribution

doc freq (df)

each term t contributes o(df?) partial results

very few terms dominate the computations

most frequent term (“said”) = 3%
most frequent 10 terms = 15%
most frequent 100 terms = 57%

most frequent 1000 terms =» 95%

L~O.1% of total terms
(99.9% df-cut)

term rank
31



‘ Efficiency (disk space)
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Effectiveness (recent work)

Effect of df-cut on effectiveness
Medline04 - 909k abstracts- Ad-hoc retrieval
100 B
95 -
/
90 /
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Hadoop, 19 PCs, each w/: 2 single-core processors, 4GB memory, 100GB disk
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‘ Other Approximation Techniques ?
= Absolute df

o Consider only terms that appear in at least n (or %) documents

= tf-cut

o Consider only documents (in posting list)
withtf>T ; T=1o0r 2

o OR: Consider only the top N documents based on tf for each term

= Similarity Threshold

o Consider only partial scores > Sim;

= Ranked List

o Keep only the most similar N documents
= Inthe reduce phase

o Good for ad-hoc retrieval and “more-like this” queries
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‘ Space-Saving Tricks
= Stripes

o Stripes instead of pairs & Group by doc-id not pairs

gl = (2 (e m))

s Blocking

o No need to generate the whole matrix at once

o Generate different blocks of the matrix at different steps =» limit
the max space required for intermediate results

35
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‘ Mention Resolution

neighbors
' map map

“Sheila Tweed’ @heila@enron.com” bibi
| .
Scf social
shuffle
neighbors | ]
Shele altoﬁ topical
topical social m ap
7
toplcal ‘ neighbors

nodes are emails not mentions

neighbors

repeat for multiple iterations
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Efficiency

Recognized References
from Main body 999,291
from Subject 51,386
from Main Header 1,642,923
from Quoted Body 442 .099
_ from Quoted Header 522,716
= 200 processing nodes Email-addresses 1746636

Single-token Names 1,331,375

Multi-token Names 580,407

o Open source MapReduce
Implementation

Time Spent (minutes)

Packing 48 | Social: Indexmg 1.5 Toplcal Indexmg 1.5
Preprocessing 5 || Social: Pairwise Sim. 5 Topical: Pairwise Sim.  5-13
Local: Total 9 || Social: Resolution Topical: Resolution 17-35

Social: Total 35 Topical: Total

Conv.: Total 10

Merging Scores 10

End-to-end runs: ~2-3 hours
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Outline

m Introduction and Approach Overview
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= Conclusion
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‘ Experimental Evaluation

= Repeatable and affordable
= Training and testing split
= Test Collection

o Documents =» emails

o Queries=» mentions in specific emails
o Answers=» true referents of those mentions (by humans)

= Evaluation Measure: Mean Reciprocal Rank (MRR)
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New Test Collection

N-Extended
M-Sager

M-Shapiro

Candidates MRR
Collection Emails Queries Identities Med Range Mine Lit.
M-Sager 1,628 51 627 2 1-1010.905 0.889
M-Shapiro 974 49 855 4 1-1610.894 0.879
N-Subset 54,018 78 27,340 91 1-441)10.934 -
N-Extended | 248,451 78 123,783] 338 3-1,512]0.933 -

E-All

248,451

123,783

E-Enron

248,451

123,783

E-NonEnron

248,451

123,783




‘ Testing on New Collection
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0 L
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‘ Conclusion

= Simple and efficient MapReduce solution

o applied to both topical and social expansion in “ldentity
Resolution in Email”

o different tricks for approximation

= Shuffling is critical
o df-cut controls efficiency vs. effectiveness tradeoff
o 99.9% df-cut achieves 98% relative accuracy

= Effective resolution algorithm
o Compared favorably to previous work
o Highlights importance of social context

o Overall: 74% one-best
43



Thank You!

Question?



