

Project ES2: Mining and Analytics for IBM Intranet Search

Shivakumar Vaithyanathan Sr. Manager Search, Analytics and Information Integration IBM Almaden Research Center

June 12, 2008

© 2007 IBM Corporation

Information Management at Almaden

- Advanced IM Architectures (Hamid Pirahesh)
 - Guy Lohman (Blink)
 - Eugene Shekita (Cloud9 \rightarrow Cloud Infrastructure)
 - John McPherson (Cloud analytics)

Information Systems (Shiv Vaithyanathan)

- Search and Analytics (Avatar Group)
- Information Integration (Clio Group)

Acknowledgements

- Sriram Raghavan
- Sandeep Tata
- Huaiyu Zhu
- Vuk Ercegovac
- Rajasekar Krishnamurthy
- Yunyao Li
- Frederick Reiss
- Fei Chen (summer student from Wisconsin)

What makes IBM Intranet search hard?

Axioms from Fagin et al www 2003

<u>Web</u> Economic & Social incentives to be in the top 10 results of Web search queries Drive traffic to your web site

Intranet

No economic incentives Isolated pages that may not be linked heavily if at all

Significant fraction of queries are "navigational" There is often exactly "one" right answer to a query and that needs to be ferreted out

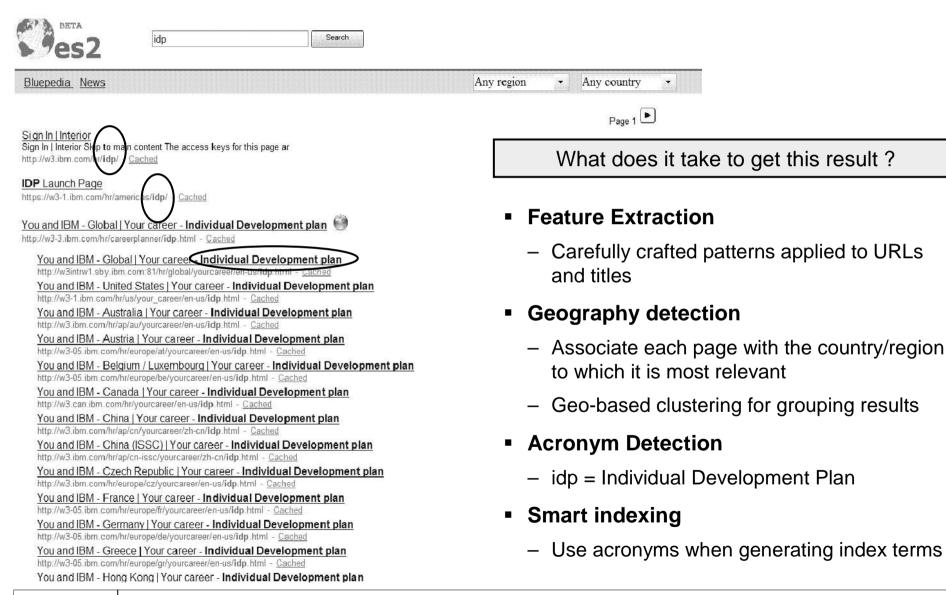
(Most of top 6500 queries are navigational)

Geographically disperse organization

350K users across over 80+ countries. Why do we care? Because the same query may have a different "right" answer depending on who is issuing it

Project ES2 Goal

While improving search on the IBM Intranet, build a testbed to invent and deploy analytics on very large scale enterprise data driven by real users and queries


Outline of the Talk

- Motivating search queries
- Analytics and Mining in ES2
 - Overall workflow
 - Local Analysis (LA)
 - Global Analysis (GA)
- Migration to Hadoop
 - LA & GA on Hadoop
 - Mapping analysis/mining algorithms onto MapReduce
 - Three specific examples

June 12, 2008

Search Example 1: idp

IBM Research

Search Example 2: download anti virus

Search

download anti virus

Any region

BM Standard Software Installer | Smantec AntiVirus 9.0.5.1000 (EMEA) Standard Software Installer | Symantec AntiVirus 9.0.5.1000 (EMEA... Standard Software Installer > Symantec AntiVirus 9.0.5.1000... by Symantec AntiVirus Parent Servers in EMEA. If you already have

Symantee Antivirus 9 jostelled, you http://w3-1.ibm.com/download/standardsoftware/ph/nav951emen/nav951emen.html?GeoName=Europe, Middle... - Cached

download IBM AntiVirus in French http://ibmav.watson.ibm.com/download/french.html - Cached

IBM Virus CERT | Downloads http://w3-03.ibm.com/virus/download/certsoftware.html - <u>Cached</u>

LTCDesktop/Developer - LTC Wiki https://ltc3.linux.ibm.com/wiki/LTCDesktop/Developer - Cached

IBM - Desktop Security

Featured literature IBM Proventia Desktop Endpoint Security Access Control Updated... your desktops ahead of the threat with multi-layered protection from IBM Internet Security Systems... - Desktop Security http://www-935.ibm.com/services/us/index.wss/offerfamily/iss/a1026607 - <u>Cached</u>

IBM Export Regulation Office | Chapter 1 https://w3-01.ibm.com/chg/ero/ero.nst/Pages/USERP-CHAPTER 1 - Cached

K0QA Policies: Virus Protection

KOQA Policies: Virus Protection... Virus Protection... This document describes the process for maintaining current virus protection on hosts http://pandora.lenexa.ibm.com/is/policies/security/virus_protection.html - <u>Cached</u>

IBM GTSS | pSeries mail tips by Tesch IBM GTSS | pSeries mail tips by Tesch... pSeries by Tesch... GTSS http://tesch.dfw.ibm.com/pseries/teschmail.html - <u>Cached</u>

[TITLE UNAVAILABLE]

http://www-05.ibm.com/services/ecalib/doc/2158-007.txt 🎾 - Cached

Virus Alert Page

http://w3.nok.ihm.com/organization/colution/quastion/virusala.htm - Cachad

8

What does it take to get this result ?

Page categorization

- Through custom patterns applied to URLs, titles, and other features of a Web page
- Categorize these pages as
 "ibm standard software installer" pages

Intelligent query interpretation

- download anti virus \rightarrow

anti virus category="ibm standard software installer"

IBM Research

Search Example 3: gj chaitin

Search

G J Chaitin Home Page " Dieu a choisi celuy qui est... le plus simple.... 32, 33 for the above texts.] G J Chaitin Home Page This website contains Greek... of Chaitin's published papers, many book chapters, and the LISP, Java, C, and Mathematica software http://w3.watson.ibm.com/~chaitin/index.html - Cached

Chaitin, The Unknowable

Chaitin, The Unknowable THE UNKNOWABLE G J Chaitin, IBM Research... Gödel's Proof . To future understanding! G.J. Chaitin 11 February 1999 chaitin@watson.ibm.com http://www.umcs.maine.edu /~chaitin http://www.cs.auckland.ac.nz/CDMTCS/chaitin

http://w3.watson.ibm.com/~chaitin/unknowable/index.html - Cached

Le Hasard des Nombres

Le Hasard des Nombres Le Hasard des Nombres La Recherche 22, N o... théorie des nombres ont des réponses tout aussi aléatoires que le résultat...;noncé dans le langage de la théorie des nombres, laquelle constitue le soubassement des http://www.teon.ibm.com/ochaitin/paire.html.com/ochaitin/pai

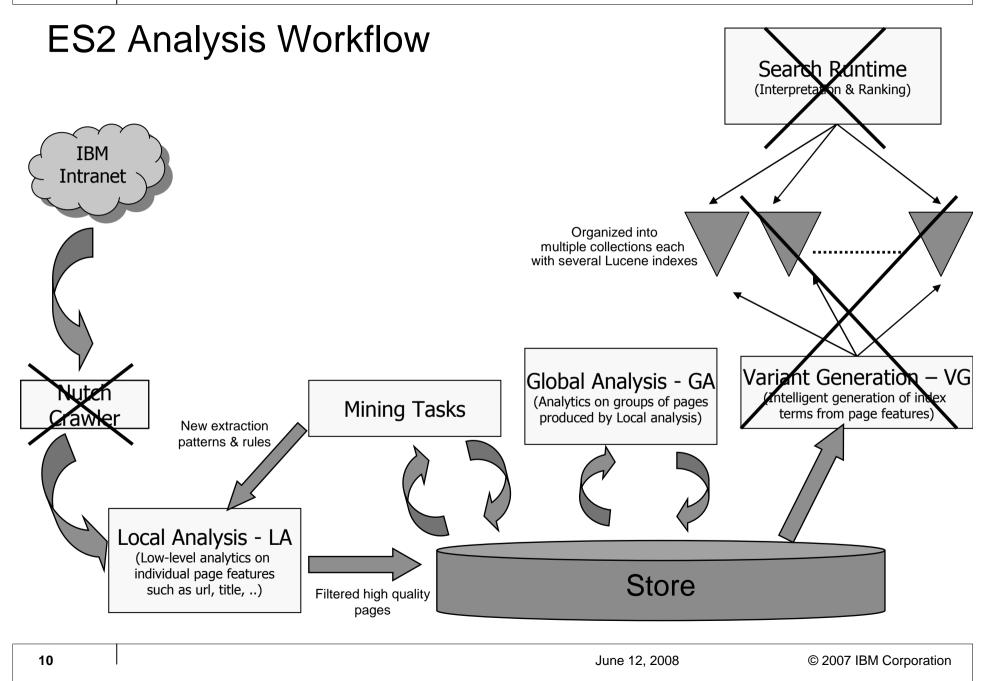
http://w3.watson.ibm.com/~chaitin/paris.html - Cached

Chaitin, The Unknowable http://w3.watson.ibm.com/~chaitin/unknowable/bib.html - Cached

Review of "Exploring RANDOMNESS" by Newton C. A. da Costa

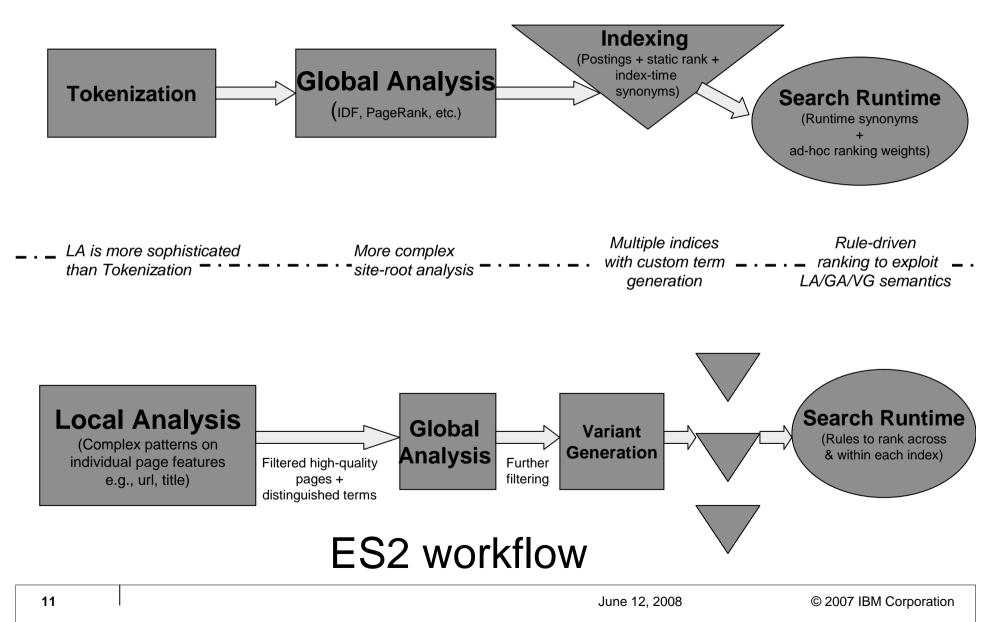
Review of "Exploring RANDOMNESS" by Newton C. A. da Costa Folha de S. Paulo... a aleatoriedade Newton da Costa especial para a Folha Exploring Randomness de G.J.... extraordinariamente original e idiossincrático de Chaitin. Newton C. A. da Costa é http://w3.watson.ibm.com/~chaitin/ait/costa.html - Cached

Randomness everywhere


and views / NATURE / vol 400 Mathematics / Randomness everywhere... Randomness everywhere http://w3.watson.ibm.com/~chaitin/nature.html - <u>Cached</u>

Probability and Program-Size for Functions

Probability and Program-Size for Functions Probability and Program-Size... between algorithmic probability and program-size for enumerating sets, in the case of the graphs... theory [1] deals with the program-size complexity and algorithmic probabilities for computing http://w3.watson.ibm.com/~chaitin/fnc.html - Cached What does it take to get this result ?

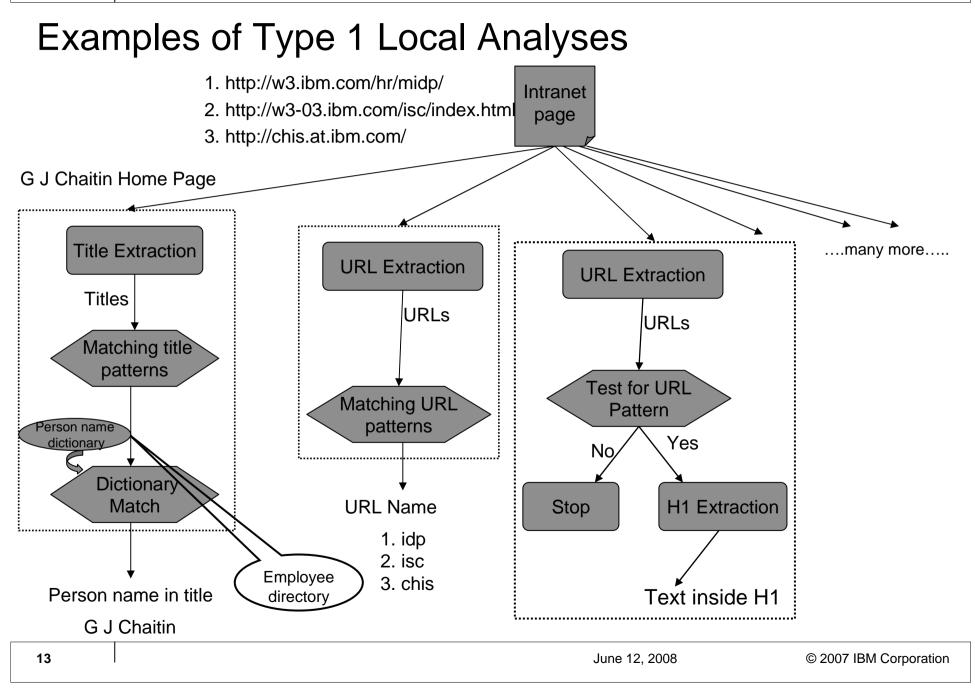

Semantics-driven index term generation

- Having recognized a personal home page, we can generate "variants" that exploit the different ways in which person names are written out
 - G J Chaitin \rightarrow GJ Chaitin
 - G J Chaitin → Chaitin, G J
 -

Standard IR Workflow

Local Analysis (LA)

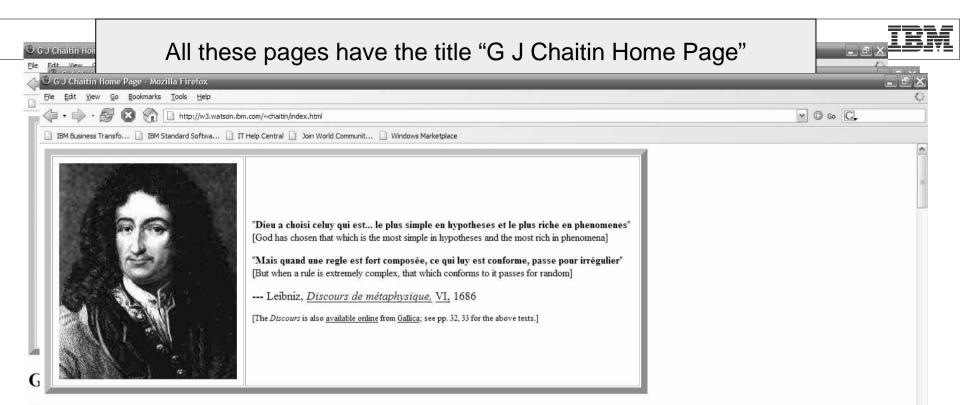
- Broadly, three types of analyses
 - Type 1: Navigational page detection & navigational feature extraction
 - Type 2: Extraction of page-level attributes
 - E.g., identifying that a page is an IBM Standard Software Installer page
 - **Type 3:** Extraction to drive mining algorithms
 - E.g., acronym detection, feature extraction for input to geo classification, ...


Mechanism

- LA involves complex rules consisting of
 - Carefully crafted regular expressions and dictionary matches against specific features of a page (e.g., META headers, title, URL, H1 and H2 tags, etc.)

June 12, 2008

IBM Research


Why Global Analysis ?

 We have individual navigational pages and associated feature values e.g.,

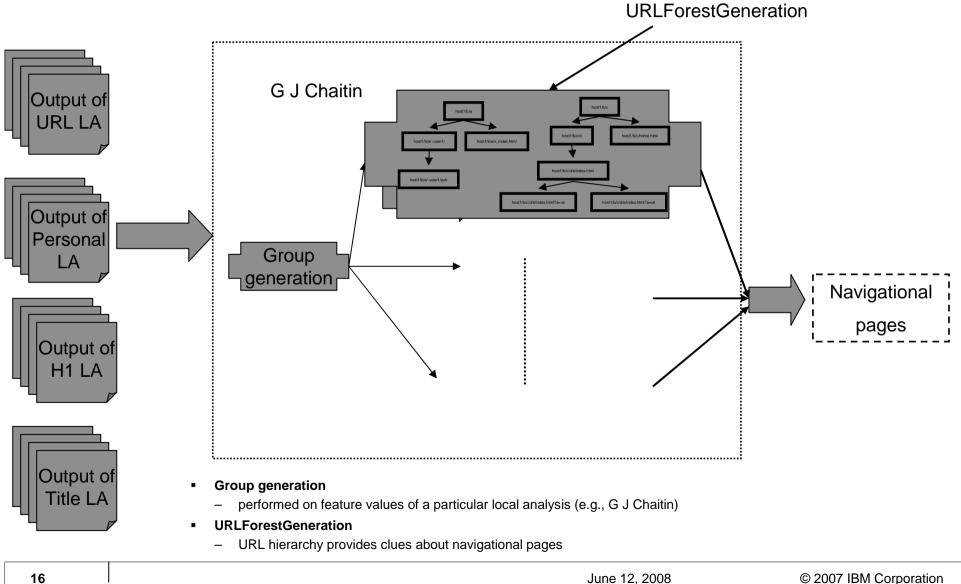
G J Chaitin → http://w3.watson.ibm.com/~chaitin/index.html

Can we put the feature values directly into the index !!

Unfortunately not so simple !!

$\frac{M}{M}$ G J Chaitin Home Page

Th This website contains Greek letters and other mathematical symbols. If " Ω " isn't a capital Greek letter Omega, you should switch to another browser, for example, MS IE or ^{co} <u>Mozilla Firefox</u>.


This website contains most of Chaitin's published papers, many book chapters, and the LISP, Java, C, and Mathematica software for Chaitin's Springer-Verlag trilogy. It also contains interviews and reviews of Chaitin's books.

• E-mail: chaitin@us.lbm.com	Contents	
Website: <u>http://www.umcs.maine.edu/-chaitin</u>	• <u>Latest News</u> • <u>Recent Books</u> • <u>LISP Applet</u>	
Mirror: http://www.cs.auckland.ac.nz/~chaitin Phone: 914/945-2785	• <u>Books with LISP Software</u> • <u>Collections of Interviews</u>	
• Fax: 914/945/4506	• Essays on Leibniz & Other Popular Articles	
 Mailing address: IBM Research, P O Box 218 Yorktoom Heights, NY 10598, USA 	<u>Photo Album & Time-Line</u> <u>Brief Biography</u>	
K	Latest Publications Complete List of Publications	

ັງກ ຊີ

GA: Site Root Analysis (Zhu et al, WWW 2006)

June 12, 2008

Summary

Local Analysis

- Large number of complex rules involving a combination of dictionaries and regular expressions. We require
 - Mechanism to express and execute these rules
 - SystemT & AQL (<u>http://www.alphaworks.ibm.com/tech/systemt</u>)
 Declarative information extraction system
 - Ability to curate dictionaries
 - E.g., Person names (tap the corporate directory)
 - Complex regular expression learning (given below)

Mining

- Automatically extract acronyms and their expansions
- Geo classification
- Learning regular expressions for use in LA

Outline of the Talk

- Motivating search queries
- Analytics and Mining in ES2
 - Overall workflow
 - Local Analysis (LA)
 - Global Analysis (GA)
- Migration to Hadoop
 - LA & GA on Hadoop
 - Mapping analysis/mining algorithms onto MapReduce

June 12, 2008

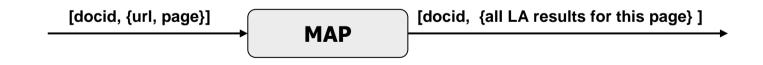
Challenges in migrating to Hadoop

Algorithmic challenges

- Designing efficient MapReduce versions of the analysis and mining algorithms
 - In some cases straightforward mappings work!!
 - In other cases, smart mappings to MapReduce have to be designed

Data management challenges

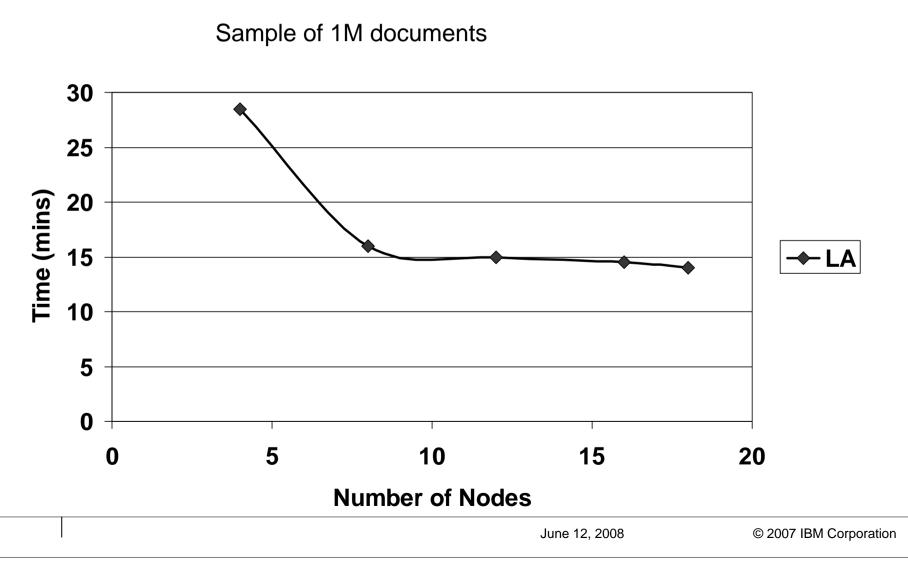
 Representing and manipulating the data associated with the analysis steps


LA on Hadoop

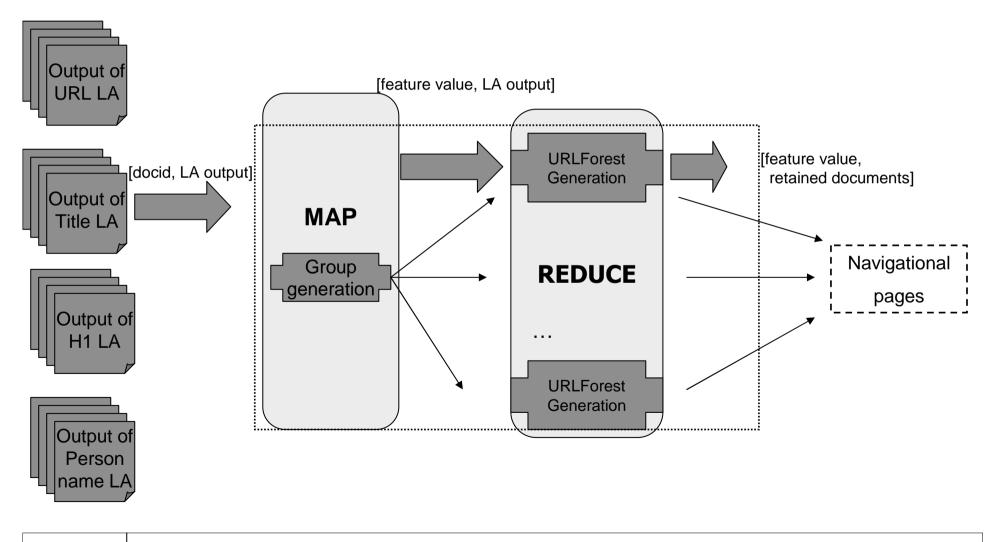
By definition,

– Page-at-a-time analysis → easily parallelizable

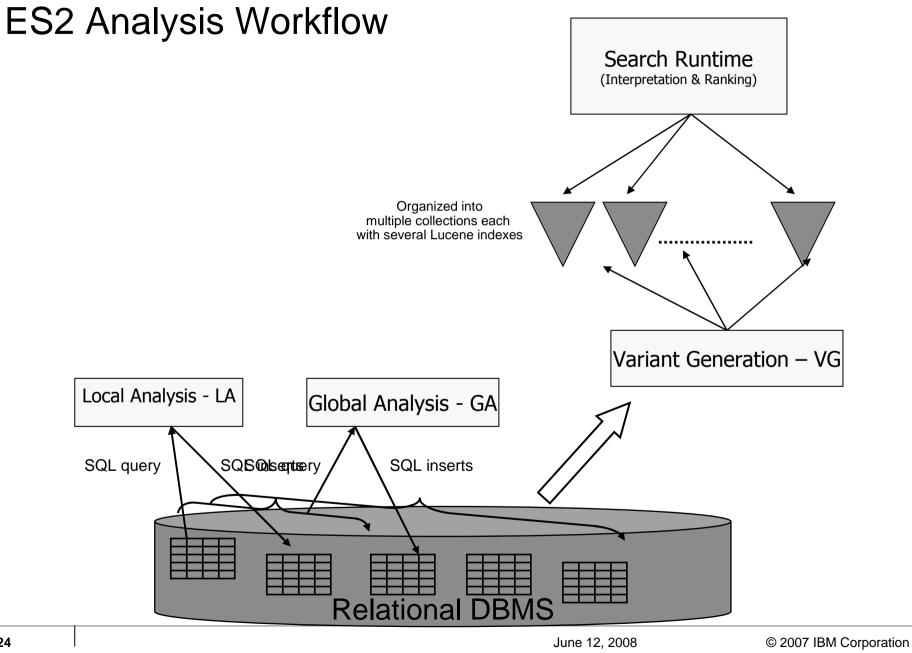
MapReduce instantiation


- A MAP-only job where LA analysis is performed inside the mapper one document at at time
- Conceptually,

Expect to scale linearly with the number of nodes in the cluster



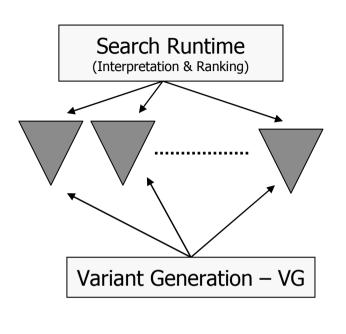
LA on Hadoop

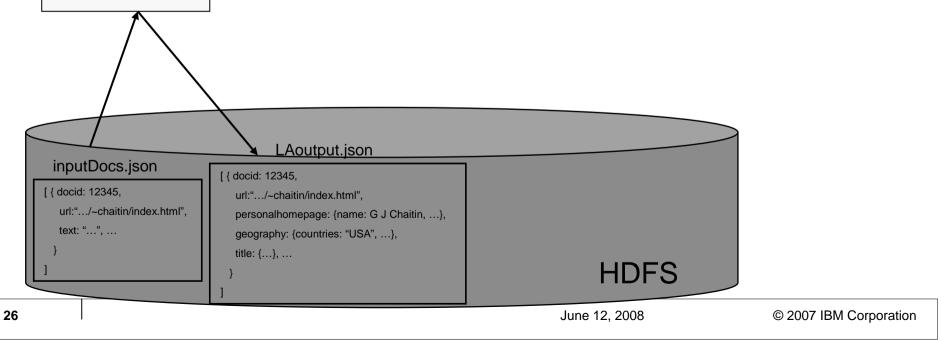

GA on Hadoop

LA & GA on Hadoop

- Algorithms appear to map directly to MapReduce
- Remaining challenge
 - Deal with the data management problems

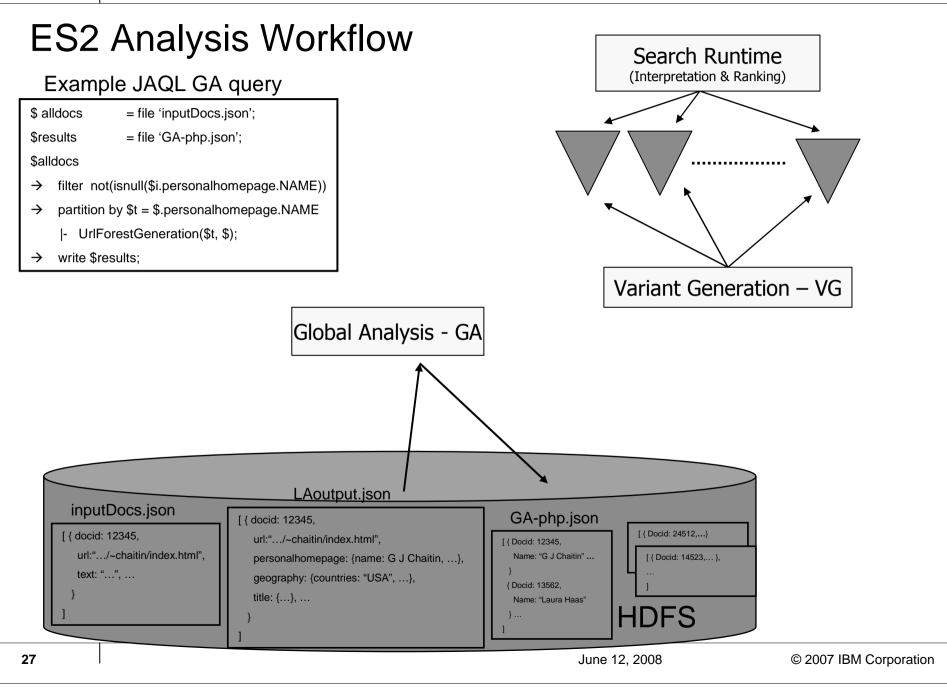
To migrate LA & GA on Hadoop

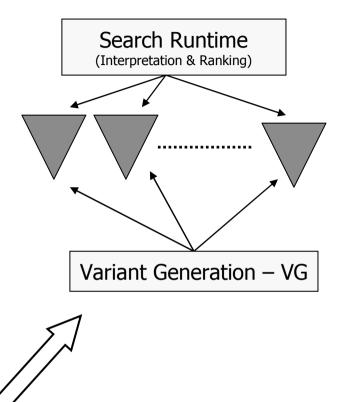

- Either, we invent
 - Data formats to represent LA output and other intermediate results in Hadoop
 - Write custom data manipulation operations in Java
- Instead, we can use a query language
 - JAQL (http://code.google.com/p/jaql)
 - Uses JSON as the data model
 - Designed to process massive quantities of semi-structured data
 - Exploit map-reduce for parallelism
 - Easily extend by plugging in user-defined functions


ES2 Analysis Workflow

JAQL LA query

= file 'inputDocs.json;				
= file 'LAoutput.json';				
\$alldocs				
→ map LocalAnalysis(\$.docid, \$.text, \$.url)				
\rightarrow write \$results;				


Local Analysis - LA



IBM Research

IBM

ES2 Analysis Workflow

ĺ		LAoutput.json		\geq
	inputDocs.json [{ docid: 12345, url:"/~chaitin/index.html", text: "", }]	<pre>[{ docid: 12345, url:"/~chaitin/index.html", personalhomepage: {name: G J Chaitin,}, geography: {countries: "USA",}, title: {}, }]</pre>	GA-php.json [{Docid: 12345, Name: "G J Chaitin" } {Docid: 13562, Name: "Laura Haas" }] HDFS	
28		L	June 12, 2008	© 2

© 2007 IBM Corporation

IBM Research

Outline of the Talk

- Motivating search queries
- Analytics and Mining in ES2
 - Overall workflow
 - Local Analysis (LA)
 - Global Analysis (GA)
 - Variant Generation (VG)
- Migration to Hadoop
 - LA & GA on Hadoop
 - Mapping analysis/mining algorithms onto MapReduce
 - Performance results

Three Tasks

- Acronym extraction
- Geo classification
 - Frequent item set mining
- Learning regular expressions

IBM Research

Acronym variants examples

ACM

- Total 32 long form variants.
- After case-folding:
 - Accessibility Configuration Manager
 - Accommodation System
 - Accumulated Call Meter
 - AFE Contract Management
 - Application Component Manager
 - Area Calculation Method
 - Asbestos Containing Material
 - Association for Computing Machinery
 - Asynchronous Communication Monitor
 - Atlas Call Management

- PBC
 - Total 60 long form variants.
 - After case-folding:
 - People's Bank of China
 - Performance Business Commitments
 - Personal Business Comitments
 - Personal Business Comittments
 - Personal Business Commitement
 - Personal Business Commitements
 - Personal Business Commitment
 - Personal Business Commitments
 - Personal Business Committment
 - Personal Business Committments
 - Personal Business Contribution
 - Personal Business Controls
 - Personal Business Objectives
 - Personnal Business Commitments
 - Personnel Business Commitment
 - Personnel Business Commitments
 - Pesonal Business Commitments
 - Plant Biotechnology Centre

Acronym Extraction: Algorithm

1. Scan document for patterns that match:

- longForm '(' shortForm ')' OR shortForm '(' longForm ')'
- Example: ... in recent develpments, Bank of America (BofA)...
- 2. For each match apply following heuristics to check if this is a good candidate:
 - o Match characters in *shortForm* to characters in *longForm* starting from right to left. Bank of America (BofA)
 - o If no match is found for some character in the *shortForm*, return null.
 - o Find beginning of first word in *longForm* to match first letter in *shortForm* Bank of America (BofA)
- 3. Resolve variations in different *longForms* for a given *shortForm*
- 4. Aggregate counts for each [shortForm, longForm]

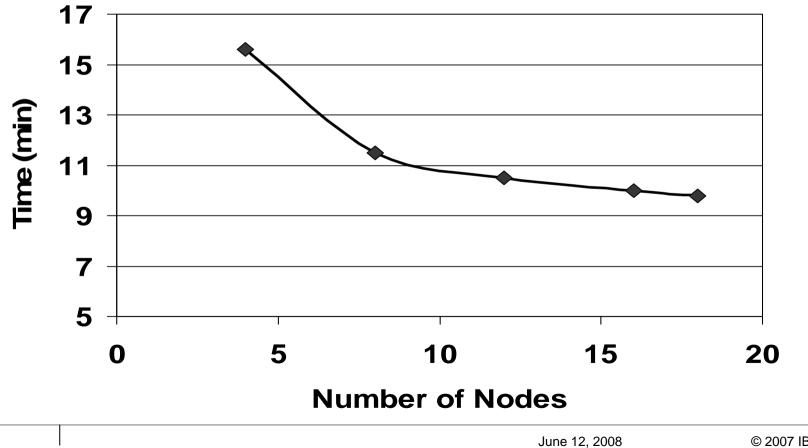
Ref: Ariel Schwartz and Marti Hearst, "A Simple Algorithm for Identifying Abbreviation Definitions In Biomedical Text", PSB 2003

Acronym Extraction MapReduce Implementation

MAP: EXTRACT CANDIDATES

- 1. Scan document for patterns that match:
 - longForm '(' shortForm ')' OR shortForm '(' longForm ')'
 - Example: ... in recent develpments, Bank of America (BofA)...
- 2. For each match apply following heuristics to check if this is a good candidate:
 - o Match characters in *shortForm* to characters in *longForm* starting from right to left.
 - o If no match is found for some character in the *shortForm*, return null.
 - o Find beginning of first word in *longForm* to match first letter in *shortForm*

[shortForm, longForm]


REDUCE: RESOLVE & COUNT

- 3. Resolve variations in different *longForm*s for a given *shortForm*
- 4. Aggregate counts for each [shortForm, longForm]

Acronym Extraction on Hadoop

Processing 10 M documents

Lessons being learned and more to come ...

- Mining (such as acronym extraction) operate as a single task thereby using Hadoop more efficiently
- LA runs each crawler segment as a task (same data multiple tasks) → does not scale as well
 - Speculatively execution may use resources for existing job instead of devoting resources to a new job. (As of v16)
- Dependency on number of data-nodes versus processing nodes
- Problems with asymmetry:
 - Slower nodes may be serious bottlenecks especially if a larger partition gets assigned to one

Three Tasks

- Acronym extraction
- Geo classification
 - Frequent item set mining
- Learning regular expressions

June 12, 2008

Geo classification

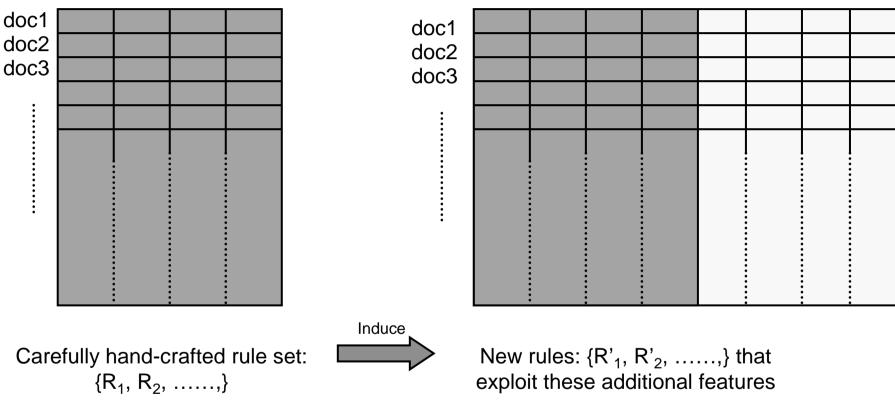
Goal

- With each page, associate the IBM location/country/region for which it is most relevant
 - Simple approaches don't work (e.g., cannot assume all pages hosted at "foo.bar.de" are for "German employees")

Current approach

- Uses a limited number of features extracted during LA
 - By matching dictionaries of country, region, and location names with the title, URL, meta headers, etc.
- Manually specified rules (that use a subset of features) to classify

Problem


Tuned for **precision** but suffers from poor recall (less than 1/4th of the pages are labeled)

IBM Research

Improving recall for Geo classification

Current feature set

Leads to the following sub-problem: Finding association rules over the geo features In turn, this requires: Computing frequent item-sets involving geo features

June 12, 2008

Expanded feature set

Scalable Frequent Item-set Computation

- Challenges
 - Very sparse date set in a feature space of several hundred
 - Minimum support for item-sets must be set very low
- Work done this summer with Fei Chen @ Univ. of Wisconsin, Madison
 - Developed and implemented a scalable frequent item-set algorithm on Hadoop
 - Series of algorithms from naïve to progressively more sophisticated

June 12, 2008

Performance problems with a Priori

Performance

- On our earlier small dataset
 - 36368 rows
 - 20 columns
 - Minimum support = 0.1%

this implementation takes over 1 hour

Problems

- # scans of entire data set = # iterations = Length of longest freq. itemset
- Because of the low-support requirements,
 - Large number of potential candidates
 - Negatively impacts the performance of the "generate and test" approach used in a priori

FPGrowth Algorithm (Han et. al., SIGMOD 2000)

Based on the following key ideas

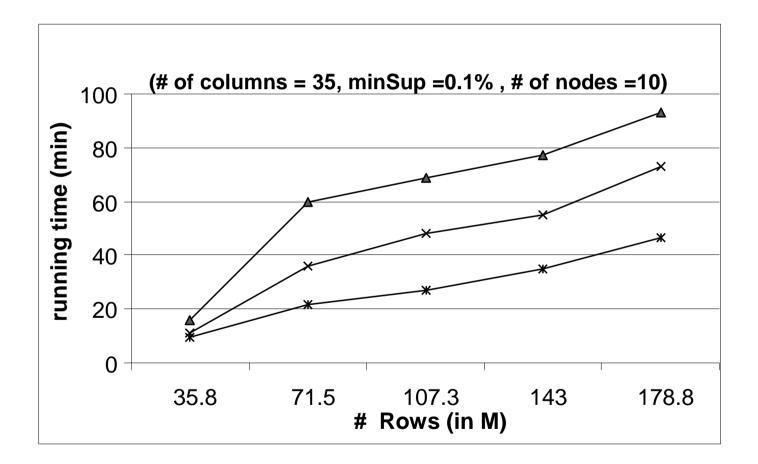
- A pattern growth approach as opposed to candidate generation
- A recursive divide-and-conquer method to decompose the mining task into a set of smaller mining tasks on subdatabases called projected databases

Mapping to Hadoop (FPGrowth-H)

 Design MapReduce jobs to repeatedly project the input data set until each projection can be completely mined in memory using the FP-tree structure

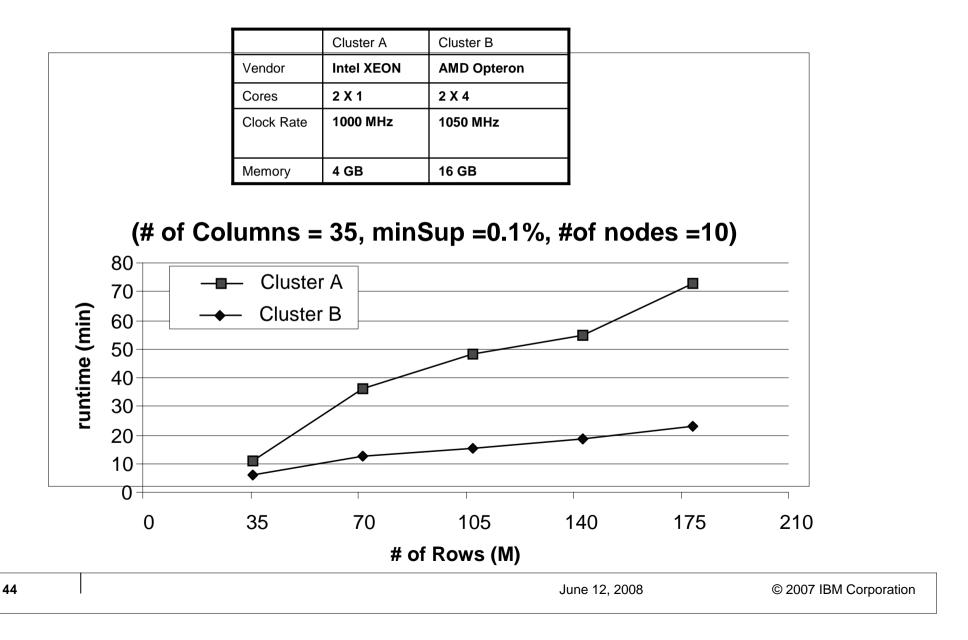
Experiments

Small data set


- 36368 rows, 20 columns, s_min = 0.1%,

Naive	a priori	FPGrowth-H	
> 2.5 hrs	> 1 hr	25s	On a 10-node Hadoop cluster

- We see the impact of small min-support even on small data sets


IBM

FPGrowth-H Performance on larger data sets (up to 10G)

IBM

FPGrowth-H Performance on larger data sets (up to 50G)

Comparisons with prior work

In general, hard to compare numbers

- Variations depends on the hardware, architectures, min_sup, data distribution, etc.
- Not all of these parameters are reported in literature
- Also, not sure whether prior work pushed min_sup to as low as 0.1%

However, one comparison point

- Osmar R. Zaane et. al.: Fast Parallel Association Rule Mining Without Candidacy Generation
 - Shared memory SGI Origin 2400 with 64 processors, 50M rows, average 12 columns, and min_sup is not reported
 - Runtime ~ 63 mins (3831 seconds)
- FPGrowth-H
 - 10 cluster, 70M rows, 35 columns, min_sup = 0.1%
 - Runtime ~ 39 min

Lessons Learned

Combiners versus custom aggregation

- Lack of flexibility in controlling when and how the Combiner will be called (Disclaimer: as of Hadoop v17.1)
 - Hadoop performs local sort-merge before calling the combiner
 - The combiner is triggered whenever Hadoop decides the output buffer pool is full
- We obtained better performance by using custom aggregation code within the mapper
- Lack of flexibility in scheduling MapReduce jobs
 - Potentially better performance by streaming data directly from one MapReduce job to another
 - E.g., Begin "Single Frequent Item" even as output is being generated from Reducer of "Project-and-Mine"
 - Likely to be true for most iterative mining algorithms

June 12, 2008

Three Tasks

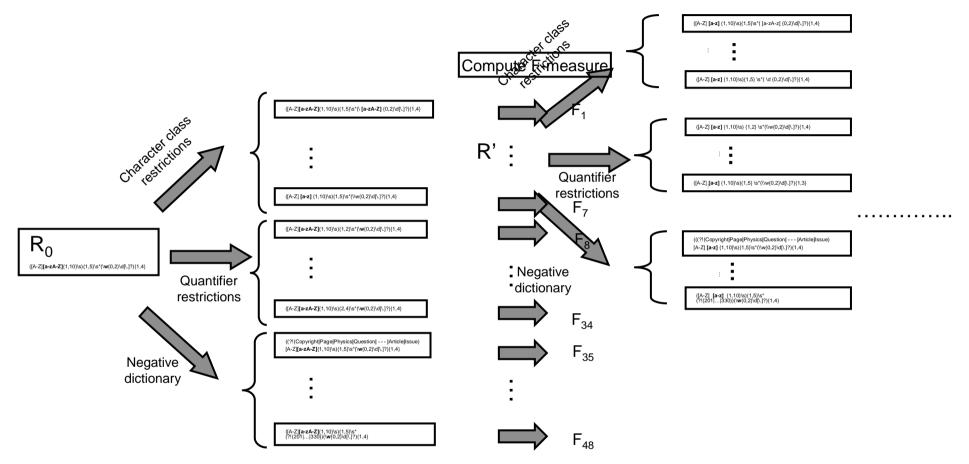
- Acronym extraction
- Geo classification
 - Frequent item set mining
- Learning regular expressions

| IBM Research

Extracting Software Names, Yunyao Li et al, SIGIR 2006

0			Search w3	GO	
	dard Software Installer				w3 Home BluePages HelpNow
Updated on 31 May 2007					
IBM Standard Software Installer > Eu	rope, Middle East, Africa > Windows XP >				
Symantec AntiViru	s 9.0.5.1000 (EMEA)				
Application information	*****				
 More Information 	****				
Version:	9.0.5.1000			Download Time Estim (hh:mm:ss)	ates
Operating System:	Windows 2000 ····			Ethernet: 0:01:24	
Diskspace:	Installed: 72 MB			56k (dial-up): 1:33:20	
	Temp: 28 MB		3.(1.5Mbps (DSL): 0:03:44 0 Mbps (cable modem): 0:01:52	
Installation Options	**************************************	••••			
		****	_		
Local drive for temp space	(optional) 📓				
When you are ready to install	this product click on the button below.	Software			
	rongly recommended that you save a		ations that are running prior to	selecting Install Now.	
Install Now!	******	Names	5.	,	Deferred Install ?
Additional Information	sesses and access		-		
Description	*******				
This ISSI package will migrate Symantec AntiVirus 9 24(9)	•	tiVirus solution for IBM. It w	ill attempt to uninstall any previously	supported Symantec antivirus	applications. Then it will install
This Installation of SAV9 will in	nstall the managed Symantec AntiVirus cli	ent.			
This client will be managed by	wmantec AntiVirus Parent Servers in EM	IEA.			
If you already have Symanter EMEA Managed Client opping	c Antivirus 9 i stalled, you do not need to	install this package to mig	rate to the managed client. You simp	ly need to run the package on	ISSI titled "Symantec AntiVirus:
The managed client does not	have a scheduled scan configured.				
It will also receive daily virus of	definition updates from the parent server.				

ReLIE Intuition ...

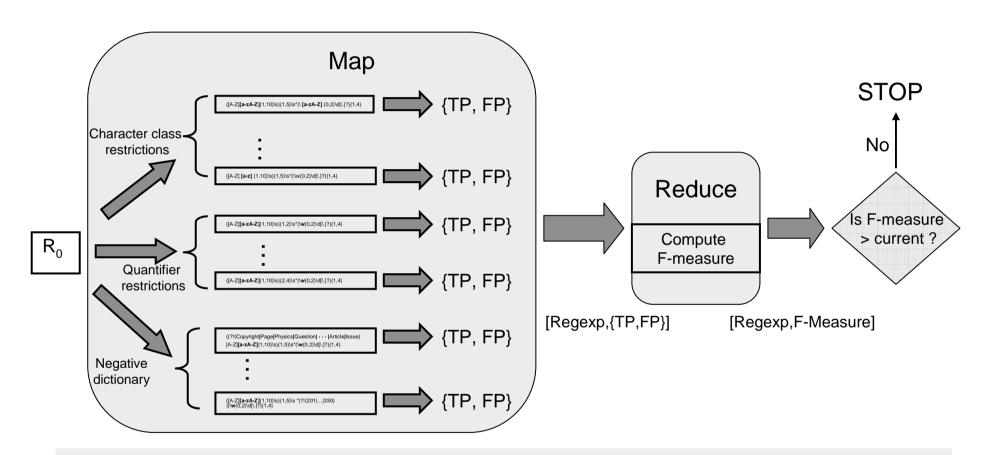

Start with an initial regular expression R₀

- $\b([A-Z][a-zA-Z]{1,10}\s){1,5}\s^{(w{0,2}d[.]?){1,4}\b}$
- Identifies correct instances
 - Norton Antivirus 5.03.61, Windows 2003, Eclipse 3.2
- Matches False positives
 - Physics 201, Room 330, Chapter 2.2

Modified to obtain R_{final} with higher precision

- R_{improved} obtained by making several local transformations
 - Character class restrictions $[a-zA-Z] \rightarrow [a-z]$
 - Quantifier restrictions $\{1,5\} \rightarrow \{1,4\}$
 - Negative Dictionary of terms {Copyright, Page, Physics, ...}

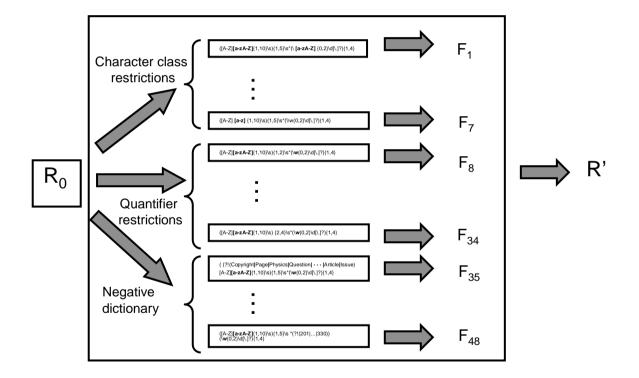
Regular Expression Learning Algorithm Yunyao Li et al, EMNLP 2008



- Generate candidate regular expressions by applying a single transformation
- Select the "best candidate" R' based on F-measure on training corpus
- If R' has better F-measure than current regular expression, repeat the process

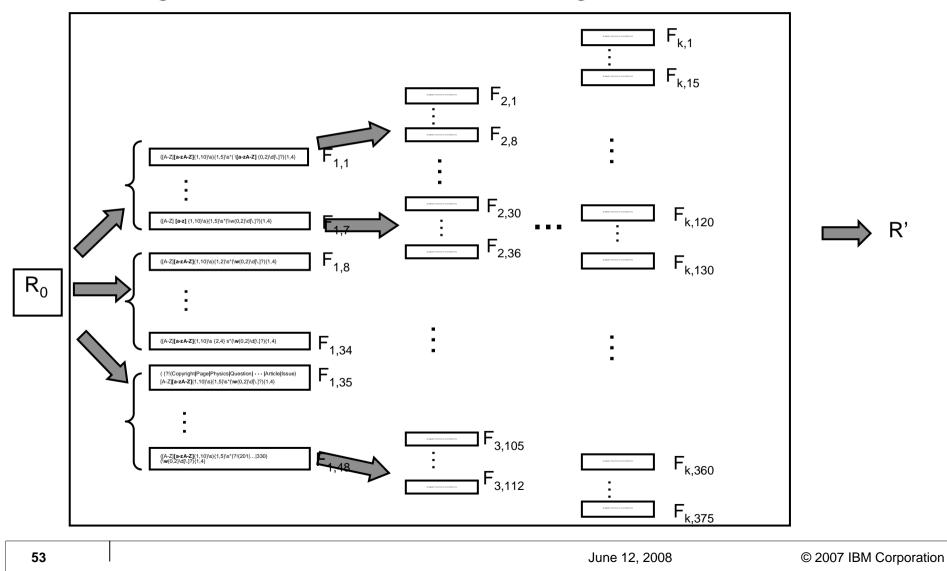
IBM Research

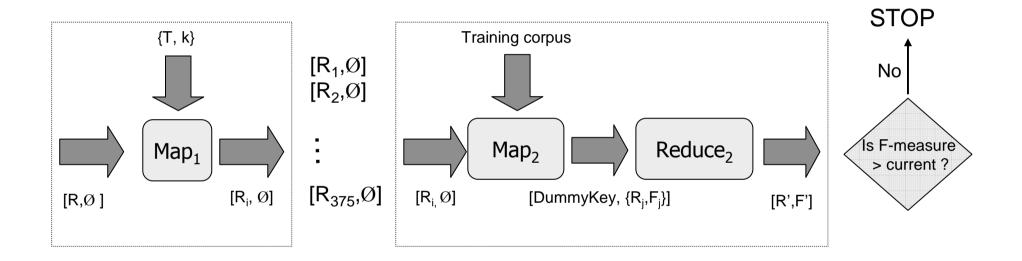
IBM


Mapping if we have a large training corpus ("gedanken experiment")

Most expensive part of an iteration is computing the F-measure for all candidates

We can translate this computation into a map-reduce job by partitioning the document corpus


Training corpus is usually small : Exploring larger portion of the search space


ReLIE uses a greedy heuristic where candidates are "1-transformation away" from R0 !

IBM

Instead, generate k-transformation neighborhood ...

Expanding the search space : Parallelizing the F-measure computation of candidates

Map :	generate all candidates by applying k-transformation to R	Map :	for each candidate, compute F-measure over training corpus
Reduce :	none	Reduce :	choose "best" candidate

IBM Research

IBM/Google Cloud Academic Initiative

- One year anniversary launched 10/2007
- Fostering next-generation learning environment with flexible yet powerful virtual IT infrastructure
- Allow users to tap into massive computing resources not previously available
- One of the largest production clouds in existence (1100+ servers across three locations)
- 12 universities participating in the program,
 25 by end of 2008
- Over 700 students & researchers served to date
- Promoting advanced research & learning activities
- Supported by the National Science Foundation
- Promoting open-source software on Linux using Eclipse plug-in

		IBM Research	
--	--	--------------	--

Thank you !