
1

Cloud Computing Lecture #3
M M R dMore MapReduce

Jimmy Lin
The iSchool
University of MarylandUniversity of Maryland

Wednesday, September 10, 2008

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Material adapted from: Jimmy Lin. Scalable Language Processing Algorithms for the Masses: A Case Study
in Computing Word Co-occurrence Matrices with MapReduce. Proceedings of EMNLP 2008.

Today’s Topics
Synchronization and coordinating partial results

Use of complex keys and values

The iSchool
University of Maryland

2

Managing Dependencies
Remember: Mappers run in isolation

You have no idea in what order the mappers run
You have no idea on what node the mappers run
You have no idea when each mapper finishes

Tools for synchronization:
Ability to hold state in reducer across multiple key-value pairs
Sorting function for keys
Partitioner
Cleverly-constructed data structures

The iSchool
University of Maryland

Cleverly constructed data structures

Motivating Example
Term co-occurrence matrix for a text collection

M = N x N matrix (N = vocabulary size)
Mij: number of times i and j co-occur in some context j
(for concreteness, let’s say context = sentence)

Why?
Distributional profiles as a way of measuring semantic distance
Semantic distance useful for many language processing tasks

The iSchool
University of Maryland

“You shall know a word by the company it keeps” (Firth, 1957)

e.g., Mohammad and Hirst (EMNLP, 2006)

3

MapReduce: Large Counting Problems
Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

A large event space (number of terms)
A large number of events (the collection itself)
Goal: keep track of interesting statistics about the events

Basic approach
Mappers generate partial counts
Reducers aggregate partial counts

The iSchool
University of Maryland

How do we aggregate partial counts efficiently?

First Try: “Pairs”
Each mapper takes a sentence:

Generate all co-occurring term pairs
For all pairs, emit (a, b) → count

Reducers sums up counts associated with these pairs

Use combiners!

The iSchool
University of MarylandNote: in all my slides, I denote a key-value pair as k → v

4

“Pairs” Analysis
Advantages

Easy to implement, easy to understand

DisadvantagesDisadvantages
Lots of pairs to sort and shuffle around (upper bound?)

The iSchool
University of Maryland

Another Try: “Stripes”
Idea: group together pairs into an associative array

(a, b) → 1
(a, c) → 2
(a d) 5 a → { b: 1 c: 2 d: 5 e: 3 f: 2 }

Each mapper takes a sentence:
Generate all co-occurring term pairs
For each term, emit a → { b: countb, c: countc, d: countd … }

Reducers perform element wise sum of associative arrays

(a, d) → 5
(a, e) → 3
(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

The iSchool
University of Maryland

Reducers perform element-wise sum of associative arrays

a → { b: 1, d: 5, e: 3 }
a → { b: 1, c: 2, d: 2, f: 2 }
a → { b: 2, c: 2, d: 7, e: 3, f: 2 }

+

5

“Stripes” Analysis
Advantages

Far less sorting and shuffling of key-value pairs
Can make better use of combiners

Disadvantages
More difficult to implement
Underlying object is more heavyweight
Fundamental limitation in terms of size of event space

The iSchool
University of Maryland

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

6

Conditional Probabilities
How do we compute conditional probabilities from counts?

==
),(count),(count)|(BABAABP

Why do we want to do this?

How do we do this with MapReduce?

∑
==

'

)',(count)(count
)|(

B

BAA
ABP

The iSchool
University of Maryland

P(B|A): “Pairs”

(a, b1) → 3
(a b2) → 12

(a, *) → 32

(a, b1) → 3 / 32
(a b2) → 12 / 32

Reducer holds this value in memory

For this to work:
Must emit extra (a, *) for every bn in mapper

(a, b2) → 12
(a, b3) → 7
(a, b4) → 1
…

(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32
…

The iSchool
University of Maryland

Must emit extra (a,) for every bn in mapper
Must make sure all a’s get sent to same reducer (use Partitioner)
Must make sure (a, *) comes first (define sort order)

7

P(B|A): “Stripes”

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

Easy!
One pass to compute (a, *)
Another pass to directly compute P(B|A)

The iSchool
University of Maryland

Synchronization in Hadoop
Approach 1: turn synchronization into an ordering problem

Sort keys into correct order of computation
Partition key space so that each reducer gets the appropriate set
of partial results
Hold state in reducer across multiple key-value pairs to perform
computation
Illustrated by the “pairs” approach

Approach 2: construct data structures that “bring the
pieces together”

The iSchool
University of Maryland

Each reducer receives all the data it needs to complete the
computation
Illustrated by the “stripes” approach

8

Issues and Tradeoffs
Number of key-value pairs

Object creation overhead
Time for sorting and shuffling pairs across the network

Size of each key-value pair
De/serialization overhead

Combiners make a big difference!
RAM vs. disk and network
Arrange data to maximize opportunities to aggregate partial results

The iSchool
University of Maryland

Data Types in Hadoop

Writable Defines a de/serialization protocol.
Every data type in Hadoop is a Writable.

WritableComprable Defines a sort order. All keys must be
of this type (but not values).

IntWritable
LongWritable

Concrete classes for different data types.

The iSchool
University of Maryland

LongWritable
Text
…

9

Complex Data Types in Hadoop
How do you implement complex data types?

The easiest way:
Encoded it as Text e g (a b) = “a:b”Encoded it as Text, e.g., (a, b) = a:b
Use regular expressions to parse and extract data
Works, but pretty hack-ish

The hard way:
Define a custom implementation of WritableComprable
Must implement: readFields, write, compareTo

The iSchool
University of Maryland

Computationally efficient, but slow for rapid prototyping

Alternatives:
Cloud9 offers two other choices: Tuple and JSON

Questions?

