
Introduction to MapReduce
Data-Intensive Information Processing Applications ― Session #1

Jimmy LinJimmy Lin
University of Maryland

Tuesday, January 26, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details



What is this course about?
Data-intensive information processing

Large-data (“web-scale”) problemsa ge data ( eb sca e ) p ob e s

Focus on applications

MapReduce and beyondMapReduce… and beyond



What is MapReduce?
Programming model for expressing distributed 
computations at a massive scale

Execution framework for organizing and performing such 
computations

Open-source implementation called Hadoop



Why large data?



Source: Wikipedia (Everest)



How much data?
Google processes 20 PB a day (2008)

Wayback Machine has 3 PB + 100 TB/month (3/2009)aybac ac e as 3 00 / o t (3/ 009)

Facebook has 2.5 PB of user data + 15 TB/day (4/2009) 

eBay has 6 5 PB of user data + 50 TB/day (5/2009)eBay has 6.5 PB of user data + 50 TB/day (5/2009)

CERN’s LHC will generate 15 PB a year (??)

640K ought to be 
enough for anybody.



Maximilien Brice, © CERN



Maximilien Brice, © CERN



No data like more data!
/k l d /d t /s/knowledge/data/g;

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

How do we get here if we’re not Google?



What to do with more data?
Answering factoid questions

Pattern matching on the Web
Works amazingly well

Learning relations
Who shot Abraham Lincoln? → X shot Abraham Lincoln

Learning relations
Start with seed instances
Search for patterns on the Web
Using patterns to find more instances

Wolfgang Amadeus Mozart (1756 - 1791)
Einstein was born in 1879

Birthday-of(Mozart, 1756)
Birthday-of(Einstein, 1879)

Einstein was born in 1879

PERSON (DATE –
PERSON was born in DATE

(Brill et al., TREC 2001; Lin, ACM TOIS 2007)
(Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; … )



What is cloud computing?



The best thing since sliced bread?
Before clouds…

Grids
Vector supercomputers
…

Cloud computing means many different things:Cloud computing means many different things:
Large-data processing
Rebranding of web 2.0
Utility computing
Everything as a service



Rebranding of web 2.0
Rich, interactive web applications

Clouds refer to the servers that run them
AJAX as the de facto standard (for better or worse)
Examples: Facebook, YouTube, Gmail, …

“The network is the computer”: take twoThe network is the computer : take two
User data is stored “in the clouds”
Rise of the netbook, smartphones, etc.
Browser is the OS



Source: Wikipedia (Electricity meter)



Utility Computing
What?

Computing resources as a metered service (“pay as you go”)
Ability to dynamically provision virtual machines

Why?
Cost: capital vs. operating expenses
Scalability: “infinite” capacity
Elasticity: scale up or down on demand

Does it make sense?
Benefits to cloud users
Business case for cloud providers

I thi k th i ldI think there is a world 
market for about five 
computers.



Enabling Technology: Virtualization

App App App

Operating System

App App App OS

Hypervisor

OS OS

Hardware

Traditional Stack

Hardware

Virtualized Stack



Everything as a Service
Utility computing = Infrastructure as a Service (IaaS)

Why buy machines when you can rent cycles?
Examples: Amazon’s EC2, Rackspace

Platform as a Service (PaaS)
Give me nice API and take care of the maintenance, upgrades, …
Example: Google App Engine

Software as a Service (SaaS)Software as a Service (SaaS)
Just run it for me!
Example: Gmail, Salesforce



Who cares?
Ready-made large-data problems

Lots of user-generated content 
Even more user behavior data
Examples: Facebook friend suggestions, Google ad placement
Business intelligence: gather everything in a data warehouse andBusiness intelligence: gather everything in a data warehouse and 
run analytics to generate insight

Utility computing
Provision Hadoop clusters on-demand in the cloud
Lower barrier to entry for tackling large-data problem
Commoditization and democratization of large-data capabilities Co od t at o a d de oc at at o o a ge data capab t es



Course Administrivia



Course Pre-requisites
Strong Java programming

But this course is not about programming: we’ll expect you to pick 
up Hadoop (quickly) along the way
Focus on “thinking at scale” and algorithm design

Solid knowledge ofSolid knowledge of
Probability and statistics
Computer architecture

No previous experience necessary in
MapReduce
Parallel and distributed programming



This course is not for you…
If you’re not genuinely interested in the topic

If you can’t put in the timeyou ca t put t e t e

If you’re not ready to do a lot of work

If you’re not open to thinking about computing in new waysIf you re not open to thinking about computing in new ways

If you can’t cope with the uncertainty, unpredictability, etc. 
that comes with bleeding edge softwarethat comes with bleeding edge software

Otherwise, this will be a richly rewarding course!



Course components
Textbooks

Components of the final grade:Co po e ts o t e a g ade
Assignments (important, but not worth much)
Midterm and final exams
Final project (of your choice, in groups of ~3)
Class participation

I am unlikely to accept the following excuses:I am unlikely to accept the following excuses:
“Too busy”
“It took longer than I thought it would take”
“It was harder than I initially thought”
“My dog ate my homework” and modern variants thereof



Cloud Resources
Hadoop on your local machine

Hadoop in a virtual machine on your local machineadoop a tua ac e o you oca ac e

Hadoop in the clouds with Amazon EC2

Hadoop on the Google/IBM clusterHadoop on the Google/IBM cluster



Important Aside
Usage agreement for EC2

Usage agreement for Google/IBM clusterUsage ag ee e t o Goog e/ c uste

Stay tuned for more details over email…



Source: Wikipedia (Japanese rock garden)



Hadoop Zen
This is bleeding edge technology (= immature!)

Bugs, undocumented features, inexplicable behavior
Data loss(!)

Don’t get frustrated (take a deep breath)…
$Those W$*#T@F! moments

Be patient… 
We will inevitably encounter “situations” along the wayWe will inevitably encounter situations” along the way

Be flexible…
We will have to be creative in workaroundsWe will have to be creative in workarounds

Be constructive…
Tell me how I can make everyone’s experience bettery p



How do we scale up?



Source: Wikipedia (IBM Roadrunner)



Divide and Conquer

“Work” PartitionPartition

w1 w2 w3

“worker” “worker” “worker”

r1 r2 r3

“Result” Combine



Parallelization Challenges
How do we assign work units to workers?

What if we have more work units than workers?at e a e o e o u ts t a o e s

What if workers need to share partial results?

How do we aggregate partial results?How do we aggregate partial results?

How do we know all the workers have finished?

What if workers die?

What is the common theme of all of these problems?



Common Theme?
Parallelization problems arise from:

Communication between workers (e.g., to exchange state)
Access to shared resources (e.g., data)

Thus, we need a synchronization mechanism



Source: Ricardo Guimarães Herrmann



Managing Multiple Workers
Difficult because

We don’t know the order in which workers run
We don’t know when workers interrupt each other
We don’t know the order in which workers access shared data

Thus we need:Thus, we need:
Semaphores (lock, unlock)
Conditional variables (wait, notify, broadcast)
Barriers

Still, lots of problems:
Deadlock, livelock, race conditions...
Dining philosophers, sleeping barbers, cigarette smokers...

Moral of the story: be careful!Moral of the story: be careful!



Current Tools
Programming models

Shared memory (pthreads)

Message PassingShared Memory

em
or

y

Message passing (MPI)

Design Patterns P1 P2 P3 P4 P5P1 P2 P3 P4 P5

M
e

Master-slaves
Producer-consumer flows
Shared work queues

master
producer consumer

slaves

work queue

producer consumer



Where the rubber meets the road
Concurrency is difficult to reason about

Concurrency is even more difficult to reason aboutCo cu e cy s e e o e d cu t to easo about
At the scale of datacenters (even across datacenters)
In the presence of failures
In terms of multiple interacting services

Not to mention debugging…

The reality:
Lots of one-off solutions, custom code
Write you own dedicated library then program with itWrite you own dedicated library, then program with it
Burden on the programmer to explicitly manage everything



Source: Wikipedia (Flat Tire)



Source: MIT Open Courseware



Source: MIT Open Courseware



Source: Harper’s (Feb, 2008)



What’s the point?
It’s all about the right level of abstraction

The von Neumann architecture has served us well, but is no longer 
appropriate for the multi-core/cluster environment

Hide system-level details from the developers
No more race conditions lock contention etcNo more race conditions, lock contention, etc.

Separating the what from how
Developer specifies the computation that needs to be performedDeveloper specifies the computation that needs to be performed
Execution framework (“runtime”) handles actual execution

The datacenter is the computer!The datacenter is the computer!



“Big Ideas”
Scale “out”, not “up”

Limits of SMP and large shared-memory machines

Move processing to the data
Cluster have limited bandwidth

Process data sequentially, avoid random access
Seeks are expensive, disk throughput is reasonable

Seamless scalability
From the mythical man-month to the tradable machine-hour



MapReduce



Typical Large-Data Problem
Iterate over a large number of records

Extract something of interest from eacht act so et g o te est o eac

Shuffle and sort intermediate results

Aggregate intermediate resultsAggregate intermediate results

Generate final output

Key idea: provide a functional abstraction for 
these two operations

(Dean and Ghemawat, OSDI 2004)



Roots in Functional Programming

f f f f fMap

g g g g gFold



MapReduce
Programmers specify two functions:
map (k, v) → <k’, v’>*

d (k’ ’) k’ ’ *reduce (k’, v’) → <k’, v’>*
All values with the same key are sent to the same reducer

The execution framework handles everything else…y g



k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

mapmap map map

Shuffle and Sort: aggregate values by keys

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

reduce reduce reduce

r1 s1 r2 s2 r3 s31 1 2 2 3 3



MapReduce
Programmers specify two functions:
map (k, v) → <k’, v’>*

d (k’ ’) k’ ’ *reduce (k’, v’) → <k’, v’>*
All values with the same key are sent to the same reducer

The execution framework handles everything else…y g

What’s “everything else”?



MapReduce “Runtime”
Handles scheduling

Assigns workers to map and reduce tasks

Handles “data distribution”
Moves processes to data

Handles synchronizationHandles synchronization
Gathers, sorts, and shuffles intermediate data

Handles errors and faultsa d es e o s a d au s
Detects worker failures and restarts

Everything happens on top of a distributed FS (later)



MapReduce
Programmers specify two functions:
map (k, v) → <k’, v’>*

d (k’ ’) k’ ’ *reduce (k’, v’) → <k’, v’>*
All values with the same key are reduced together

The execution framework handles everything else…y g

Not quite…usually, programmers also specify:
partition (k’, number of partitions) → partition for k’

Often a simple hash of the key, e.g., hash(k’) mod n
Divides up key space for parallel reduce operations

combine (k’, v’) → <k’, v’>*
Mini-reducers that run in memory after the map phase
Used as an optimization to reduce network traffic



k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

mapmap map map

combinecombine combine combine

ba 1 2 c c3 6 a c5 2 b c7 8

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partitionpartition partition partition partition

Shuffle and Sort: aggregate values by keys
a 1 5 b 2 7 c 2 9 8c 2 3 6 8

reduce reduce reduce

r1 s1 r2 s2 r3 s3



Two more details…
Barrier between map and reduce phases

But we can begin copying intermediate data earlier

Keys arrive at each reducer in sorted order
No enforced ordering across reducers



“Hello World”: Word Count

Map(String docid, String text):
for each word w in text:

Emit(w, 1);

Reduce(String term, Iterator<Int> values):
int sum = 0;
for each v in values:

sum += v;
Emit(term, value);



MapReduce can refer to…
The programming model

The execution framework (aka “runtime”)e e ecut o a e o (a a u t e )

The specific implementation

Usage is usually clear from context!



MapReduce Implementations
Google has a proprietary implementation in C++

Bindings in Java, Python

Hadoop is an open-source implementation in Java
Development led by Yahoo, used in production
Now an Apache project
Rapidly expanding software ecosystem

Lots of custom research implementationsLots of custom research implementations
For GPUs, cell processors, etc.



User
Program

(1) submit

Master

( )

(2) schedule map (2) schedule reduce

split 0
split 1
split 2

worker

worker output
file 0(3) read

(4) local write

(5) remote read
(6) write

split 2
split 3
split 4

worker

worker

worker output
file 1

(4) local write

worker

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)



How do we get data to the workers?

NAS

SAN

Compute Nodes

What’s the problem here?What s the problem here?



Distributed File System
Don’t move data to workers… move workers to the data!

Store data on the local disks of nodes in the cluster
Start up the workers on the node that has the data local

Why?
Not enough RAM to hold all the data in memory
Disk access is slow, but disk throughput is reasonable

A distributed file system is the answerA distributed file system is the answer
GFS (Google File System) for Google’s MapReduce
HDFS (Hadoop Distributed File System) for Hadoop



GFS: Assumptions
Commodity hardware over “exotic” hardware

Scale “out”, not “up”

High component failure rates
Inexpensive commodity components fail all the time

“Modest” number of huge files
Multi-gigabyte files are common, if not encouraged

Files are write-once, mostly appended to
Perhaps concurrently

L t i d dLarge streaming reads over random access
High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)



GFS: Design Decisions
Files stored as chunks

Fixed size (64MB)

Reliability through replication
Each chunk replicated across 3+ chunkservers

Single master to coordinate access, keep metadata
Simple centralized management

No data caching
Little benefit due to large datasets, streaming reads

Si lif th APISimplify the API
Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)



From GFS to HDFS
Terminology differences:

GFS master = Hadoop namenode
GFS chunkservers = Hadoop datanodes

Functional differences:
No file appends in HDFS (planned feature)
HDFS performance is (likely) slower

For the most part, we’ll use the Hadoop terminology…



HDFS Architecture

HDFS namenode

(file name, block id)

(block id, block location)

HDFS namenode

File namespace
/foo/bar

block 3df2

Application

HDFS Client

instructions to datanode

datanode state
(block id, byte range)

block data
HDFS datanode

Linux file system

HDFS datanode

Linux file system

… …

Adapted from (Ghemawat et al., SOSP 2003)



Namenode Responsibilities
Managing the file system namespace:

Holds file/directory structure, metadata, file-to-block mapping, 
access permissions, etc.

Coordinating file operations:
Directs clients to datanodes for reads and writesDirects clients to datanodes for reads and writes
No data is moved through the namenode

Maintaining overall health:g
Periodic communication with the datanodes
Block re-replication and rebalancing
GGarbage collection



Putting everything together…

namenode

namenode daemon

job submission node

jobtracker

tasktracker tasktracker tasktracker

datanode daemon

Linux file system

…

datanode daemon

Linux file system

…

datanode daemon

Linux file system

…

slave node slave node slave node



Recap
Why large data?

Cloud computing and MapReduceC oud co put g a d ap educe

Large-data processing: “big ideas”

What is MapReduce?What is MapReduce?

Importance of the underlying distributed file system



Questions?

Photo credit: Jimmy Lin


