Data-Intensive Information Processing Applications — Session #1

Introduction to MapReduce

Jimmy Lin
University of Maryland

PR b I S
SRERSITE

Tuesday, January 26, 2010

@ @@@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

What i1s this course about?

o Data-intensive information processing
o Large-data (“web-scale”) problems
o Focus on applications

o MapReduce... and beyond

What is MapReduce?

o Programming model for expressing distributed
computations at a massive scale

o Execution framework for organizing and performing such
computations

o Open-source implementation called Hadoop

(— aaa

Why large data?

Source: Wikipedia (Everest)

How much data?

o Google processes 20 PB a day (2008)

o Wayback Machine has 3 PB + 100 TB/month (3/2009)
o Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
o eBay has 6.5 PB of user data + 50 TB/day (5/2009)

o CERN'’s LHC will generate 15 PB a year (??)

% 640K ought to be
"~ enough for anybody.

Maximilien Brice, © CERN

Z
id
L
O
©
o
0
o
C
ko
E
X
©
=

No data like more data!

s/knowledge/data/g;
1.00 4
0.95 J 0.44 ..
+D.5‘IBPfx_2£ PN
@;ﬂ’f”‘"' +0.15BP/x2
0.90 0421 i ¥ +0.39BPK2 1
. - +0.56BP/x2.~
4] TH| P e
: 2 04 et |
E,; o 85 % {{rD.TDBP!ﬂ
. o 0.38 +0.62BP/x2 .
o D Ve target KN ——
I —
0.80 4 4 +Hdenews KN --—sx—
0.36 - // = +webnews KN ——%-— -
/fﬁ, target SB --—-5—
o 0.66BP/H2 +ldcnews SB -—=——
0.75 4 034 L +webnews SB -y
e ewebsBAT TN
) 10 100 1000 10000 10000 1e+06 ‘
070 LM training data size in million tokens \
0.1 10 = =
Millions of Words =

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

How do we get here if we’re not Google?

What to do with more data?

o Answering factoid questions

e Pattern matching on the Web
e Works amazingly well

Who shot Abraham Lincoln? —» X shot Abraham Lincoln

o Learning relations

e Start with seed instances
e Search for patterns on the Web
e Using patterns to find more instances

Wolfgang Amadeus Mozart (1756 - 1791)
Einstein was born in 1879

Birthday-of(Mozart, 1756)

Birthday-of(Einstein, 1879)
PERSON (DATE -

PERSON was born in DATE

(Brill et al., TREC 2001; Lin, ACM TOIS 2007)
(Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002; ...)

The best thing since sliced bread?

o Before clouds...

e Grids
e Vector supercomputers

o Cloud computing means many different things:

Large-data processing
Rebranding of web 2.0
Utility computing

[
[
[
e Everything as a service

Rebranding of web 2.0

o Rich, interactive web applications

e Clouds refer to the servers that run them
e AJAX as the de facto standard (for better or worse)
e Examples: Facebook, YouTube, Gmalil, ...

o “The network is the computer”: take two

e User data is stored “in the clouds”
e Rise of the netbook, smartphones, etc.
e Browser is the OS

GENE!’\AL\:) ELECTRIC

TYPE I:60-S . FM2S
_SINGLE STATOR 'Y WATTHOUR METER.

7 (oL 200
' CAT NO. @ 720X1G1

Source: Wlklﬁedla (

Utility Computing
o What?

e Computing resources as a metered service (“pay as you go”)
e Ability to dynamically provision virtual machines

o Why?
e Cost: capital vs. operating expenses
e Scalability: “infinite” capacity
e Elasticity: scale up or down on demand

o Does it make sense?

e Benefits to cloud users
e Business case for cloud providers

| think there is a world
market for about five
computers.

Enabling Technology: Virtualization

App App App
App App App OS OS 0S
Operating System [Hypervisor]
Hardware Hardware

Traditional Stack Virtualized Stack

Everything as a Service

o Utility computing = Infrastructure as a Service (laaS)

e Why buy machines when you can rent cycles?
e Examples: Amazon’s EC2, Rackspace

o Platform as a Service (PaaS)

e Give me nice APl and take care of the maintenance, upgrades, ...
e Example: Google App Engine

o Software as a Service (SaaS)

e Just run it for me!
e Example: Gmail, Salesforce

Who cares?

o Ready-made large-data problems

e Lots of user-generated content
e Even more user behavior data
e Examples: Facebook friend suggestions, Google ad placement

e Business intelligence: gather everything in a data warehouse and
run analytics to generate insight

o Utility computing
e Provision Hadoop clusters on-demand in the cloud

e Lower barrier to entry for tackling large-data problem
e Commoditization and democratization of large-data capabilities

Course Administrivia

Course Pre-requisites

o Strong Java programming

e But this course is not about programming: we’'ll expect you to pick
up Hadoop (quickly) along the way

e Focus on “thinking at scale” and algorithm design

o Solid knowledge of

e Probability and statistics
e Computer architecture

o No previous experience necessary in

e MapReduce
e Parallel and distributed programming

This course Is not for you...

If you're not genuinely interested in the topic

If you can’t put in the time

o
o

o If you’re not ready to do a lot of work

o If you're not open to thinking about computing in new ways
o

If you can’t cope with the uncertainty, unpredictability, etc.
that comes with bleeding edge software

Otherwise, this will be a richly rewarding course!

Course components

o Textbooks

o Components of the final grade:

e Assignments (important, but not worth much)
e Midterm and final exams
[
[

Final project (of your choice, in groups of ~3)
Class participation

o | am unlikely to accept the following excuses:

e “Too busy”

e ‘It took longer than | thought it would take™
e “lt was harder than | initially thought”

e “My dog ate my homework” and modern variants thereof

Cloud Resources

o Hadoop on your local machine
o Hadoop in a virtual machine on your local machine
o Hadoop in the clouds with Amazon EC2

o Hadoop on the Google/IBM cluster

Important Aside

o Usage agreement for EC2
o Usage agreement for Google/IBM cluster

o Stay tuned for more details over email...

Source: Wikipedia (Japanese rock garden)

Hadoop Zen

o This is bleeding edge technology (= immature!)

e Bugs, undocumented features, inexplicable behavior
e Data loss(!)

o Don'’t get frustrated (take a deep breath)...

e Those WH*#T@F! moments
o Be patient...

e We will inevitably encounter “situations™ along the way
o Be flexible...

e \We will have to be creative in workarounds

o Be constructive...

e Tell me how | can make everyone’s experience better

How do we scale up?

46

)
N

R
Lk A%

Source: Wikipedia (IBM Roadrunner)

Divide and Conquer

Wy

/

“worker”

\

Iy

.

“Work”

|

Wy

“worker”

\

Iy

|

“Result”

N

“worker”

/

Wj3

v

I's

Partition

|
|

Combine

Parallelization Challenges

o How do we assign work units to workers?

o What if we have more work units than workers?
o What if workers need to share partial results?

o How do we aggregate partial results?

o How do we know all the workers have finished?
o What if workers die?

What is the common theme of all of these problems?

Common Theme?

o Parallelization problems arise from:

e Communication between workers (e.g., to exchange state)
e Access to shared resources (e.g., data)

o Thus, we need a synchronization mechanism

(=
C
®
IS
=
o
()
E

Source: Ricardo Guimaraes

Managing Multiple Workers

o Difficult because

e We don’t know the order in which workers run
e We don’t know when workers interrupt each other
e We don’t know the order in which workers access shared data

o Thus, we need:

e Semaphores (lock, unlock)
e Conditional variables (wait, notify, broadcast)
e Barriers

o Still, lots of problems:

e Deadlock, livelock, race conditions...
e Dining philosophers, sleeping barbers, cigarette smokers...

o Moral of the story: be careful!

Current Tools

o Programming models | A sl
I > 2 ||

e Shared memory (pthreads) i 2 - —

e Message passing (MPI) A A - I [

P, P, P, P, P, P, P, P, P, P,

o Design Patterns

e Master-slaves
e Producer-consumer flows
e Shared work queues

producer consumer
master

\—J —
AN

!
{

(I

‘. | || | — work queue

FEEE
g

slaves

producer consumer

Where the rubber meets the road

o Concurrency is difficult to reason about

o Concurrency is even more difficult to reason about

e At the scale of datacenters (even across datacenters)
e In the presence of failures
e |n terms of multiple interacting services

o Not to mention debugging...

o The reality:

e Lots of one-off solutions, custom code
e \Write you own dedicated library, then program with it
e Burden on the programmer to explicitly manage everything

3N -]

= ‘_‘j:f. -

Source: Wikipedia (Flat Tire)

ILL
XAdr OF T

VL voyv |

PCSEL-—¥%__ 3 2 1 of

B PC |oo]

s]a Instruction
Memory

74 D

Ra: <20:16> Rb: <15:11> Re: <25:21>
J \0 1 /<~RA2SEL

RA1 Register "2

A

WA File e
> RD1 RD2 WE [<— WERF

— JT

C: SXT(<15:0>)

PC+4+4*SXT(C)

IRQ Z
v v * ASEL o/ 10 /< BSEL

Control Logic

N—> PCSEL
N— RA2SEL A \/ B \

ASEL ALUFN —> ALU WD R —Wr

~—> BSEL
> WDSEL Data Memory

N—> ALUFN > o
N Wr
N— WERF
> WASEL

RD

PC+4

Ml

\0 1 2 /& \WDSEL

Source: MIT Open Courseware

Ty anzie e e e i | T e
Py fey o ey T | ey
0 3 0 B9 ster
e o Register e |pe e
wrie [wrie [T = T = L st
w0z w0z w0z w0z =z
PR - PR - IR B Tl ey e P math T
Gantral Logic Gantral Logic Gantral Logic Gantral Logic Gontrol Logic
ja— j—— j—— |
= s R ey
{ e { ey W e { W e { - W g
E Cota ey Cota ey Dt Wemary
[P s S

1 1 anzre
“ © s wricy
= z = z ooz

PR
Control Logic
| -pcsm

’ e
et barmary

|mpese
1= e

|mpese
s

fa- W Lo S
[[e i
| = | e E=m
L “\RE 221> | “\RE 221> “\RE <221 | e "R <2821
T T T oa oa T N =
@ ok -k . Register *
o j— | — LR
Fra Fra Fr
P omny o vil - Tl ey e
Cn!ﬂwl Logic Cn!ﬂwl Logic Control Logic

| -pcsm

et ermory

e

e ! - 1 T
Register ¢
= L —
[i —

e oz e oz = z

P P = -
Gontrol Logic Gontrol Logic

Source: MIT Open Courseware

UTILITY CONNECTIONS:

BUILDING =~ SPRINKLER DOMESTIC PLANT = SANITARY
SYSTEM WATER WATER SEWER

[o CATCH BASIN

our
e e EXISTING WATER LINE

BUILDING 1 8"% 6" s (2)-4" 6”& 4"

BUILDING 2 8”& g" i (2)-4" 6"& 4"

BUILDING 3 8"% 6" 5 (2)-4" 6" 4"
ADMIN. BUILDING 6" a1 B 6"
HOUSING BUILDING 6" 1" - 6"

— . —— i —— g — UNDERGROUND ELECTRIC POWER LIME
- EXSTING POWER POLE
N as e x—— DMCTING FENET LNC

T8 = TELEPHONE RISER
GM = GAS METER
EM - ELECTRICAL BOX
OV = ELECTHICAL VAULF
WM = WATER METER
STREET LIGHT
STREET 16N
EXISTING CONTOUR UNE

{ ML OTHERS AS KOTED ON PLAN

APPROXIMATE LOW WATER
UNE OF COLUMBLA RIVER

i '&'é%‘»:tw'
b

e
S

G

o

R

o

A

{11
TIHTT

1
PROPOSEDLPARING (88)

Cj LD)
y WIFITHTHET

e

BT

N

'_'li o4

22 i

z T It

H.!l PARCEL 1. CHINOWETH CREEK REPLAT

= PARCIL 1, MIP §Z31-0%

8!"— PORT OF TME DALLES INDUSTRIAL PARK
tes

i

B TNC W1/2. SECTION 78, TWR. 2 N, RANGE 13 £ wak|
THE DALLES, WASCO COLTY, OREGoM

Tenneson Enciveervg Cone.
CONSULTING ENGINEERS

A |

{8k 1

THE DALLES

THE DALLES, ORKGON 57058
1 Ed 1 Sar-396-$177 FAX Ge1=208-Ee5T
v 4 5 B =2
; i : HRu
FARY — SUSUECT TO EXEMPTION OF 5 US.C. §iss2(tis) | SOH. |11 it i L1630 .2 of 3
e T R e o =

 RAACADY1 000100 090, 4 . SHEET 2. BVR006 121 T P K, Cuntom 2:36 % 24.5 . ancacace)

Source: Harper’s (Feb, 2008)

What's the point?

o It's all about the right level of abstraction

e The von Neumann architecture has served us well, but is no longer
appropriate for the multi-core/cluster environment

o Hide system-level details from the developers

e No more race conditions, lock contention, etc.

o Separating the what from how

e Developer specifies the computation that needs to be performed
e Execution framework (“runtime”) handles actual execution

The datacenter is the computer!

“Big ldeas”

o Scale “out”, not “up”

e Limits of SMP and large shared-memory machines

o Move processing to the data
e Cluster have limited bandwidth

o Process data sequentially, avoid random access
e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour

MapReduce

Typical Large-Data Problem

o lterate over a large number of records
Mﬂﬁxtract something of interest from each

o Shuffle and sort intermediate results

o Aggregate intermediate resﬂtéduce

o Generate final output

Key idea: provide a functional abstraction for
these two operations

(Dean and Ghemawat, OSDI 2004)

Roots In Functional Programming
v
Map f
|
Fold \lj/,

MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v’>*
reduce (k’, v') — <k’, v’>*
e All values with the same key are sent to the same reducer

o The execution framework handles everything else...

Shuffle and Sort: aggregate values by keys

2 [HIE b IFK < IHHE

I

reduce reduce reduce

! ! !

MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v'>*
reduce (k’, V') — <k’, v’>*
e All values with the same key are sent to the same reducer

o The execution framework handles everything else...

What'’s “everything else”?

MapReduce “Runtime”

o Handles scheduling
e Assigns workers to map and reduce tasks

o Handles “data distribution”
e Moves processes to data

o Handles synchronization
e (Gathers, sorts, and shuffles intermediate data

o Handles errors and faults
e Detects worker failures and restarts

o Everything happens on top of a distributed FS (later)

MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v’>*
reduce (k’, V') — <k’, v’>*
e All values with the same key are reduced together

o The execution framework handles everything else...

o Not quite...usually, programmers also specify:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic

combine

-l - B

partition

Shuffle and Sort: aggregate values by keys

combine

)
B

partition

1

5

|

reduce

!
- B

|

reduce

!

combine

-H - B

partition

>

combine

[

partition

2|7

2

9

8|8

|

!

A A

reduce

Two more detalls...

o Barrier between map and reduce phases

e But we can begin copying intermediate data earlier

o Keys arrive at each reducer in sorted order

e No enforced ordering across reducers

“Hello World”: Word Count

Map(String docid, String text):
for each word w in text:
Emit(w, 1);

Reduce(String term, Iterator<Int> values):
int sum = 0;
for each v in values:
sum +=v;
Emit(term, value);

MapReduce can refer to...

o The programming model
o The execution framework (aka “runtime”)

o The specific implementation

Usage is usually clear from context!

MapReduce Implementations

o Google has a proprietary implementation in C++
e Bindings in Java, Python
o Hadoop is an open-source implementation in Java

e Development led by Yahoo, used in production
e Now an Apache project
e Rapidly expanding software ecosystem

o Lots of custom research implementations

e For GPUs, cell processors, etc.

User

Program
I'(1) submit
(2) schedlle map (2) sthedule reduce
A’//
worker >
split 0
split 1 output
P . (3) read . file 0
split 2 (4) local write
. worker >
split 3
split 4 worker R ogtput
file 1
worker >
Input Map Intermediate files Reduce Output
files phase (on local disk) phase files

Adapted from (Dean and Ghemawat, OSDI 2004)

How do we get data to the workers?

Compute Nodes

I

1
1
1
)
T=—=—=——————
)
1

What’s the problem here?

Distributed File System

o Don’t move data to workers... move workers to the data!

e Store data on the local disks of nodes in the cluster
e Start up the workers on the node that has the data local

o Why?

e Not enough RAM to hold all the data in memory
e Disk access is slow, but disk throughput is reasonable

o A distributed file system is the answer

e GFS (Google File System) for Google’s MapReduce
e HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions

o Commodity hardware over “exotic” hardware

e Scale “out”, not “up”

o High component failure rates

e Inexpensive commodity components fail all the time

o “Modest” number of huge files

e Multi-gigabyte files are common, if not encouraged

o Files are write-once, mostly appended to

e Perhaps concurrently

o Large streaming reads over random access

e High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

GFS: Design Decisions

o Files stored as chunks
e Fixed size (64MB)

o Reliability through replication

e Each chunk replicated across 3+ chunkservers

o Single master to coordinate access, keep metadata

e Simple centralized management

o No data caching

e Little benefit due to large datasets, streaming reads
o Simplify the API

e Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

From GFS to HDFS

o Terminology differences:

e GFS master = Hadoop namenode
e GFS chunkservers = Hadoop datanodes

o Functional differences:

e No file appends in HDFS (planned feature)
e HDFS performance is (likely) slower

For the most part, we’ll use the Hadoop terminology...

HDFS Architecture

HDFS namenode

Application [foo/bar

HDES Client - File namespace block 3df2

A

A 4

HDFS datanode HDFS datanode

Linux file system Linux file system

=8 . OO

Adapted from (Ghemawat et al., SOSP 2003)

Namenode Responsibilities

o Managing the file system namespace:

e Holds file/directory structure, metadata, file-to-block mapping,
access permissions, etc.

o Coordinating file operations:

e Directs clients to datanodes for reads and writes
e No data is moved through the namenode

o Maintaining overall health:

e Periodic communication with the datanodes
e Block re-replication and rebalancing
e Garbage collection

Putting everything together...

namenode job submission node

namenode daemon jobtracker

,—’/ ~

‘
-
-
- \
Z’— \\\ S

N
tasktracker tasktracker tasktracker

\\A

datanode daemon datanode daemon datanode daemon

Linux file system Linux file system Linux file system

Recap

o Why large data?

o Cloud computing and MapReduce
o Large-data processing: “big ideas”
o What is MapReduce?

o Importance of the underlying distributed file system

Photo credit: Jimmy Lin

