
1

Cloud Computing Lecture #5
Graph Algorithms with MapReduce

Jimmy Lin
The iSchool
University of Maryland

Wednesday, October 1, 2008

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Some material adapted from slides by Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google
Distributed Computing Seminar, 2007 (licensed under Creation Commons Attribution 3.0 License)

Today’s Topics
Introduction to graph algorithms and graph
representations

Single Source Shortest Path (SSSP) problem
Refresher: Dijkstra’s algorithm
Breadth-First Search with MapReduce

P R k

The iSchool
University of Maryland

PageRank

What’s a graph?
G = (V,E), where

V represents the set of vertices (nodes)
E represents the set of edges (links)
Both vertices and edges may contain additional information

Different types of graphs:
Directed vs undirected edges

The iSchool
University of Maryland

Directed vs. undirected edges
Presence or absence of cycles

Graphs are everywhere:
Hyperlink structure of the Web
Physical structure of computers on the Internet
Interstate highway system
Social networks

Some Graph Problems
Finding shortest paths

Routing Internet traffic and UPS trucks

Finding minimum spanning trees
Telco laying down fiber

Finding Max Flow

The iSchool
University of Maryland

Airline scheduling

Identify “special” nodes and communities
Breaking up terrorist cells, spread of avian flu

Bipartite matching
Monster.com, Match.com

And of course... PageRank

Graphs and MapReduce
Graph algorithms typically involve:

Performing computation at each node
Processing node-specific data, edge-specific data, and link
structure
Traversing the graph in some manner

Key questions:

The iSchool
University of Maryland

How do you represent graph data in MapReduce?
How do you traverse a graph in MapReduce?

Representing Graphs
G = (V, E)

A poor representation for computational purposes

Two common representations
Adjacency matrix
Adjacency list

The iSchool
University of Maryland

2

Adjacency Matrices
Represent a graph as an n x n square matrix M

n = |V|
Mij = 1 means a link from node i to j

1 2 3 4
2

The iSchool
University of Maryland

1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

1

3

4

Adjacency Matrices: Critique
Advantages:

Naturally encapsulates iteration over nodes
Rows and columns correspond to inlinks and outlinks

Disadvantages:
Lots of zeros for sparse matrices
Lots of wasted space

The iSchool
University of Maryland

Lots of wasted space

Adjacency Lists
Take adjacency matrices… and throw away all the zeros

1 2 3 4
1 0 1 0 1 1: 2, 4

The iSchool
University of Maryland

1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

2: 1, 3, 4
3: 1
4: 1, 3

Adjacency Lists: Critique
Advantages:

Much more compact representation
Easy to compute over outlinks
Graph structure can be broken up and distributed

Disadvantages:
Much more difficult to compute over inlinks

The iSchool
University of Maryland

Much more difficult to compute over inlinks

Single Source Shortest Path
Problem: find shortest path from a source node to one or
more target nodes

First, a refresher: Dijkstra’s Algorithm

The iSchool
University of Maryland

Dijkstra’s Algorithm Example

∞ ∞

10

1

The iSchool
University of Maryland

0

∞ ∞

5

2 3

2

9

7

4 6

Example from CLR

3

Dijkstra’s Algorithm Example

10 ∞

10

1

The iSchool
University of Maryland

0

5 ∞

5

2 3

2

9

7

4 6

Example from CLR

Dijkstra’s Algorithm Example

8 14

10

1

The iSchool
University of Maryland

0

5 7

5

2 3

2

9

7

4 6

Example from CLR

Dijkstra’s Algorithm Example

8 13

10

1

The iSchool
University of Maryland

0

5 7

5

2 3

2

9

7

4 6

Example from CLR

Dijkstra’s Algorithm Example

8 9

10

1

The iSchool
University of Maryland

0

5 7

5

2 3

2

9

7

4 6

Example from CLR

Dijkstra’s Algorithm Example

8 9

10

1

The iSchool
University of Maryland

0

5 7

5

2 3

2

9

7

4 6

Example from CLR

Single Source Shortest Path
Problem: find shortest path from a source node to one or
more target nodes

Single processor machine: Dijkstra’s Algorithm

MapReduce: parallel Breadth-First Search (BFS)

The iSchool
University of Maryland

4

Finding the Shortest Path
First, consider equal edge weights

Solution to the problem can be defined inductively

Here’s the intuition:
DistanceTo(startNode) = 0
For all nodes n directly reachable from startNode,

The iSchool
University of Maryland

DistanceTo(n) = 1
For all nodes n reachable from some other set of nodes S,
DistanceTo(n) = 1 + min(DistanceTo(m), m ∈ S)

From Intuition to Algorithm
A map task receives

Key: node n
Value: D (distance from start), points-to (list of nodes reachable
from n)

∀p ∈ points-to: emit (p, D+1)

The reduce task gathers possible distances to a given p

The iSchool
University of Maryland

The reduce task gathers possible distances to a given p
and selects the minimum one

Multiple Iterations Needed
This MapReduce task advances the “known frontier” by
one hop

Subsequent iterations include more reachable nodes as frontier
advances
Multiple iterations are needed to explore entire graph
Feed output back into the same MapReduce task

The iSchool
University of Maryland

Preserving graph structure:
Problem: Where did the points-to list go?
Solution: Mapper emits (n, points-to) as well

Visualizing Parallel BFS

1

2 2

2
3

3

The iSchool
University of Maryland

3
3

4

4

Termination
Does the algorithm ever terminate?

Eventually, all nodes will be discovered, all edges will be
considered (in a connected graph)

When do we stop?

The iSchool
University of Maryland

Weighted Edges
Now add positive weights to the edges

Simple change: points-to list in map task includes a weight
w for each pointed-to node

emit (p, D+wp) instead of (p, D+1) for each node p

Does this ever terminate?

The iSchool
University of Maryland

Yes! Eventually, no better distances will be found. When distance
is the same, we stop
Mapper should emit (n, D) to ensure that “current distance” is
carried into the reducer

5

Comparison to Dijkstra
Dijkstra’s algorithm is more efficient

At any step it only pursues edges from the minimum-cost path
inside the frontier

MapReduce explores all paths in parallel
Divide and conquer
Throw more hardware at the problem

The iSchool
University of Maryland

Throw more hardware at the problem

General Approach
MapReduce is adapt at manipulating graphs

Store graphs as adjacency lists

Graph algorithms with for MapReduce:
Each map task receives a node and its outlinks
Map task compute some function of the link structure, emits value
with target as the key

The iSchool
University of Maryland

with target as the key
Reduce task collects keys (target nodes) and aggregates

Iterate multiple MapReduce cycles until some termination
condition

Remember to “pass” graph structure from one iteration to next

Random Walks Over the Web
Model:

User starts at a random Web page
User randomly clicks on links, surfing from page to page

What’s the amount of time that will be spent on any given
page?

Thi i P R k

The iSchool
University of Maryland

This is PageRank

PageRank: Defined
Given page x with in-bound links t1…tn, where

C(t) is the out-degree of t
α is probability of random jump
N is the total number of nodes in the graph

∑−+⎟
⎠
⎞

⎜
⎝
⎛=

n
i

tC
tPR

N
xPR

)(
)()1(1)(αα

The iSchool
University of Maryland

=⎠⎝ i itCN 1)(

X

t1

t2

tn

…

Computing PageRank
Properties of PageRank

Can be computed iteratively
Effects at each iteration is local

Sketch of algorithm:
Start with seed PRi values
Each page distributes PR “credit” to all pages it links to

The iSchool
University of Maryland

Each page distributes PRi credit to all pages it links to
Each target page adds up “credit” from multiple in-bound links to
compute PRi+1

Iterate until values converge

PageRank in MapReduce

Map: distribute PageRank “credit” to link targets

The iSchool
University of Maryland...

Reduce: gather up PageRank “credit” from multiple sources
to compute new PageRank value

Iterate until
convergence

6

PageRank: Issues
Is PageRank guaranteed to converge? How quickly?

What is the “correct” value of α, and how sensitive is the
algorithm to it?

What about dangling links?

How do you know when to stop?

The iSchool
University of Maryland

y p Questions?Questions?
(Ask them now, because you’re going to have to implement this!)

