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Today’s Topics
Introduction to graph algorithms and graph 
representations

Single Source Shortest Path (SSSP) problem
Refresher: Dijkstra’s algorithm
Breadth-First Search with MapReduce
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PageRank

What’s a graph?
G = (V,E), where

V represents the set of vertices (nodes)
E represents the set of edges (links)
Both vertices and edges may contain additional information

Different types of graphs:
Directed vs undirected edges
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Directed vs. undirected edges
Presence or absence of cycles

Graphs are everywhere:
Hyperlink structure of the Web
Physical structure of computers on the Internet
Interstate highway system
Social networks

Some Graph Problems
Finding shortest paths

Routing Internet traffic and UPS trucks

Finding minimum spanning trees
Telco laying down fiber

Finding Max Flow
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Airline scheduling

Identify “special” nodes and communities
Breaking up terrorist cells, spread of avian flu

Bipartite matching
Monster.com, Match.com

And of course... PageRank

Graphs and MapReduce
Graph algorithms typically involve:

Performing computation at each node
Processing node-specific data, edge-specific data, and  link 
structure
Traversing the graph in some manner

Key questions:
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How do you represent graph data in MapReduce?
How do you traverse a graph in MapReduce?

Representing Graphs
G = (V, E)

A poor representation for computational purposes

Two common representations
Adjacency matrix
Adjacency list
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Adjacency Matrices
Represent a graph as an n x n square matrix M

n = |V|
Mij = 1 means a link from node i to j

1 2 3 4
2
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1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

1

3

4

Adjacency Matrices: Critique
Advantages:

Naturally encapsulates iteration over nodes
Rows and columns correspond to inlinks and outlinks

Disadvantages:
Lots of zeros for sparse matrices
Lots of wasted space
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Lots of wasted space

Adjacency Lists
Take adjacency matrices… and throw away all the zeros

1 2 3 4
1 0 1 0 1 1: 2, 4

The iSchool
University of Maryland

1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

2: 1, 3, 4
3: 1
4: 1, 3

Adjacency Lists: Critique
Advantages:

Much more compact representation
Easy to compute over outlinks
Graph structure can be broken up and distributed

Disadvantages:
Much more difficult to compute over inlinks
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Much more difficult to compute over inlinks

Single Source Shortest Path
Problem: find shortest path from a source node to one or 
more target nodes

First, a refresher: Dijkstra’s Algorithm
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Dijkstra’s Algorithm Example
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Single Source Shortest Path
Problem: find shortest path from a source node to one or 
more target nodes

Single processor machine: Dijkstra’s Algorithm

MapReduce: parallel Breadth-First Search (BFS)
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Finding the Shortest Path
First, consider equal edge weights

Solution to the problem can be defined inductively

Here’s the intuition:
DistanceTo(startNode) = 0
For all nodes n directly reachable from startNode, 
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DistanceTo(n) = 1
For all nodes n reachable from some other set of nodes S, 
DistanceTo(n) = 1 + min(DistanceTo(m), m ∈ S)

From Intuition to Algorithm
A map task receives

Key: node n
Value: D (distance from start), points-to (list of nodes reachable 
from n)

∀p ∈ points-to: emit (p, D+1)

The reduce task gathers possible distances to a given p
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The reduce task gathers possible distances to a given p
and selects the minimum one

Multiple Iterations Needed
This MapReduce task advances the “known frontier” by 
one hop

Subsequent iterations include more reachable nodes as frontier 
advances
Multiple iterations are needed to explore entire graph
Feed output back into the same MapReduce task
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Preserving graph structure:
Problem: Where did the points-to list go?
Solution: Mapper emits (n, points-to) as well

Visualizing Parallel BFS
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Termination
Does the algorithm ever terminate?

Eventually, all nodes will be discovered, all edges will be 
considered (in a connected graph)

When do we stop?
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Weighted Edges
Now add positive weights to the edges

Simple change: points-to list in map task includes a weight 
w for each pointed-to node

emit (p, D+wp) instead of (p, D+1) for each node p

Does this ever terminate?
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Yes! Eventually, no better distances will be found. When distance 
is the same, we stop
Mapper should emit (n, D) to ensure that “current distance” is 
carried into the reducer
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Comparison to Dijkstra
Dijkstra’s algorithm is more efficient 

At any step it only pursues edges from the minimum-cost path 
inside the frontier

MapReduce explores all paths in parallel
Divide and conquer
Throw more hardware at the problem
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Throw more hardware at the problem

General Approach
MapReduce is adapt at manipulating graphs

Store graphs as adjacency lists

Graph algorithms with for MapReduce:
Each map task receives a node and its outlinks
Map task compute some function of the link structure, emits value 
with target as the key
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with target as the key
Reduce task collects keys (target nodes) and aggregates

Iterate multiple MapReduce cycles until some termination 
condition

Remember to “pass” graph structure from one iteration to next

Random Walks Over the Web
Model:

User starts at a random Web page
User randomly clicks on links, surfing from page to page

What’s the amount of time that will be spent on any given 
page?

Thi i P R k
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This is PageRank

PageRank: Defined
Given page x with in-bound links t1…tn, where

C(t) is the out-degree of t
α is probability of random jump
N is the total number of nodes in the graph
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Computing PageRank
Properties of PageRank

Can be computed iteratively
Effects at each iteration is local

Sketch of algorithm:
Start with seed PRi values
Each page distributes PR “credit” to all pages it links to

The iSchool
University of Maryland

Each page distributes PRi credit  to all pages it links to
Each target page adds up “credit” from multiple in-bound links to 
compute PRi+1

Iterate until values converge

PageRank in MapReduce

Map: distribute PageRank “credit” to link targets
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Reduce: gather up PageRank “credit” from multiple sources 
to compute new PageRank value

Iterate until
convergence
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PageRank: Issues
Is PageRank guaranteed to converge? How quickly?

What is the “correct” value of α, and how sensitive is the 
algorithm to it?

What about dangling links?

How do you know when to stop?
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y p Questions?Questions?
(Ask them now, because you’re going to have to implement this!)


