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Today’s Topics
Introduction to IR
Boolean retrieval
Ranked retrieval

IR with MapReduce

The Central Problem in Search

Searcher

Concepts Concepts

Query Terms “ Document Terms
“tragic love story” “fateful star-crossed romance”

Do these represent the same concepts?
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How do we represent text?

Remember: computers don’t “understand” anything!

“Bag of words”
Treat all the words in a document as index terms for that document
Assign a “weight” to each term based on “importance”
Disregard order, structure, meaning, etc. of the words
Simple, yet effective!

Assumptions

e Term occurrence is independent
e Document relevance is independent
e “Words” are well-defined
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What’'s a word? Sample Document
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Boolean Retrieval

Representing Documents

Users express queries as a Boolean expression
e AND, OR, NOT

. . The quick brown
e Can be arbitrarily nested fox |Smped over

. . . the lazy dog’s
Retrieval is based on the notion of sets back. Stopword

Document 1

Document 1
Document 2

o Any given query divides the collection into two sets:
retrieved, not-retrieved

o Pure Boolean systems do not define an ordering of the results
Document 2

Now is the time
for all good men
to come to the
aid of their party.

[ _their _Tol1]
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Boolean Retrieval

To execute a Boolean query:

o Build query syntax tree

(fox or ) and quick -

e For each clause, look up postings

Efficiency analysis

e Postings traversal is linear (assuming sorted postings)
e Start with shortest posting first
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Extensions

Implementing proximity operators
e Store word offset in postings
Handling term variations

e Stem words: love, loving, loves ... — lov
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Ranked Retrieval

Order documents by how likely they are to be relevant to
the information need

o Estimate relevance(q, d)
e Sort documents by relevance
e Display sorted results

User model

o Present hits one screen at a time, best results first
e At any point, users can decide to stop looking

How do we estimate relevance?

e Assume document is relevant if it has a lot of query terms
e Replace relevance (q, d;) with sim(q, d;)
e Compute similarity of vector representations

Similarity Met
How about |d; — d,|?

Instead of Euclidean distance, use “angle” between the
vectors

e It all boils down to the inner product (dot product) of vectors
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Strengths and Weaknesses

Strengths
e Precise, if you know the right strategies
e Precise, if you have an idea of what you're looking for
e |Implementations are fast and efficient
Weaknesses

Users must learn Boolean logic

Boolean logic insufficient to capture the richness of language

No control over size of result set: either too many hits or none
When do you stop reading? All documents in the result set are
considered “equally good”

What about partial matches? Documents that “don’t quite match”
the query may be useful also

Vector Space Model

Assumption: Documents that are “close together” in
vector space “talk about” the same things

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~ “closeness”)
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Term Weighting

Term weights consist of two components

e Local: how important is the term in this document?
e Global: how important is the term in the collection?

Here’s the intuition:

e Terms that appear often in a document should get high weights
e Terms that appear in many documents should get low weights

How do we capture this mathematically?

e Term frequency (local)
e Inverse document frequency (global)
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TF.IDF Term Weighting TF.IDF Example

N
w, ; =tf; ;-log—
ni complicated complicated
W, j weight to term i in j
tf; . number of occurrence of term i in document !
Coneresng | |
number of documents in entire collection
number of documents with term i .
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Sketch: Scoring Algorithm MapReduce it?

Initialize accumulators to hold document scores The indexing problem
e Must be relatively fast, but need not be real time

For each query term tin the user’s query
e For Web, incremental updates are important

e Fetch t's postings

o For each document, SCOregy; += Wy g x Wy g The retrieval problem

e Must have sub-second response

Apply length normalization to the scores at end
e For Web, only need relatively few results

Return top N documents

Indexing: Performance Analysis Vocabulary Size: Heaps’ Law

Inverted indexing is fundamental to all IR models

Fundamentally, a large sorting problem V Knﬁ Vis vocabulary size

. n is corpus size (number of documents)
e Terms usually fitin memory K and pare constants

° Postlngs usually don’t Typically, K is between 10 and 100, Sis between 0.4 and 0.6
How is it done on a single machine?
How large is the inverted index?

e Size of vocabulary
e Size of postings

When adding new documents, the system is likely to have seen
most terms already... but the postings keep growing
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Postings Size: Zipf's Law

George Kingsley Zipf (1902-1950) observed the following
relation between frequency and rank

c f = frequency
- r=rank
r ¢ = constant

In other words:

o Afew elements occur very frequently
e Many elements occur very infrequently

Zipfian distributions:

e English words
e Library book checkout patterns
e Website popularity (almost anything on the Web)
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Does it fit Zipf's Law?

million
year
its

be
was
company
an
has
are
have
but
will
say
new
share

The following shows rfx1000
r is the rank of word w in the sample

f is the frequency of word w in the sample
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Query Execution

MapReduce is meant for large-data batch processing
e Not suitable for lots of real time operations requiring low latency
The solution: “the secret sauce”

e Most likely involves document partitioning
e Lots of system engineering: e.g., caching, load balancing, etc.
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Word Frequency in English

1130021
547311
516635
464736
390819
387703
204351
199340
152483
148302
134323
121173
118863
109135
101779
101679
101210

million
year

its.

be

was
company
an

has
are
have
but
will
say
new
share

Frequency of 50 most common words in English

(sample of 19 million words)
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MapReduce: Index Construction

Map over all documents

e Emit term as key, (docid, tf) as value

e Emit other information as necessary (e.g., term position)
Reduce

e Trivial: each value represents a posting!

e Might want to sort the postings (e.g., by docid or tf)
MapReduce does all the heavy lifting!

MapReduce: Query Execution

High-throughput batch query execution:

e Instead of sequentially accumulating scores per query term:

e Have mappers traverse postings in parallel, emitting partial score
components

e Reducers serve as the accumulators, summing contributions for
each query term
MapReduce does all the heavy lifting
e Replace random access with sequential reads
e Amortize over lots of queries
e Examine multiple postings in parallel
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Questions?




