Scalable Solutions for DNA Sequence Analysis

Daniel Sommer

April 13, 2010
University of Maryland

Outline

I. Genome Assembly by Analogy

- DNA Sequencing and Genomics
- MapReduce for Sequence Analysis
- Genome Assembly
- K-mer counting
- Read Mapping \& Genotyping

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, ...

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, ...
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, ...

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, ...

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, ...

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was the best of				times, it was the worst			of times, it was the			age of wisdom, it was			the age of foolishness, ...		
It was the best				of times, it was the w			worst of times, it was			the age of wisdom, it			was the age of foolishness,		
It w	as th		best of times, it was			the worst of times, it			was the age of wisdom,			it was the age of			foolishness, ...
It was		the best of times, it			was the worst of times,				it was the age of		wisdom, it was the age				of foolishness, ...
It	was the best of times,				it was the worst of			times, it was the age			of wisdom, it was the			age of foolishness, ...	

- How can he reconstruct the text?
- 5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was the best of				times, it was the worst				of times, it was the			age of wisdom, it was			the age of foolishness, ...	
It was the best				of times, it was the			worst of times, it was				the age of wisdom, it			was the age of foolishness,	
It was the			best of times, it was			the worst of times, it				was the age of wisdom,			it was the age of		foolishness, ...
It was		the best of times, it			was the worst of times,					it was the age of		wisdom, it was the age			of foolishness, ...
It	was the best of times,				it was the worst of				times, it was the age			of wisdom, it was the			age of foolishness, ...

- How can he reconstruct the text?
- 5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

Greedy Reconstruction

It was the best of
age of wisdom, it was

Greedy Reconstruction

best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

It was the best of
age of wisdom, it was

Greedy Reconstruction

best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

It was the best of
age of wisdom, it was

Greedy Reconstruction

best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst

| was the age of wisdom, |
| :---: | was the age of foolishness,

was the best of times,
was the worst of times, wisdom, it was the age
worst of times, it was

It was the best of
age of wisdom, it was

Greedy Reconstruction

best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the

of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

It was the best of
age of wisdom, it was

GMePAM Deconcturn

best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

It was the best of
age of wisdom, it was

Greedy Reconstruction

best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

It was the best of
age of wisdom, it was

Greedy Reconstruction

best of times, it was
it was the age of it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $D_{k}=(V, E)$
- $\mathrm{V}=$ All length -k subfragments $(\mathrm{k}<\mathrm{I})$
- $E=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001
de Bruijn Graph Assembly

de Bruijn Graph Assembly

was the best of

de Bruijn Graph Assembly

was the best of

A unique Eulerian tour of the graph reconstructs the original text

If a unique tour does not exist, try to simplify the graph as much as possible

Counting Eulerian Tours

$$
\begin{aligned}
& \text { ARBRCRD } \\
& \text { or } \\
& \text { ARCRBRD }
\end{aligned}
$$

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, 1975)

$$
\begin{aligned}
& \mathcal{W}(G, t)=(\operatorname{det} L)\left\{\prod_{u \in V}\left(r_{u}-1\right)!\right\}\left\{\prod_{(u, v) \in E} a_{u v}!\right\}^{-1} \\
& \quad \mathrm{~L}=n \times n \text { matrix with } r_{u}-a_{u u} \text { along the diagonal and }-a_{u v} \text { in entry uv } \\
& r_{u}=\mathrm{d}^{+}(u)+l \text { if } u=t, \text { or } \mathrm{d}^{+}(u) \text { otherwise } \\
& a_{u v}=\text { multiplicity of edge from } u \text { to } v
\end{aligned}
$$

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

Genomics

Your genome influences (almost) all aspects of your life

- Anatomy \& Physiology: 10 fingers \& 10 toes, organs, neurons
- Diseases: Sickle Cell Anemia, Down Syndrome, Cancer
- Psychological: Intelligence, Personality, Bad Driving

Your environment also influences your life

- Genome as a recipe, not a blueprint

DNA Sequencing

Genome of an organism encodes the genetic information in long sequence of 4 DNA nucleotides:ACGT

- Bacteria: ~ 3 million bp
- Humans:~3 billion bp

Current DNA sequencing machines can generate I-2 Gbp of sequence per day, in millions of short reads

- Per-base error rate estimated at I-2\% (Simpson et al, 2009)
- Sequences originate from random positions of the genome

ATCTGATAAGTCCCAGGACTTCAGT
GCAAGGCAAACCCGAGCCCAGTTT

TCCAGTTCTAGAGTTTCACATGATC
GGAGTTAGTAAAAGTCCACATTGAG

Recent studies of entire human genomes analyzed 3.3B (Wang, et al., 2008) \& 4.0B (Bentley, et al., 2008) 36bp reads

- $\sim 100 \mathrm{~GB}$ of compressed sequence data

The Evolution of DNA Sequencing

Year	Genome	Technology	Cost
200 I	Venter et al.	Sanger (ABI)	$\$ 300,000,000$
2007	Levy et al.	Sanger (ABI)	$\$ 10,000,000$
2008	Wheeler et al.	Roche (454)	$\$ 2,000,000$
2008	Ley et al.	Illumina	$\$ 1,000,000$
2008	Bentley et al.	Illumina	$\$ 250,000$
2009	Pushkarev et al.	Helicos	$\$ 48,000$
2009	Drmanac et al.	Complete Genomics	$\$ 4,400$

[^0]
Hadoop MapReduce

- MapReduce is the parallel distributed framework invented by

Google for large data computations.

- Data and computations are spread over thousands of computers, processing petabytes of data each day (Dean and Ghemawat, 2004)
- Indexing the Internet, PageRank, Machine Learning, etc...
- Hadoop is the leading open source implementation
- Benefits
- Scalable, Efficient, Reliable
- Easy to Program
- Runs on commodity computers
- Challenges
- Redesigning / Retooling applications
- Not Condor, Not MPI
- Everything in MapReduce

K-mer Counting

- Application developers focus on 2 (+ 1 internal) functions
- Map: input \rightarrow key:value pairs
- Shuffle: Group together pairs with same key

Map, Shuffle \& Reduce All Run in Parallel

- Reduce: key, value-lists \rightarrow output

ATGAACCTTA	(ATG:1) (ACC: 1) (TGA:1) (CCT:1) (GAA:1) (CTT:1) (AAC:1) (TTA:1)		$\begin{array}{lll} \text { ACA } & -> & 1 \\ \text { ATG } & -> & 1 \\ \text { CAA } & -> & 1,1 \\ \text { GCA } & 1 \\ \text { TGA } & -> & 1 \\ \text { TTA } & -> & 1,1,1 \end{array}$		ACA: 1 ATG: 1 CAA: 2 GCA: 1 TGA: 1 TTA: 3
GAACAACTTA	(GAA: 1) (AAC: 1) (AAC:1) (ACT:1) (ACA:1) (CTT:1) (CAA:1) (TTA:1)	$\stackrel{y}{4}$	$\begin{array}{lll}\text { ACT } & -> & 1 \\ \text { AGG } & -> & 1 \\ \text { CCT } & -> & 1 \\ \text { GGC } & -> & 1 \\ \text { TTT } & -> & 1\end{array}$		АСТ: 1 AGG: 1 CCT: 1 GGC: 1 TTT: 1
TTTAGGCAAC	(TTT:1) (GGC:1) (TTA:1) (GCA:1) (TAG:1) (CAA:1) (AGG:1) (AAC:1)		$\begin{aligned} & \text { AAC -> } 1,1,1,1 \\ & \text { ACC -> } 1 \\ & \text { CTT -> } 1,1 \\ & \text { GAA -> } 1,1 \\ & \text { TAG -> } 1 \end{aligned}$		AAC: 4 ACC: 1 CTT: 1 GAA: 1 TAG: 1
		shuffle		reduce	

Hadoop Architecture

- Hadoop Distributed File System (HDFS)
- Data files partitioned into large chunks (64MB), replicated on multiple nodes
- NameNode stores metadata information (block locations, directory structure)
- Master node (JobTracker) schedules and monitors work on slaves
- Computation moves to the data, rack-aware scheduling
- Hadoop MapReduce system won the 2009 GreySort Challenge
- Sorted IOOTB in $173 \mathrm{~min}(578 \mathrm{~GB} / \mathrm{min}$) using 3452 nodes and 4×3452 disks

Short Read Mapping

- Given a reference and many subject reads, report one or more "good" end-toend alignments per alignable read
- Find where the read most likely originated
- Fundamental computation for many assays
- Genotyping
- Structural Variations

RNA-Seq
Chip-Seq

Methyl-Seq
$\mathrm{Hi} \mathrm{C}-\mathrm{Seq}$

- Desperate need for scalable solutions
- Single human requires >1,000 CPU hours / genome

Crossbow

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
- Reuse software components: Hadoop Streaming

Crossbow

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
- Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
- Find best alignment for each read
- Emit (chromosome region, alignment)

Crossbow

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
- Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
- Find best alignment for each read
- Emit (chromosome region, alignment)
- Shuffle: Hadoop
- Group and sort alignments by region

Crossbow

 http://bowtie-bio.sourceforge.net/crossbow- Align billions of reads and find SNPs
- Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
- Find best alignment for each read
- Emit (chromosome region, alignment)
- Shuffle: Hadoop
- Group and sort alignments by region
- Reduce: SOAPsnp (Li et al., 2009)
- Scan alignments for divergent columns
- Accounts for sequencing error, known SNPs

Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

	Asian Individual Genome		
Data Loading	3.3 B reads	106.5 GB	$\$ 10.65$
Data Transfer	$\mathrm{Ih}: \mathrm{I} 5 \mathrm{~m}$	40 cores	$\$ 3.40$
Setup			
Alignment	$\mathrm{lh}: \mathrm{I}: 3 \mathrm{~m}$	320 cores	$\$ 13.94$
Variant Calling	$\mathrm{Ih}: 00 \mathrm{~m}$	320 cores	$\$ 41.82$
		320 cores	$\$ 27.88$
End-to-end	$4 \mathrm{~h}: 00 \mathrm{~m}$		

Analyze an entire human genome for $\sim \$ 100$ in an afternoon.
Accuracy validated at $>99 \%$

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology.

Related Approaches

CloudBurst

Highly Sensitive Short Read Mapping with MapReduce

I00x speedup on 96 cores @ Amazon

MUMmerGPU

High Throughput Sequence Alignment using GPGPUs

~10x speedup on nVidia GTX 8800
(Schatz, Trapnell, et al., 2007) (Trapnell \& Schatz, 2008)

TMo Daradions forAAssennoly

Large-Scale Genome Assembly from Short Reads. Schatz MC, Delcher AL, Salzberg SL (2010) Manuscript Under Review.

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
- Human genome: >3B nodes, > IOB edges
- The new short read assemblers require tremendous computation
- Velvet (Zerbino \& Birney, 2008) serial: > 2TB of RAM
- ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
- SOAPdenovo (Li et al., 2010) pthreads: 40 cores $\times 40$ hours, >I40 GB RAM

Contrail

http://contrail-bio.sourceforge.net

Scalable Genome Assembly with MapReduce

- Genome: E. coli 4.6Mbp bacteria
- Input: 20M 36bp reads, 200bp insert
- Preprocessor: Quality-Aware Error Correction

Traditional Assembly on MapReduce

- How do you adapt the traditional overlap-layout-consensus assembler to the MapReduce parallel programming model?

Overlap Stage

- Compute all pair wise alignments between reads
- Ideal for MapReduce because aligning two reads can be done independent of all other reads
- Use seed and extend algorithm that is currently used for the overlapper

MapReduce Hash-Overlapper

MapReduce Hash-Overlapper

Key, Values

MapReduce Hash-Overlapper

> Key,Values Map

MapReduce Hash-Overlapper

Key,Values
Map

ID, Read
I, ACTG

Output Kmers

Shuffle

MapReduce Hash-Overlapper

Key,Values
Map
Shuffle
Reduce
Key,Values

Overlap Graph Reduction Stages

- Remove contained reads

- Remove transitive edges

$$
A \longrightarrow B \longrightarrow C \longrightarrow D
$$

- Compress paths in the graph

Graphs and MapReduce

- How do we represent the overlap graph when using MapReduce?
- Large object oriented graph data structures do not work well in MapReduce
- Each Mapper and Reducer only has access to local copy of key, value data and do not have access to the entire graph data structure

Graphs and MapReduce

- Solution: Represent overlap graphs with node adjacency list
- Sort adjacency list by overlap size to effectively do transitive reduction step

Transitive Reduction

- Sorted Adjacency lists for graph G
- A-B,C,D
- B-C,D
- Compare lists and remove nodes from node A's list that are in node B's list
- $A-B$
- B-C,D

Transitive Reduction

Step I : Sort adjacency lists

Transitive Reduction

Step I : Sort adjacency lists

Key, Values

Transitive Reduction
 Step I : Sort adjacency lists

Key,Values
Map

Transitive Reduction Step I : Sort adjacency lists

Transitive Reduction Step I : Sort adjacency lists

Transitive Reduction
 Step 2: Compare lists

Transitive Reduction Step 2: Compare lists

Key,Values

Transitive Reduction Step 2: Compare lists

Transitive Reduction Step 2: Compare lists

Transitive Reduction Step 2: Compare lists

Transitive Reduction Step 2: Compare lists

Key, Values	Map	Shuffle	Reduce	Key, Values
Read, sorted list of overlaps	Pass through original list	Read, Overlap Data	Remove transitive edges	Read, Overlap tuple
I, (4, 5, 100, E)		I, (4, 5, 100, E)		I, (E, 4)
....		4, (4, 5, 100, E)		4, (5, 100, E)
4, (5, 100,E)	Output list with largest overlap as key	...	Remove transitive edges	2,(1,...)
		4, (5, 100,E)		5,(7,...)
		5, (5, 100,E)		

Transitive Reduction

- Each time through step 2 one irreducible edge is found
- Move irreducible edge to end of the adjacency list
- Loop through step 2 until end of lists are reach to remove all transitive edges

Summary

"NextGen sequencing has completely outrun the ability of good bioinformatics people to keep up with the data and use it well... We need a MASSIVE effort in the development of tools for 'normal' biologists to make better use of massive sequence databases."

Jonathan Eisen - JGI Users Meeting 3/28/09

Summary
"NextGen sequencing has completely outrun the ability of good bioinformatics people to keep up with the data and use it well... We need a MASSIVE effort in the development of tools for 'normal' biologists to make better use of massive sequence databases."

Jonathan Eisen - JGI Users Meeting 3/28/09

- Computational Biology
- Make the problems of genotyping and assembly of large genomes from short reads feasible and accessible to individual researchers

Summary

"NextGen sequencing has completely outrun the ability of good bioinformatics people to keep up with the data and use it well... We need a MASSIVE effort in the development of tools for 'normal' biologists to make better use of massive sequence databases."

Jonathan Eisen - JGI Users Meeting 3/28/09

- Computational Biology
- Make the problems of genotyping and assembly of large genomes from short reads feasible and accessible to individual researchers
- High Performance Computing
- Developed Novel Parallel Algorithms for MapReduce and Multicore systems

Acknowledgements

UMD Faculty

Steven Salzberg, Mihai Pop,Art Delcher, Amitabh Varshney, Carl Kingsford, Ben Shneiderman, James Yorke, Jimmy Lin,
CBCB Students
Mike Schatz,Adam Phillippy, Cole Trapnell, Saket Navlakha, Ben Langmead, James White, David Kelley

Thank You!

[^0]: Critical Computational Challenges: Alignment and Assembly of Huge Datasets

