
1

Cloud Computing Lecture #2
I t d ti t M R dIntroduction to MapReduce

Jimmy Lin
The iSchool
University of MarylandUniversity of Maryland

Monday, September 8, 2008

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Some material adapted from slides by Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google
Distributed Computing Seminar, 2007 (licensed under Creation Commons Attribution 3.0 License)

Today’s Topics
Functional programming

MapReduce

fDistributed file system

The iSchool
University of Maryland

2

Functional Programming
MapReduce = functional programming meets distributed
processing on steroids

Not a new idea… dates back to the 50’s (or even 30’s)

What is functional programming?
Computation as application of functions
Theoretical foundation provided by lambda calculus

How is it different?
Traditional notions of “data” and “instructions” are not applicable

The iSchool
University of Maryland

Data flows are implicit in program
Different orders of execution are possible

Exemplified by LISP and ML

Overview of Lisp
Lisp ≠ Lost In Silly Parentheses

We’ll focus on particular a dialect: “Scheme”

Lists are primitive data types

Functions written in prefix notation

(+ 1 2) → 3

'(1 2 3 4 5)

'((a 1) (b 2) (c 3))

The iSchool
University of Maryland

(* 3 4) → 12

(sqrt (+ (* 3 3) (* 4 4))) → 5

(define x 3) → x

(* x 5) → 15

3

Functions
Functions = lambda expressions bound to variables

(define foo
(lambda (x y)

Syntactic sugar for defining functions
Above expressions is equivalent to:

(define (foo x y)
(sqrt (+ (* x x) (* y y))))

((y)
(sqrt (+ (* x x) (* y y)))))

The iSchool
University of Maryland

Once defined, function can be applied:

(foo 3 4) → 5

Other Features
In Scheme, everything is an s-expression

No distinction between “data” and “code”
Easy to write self-modifying code

Higher-order functions
Functions that take other functions as arguments

(define (bar f x) (f (f x)))

(define (baz x) (* x x))

Doesn’t matter what f is, just apply it twice.

The iSchool
University of Maryland

(() ())

(bar baz 2) → 16

4

Recursion is your friend
Simple factorial example

(define (factorial n)
(if (= n 1)

Even iteration is written with recursive calls!

1
(* n (factorial (‐ n 1)))))

(factorial 6) → 720

(define (factorial‐iter n)
(define (aux n top product)

The iSchool
University of Maryland

((p p)
(if (= n top)

(* n product)
(aux (+ n 1) top (* n product))))

(aux 1 n 1))

(factorial‐iter 6) → 720

Lisp → MapReduce?
What does this have to do with MapReduce?

After all, Lisp is about processing lists

fTwo important concepts in functional programming
Map: do something to everything in a list
Fold: combine results of a list in some way

The iSchool
University of Maryland

5

Map
Map is a higher-order function

How map works:
Function is applied to every element in a listFunction is applied to every element in a list
Result is a new list

The iSchool
University of Maryland

f f f f f

Fold
Fold is also a higher-order function

How fold works:
Accumulator set to initial valueAccumulator set to initial value
Function applied to list element and the accumulator
Result stored in the accumulator
Repeated for every item in the list
Result is the final value in the accumulator

The iSchool
University of Maryland

f f f f f final value

Initial value

6

Map/Fold in Action
Simple map example:
(map (lambda (x) (* x x))

'(1 2 3 4 5))

Fold examples:

Sum of squares:

→ '(1 4 9 16 25)

(fold + 0 '(1 2 3 4 5)) → 15

(fold * 1 '(1 2 3 4 5)) → 120

The iSchool
University of Maryland

Sum of squares:
(define (sum‐of‐squares v)
(fold + 0 (map (lambda (x) (* x x)) v)))

(sum‐of‐squares '(1 2 3 4 5)) → 55

Lisp → MapReduce
Let’s assume a long list of records: imagine if...

We can parallelize map operations
We have a mechanism for bringing map results back together in
the fold operation

That’s MapReduce! (and Hadoop)

Observations:
No limit to map parallelization since maps are indepedent
We can reorder folding if the fold function is commutative and
associative

The iSchool
University of Maryland

associative

7

Typical Problem
Iterate over a large number of records

Extract something of interest from each

S ffShuffle and sort intermediate results

Aggregate intermediate results

Generate final output

The iSchool
University of Maryland

Key idea: provide an abstraction at the point of these
two operations

MapReduce
Programmers specify two functions:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*

All ’ ith th k’ d d t thAll v’ with the same k’ are reduced together

Usually, programmers also specify:
partition (k’, number of partitions) → partition for k’

Often a simple hash of the key, e.g. hash(k’) mod n
Allows reduce operations for different keys in parallel

Implementations:

The iSchool
University of Maryland

Google has a proprietary implementation in C++
Hadoop is an open source implementation in Java (lead by Yahoo)

8

It’s just divide and conquer!

Data Store

Initial kv pairsInitial kv pairs Initial kv pairs Initial kv pairs

mapmap map map

k1, values…

k2, values…
k3, values…

k1, values…

k2, values…
k3, values…

k1, values…

k2, values…
k3, values…

k1, values…

k2, values…
k3, values…

Barrier: aggregate values by keys

The iSchool
University of Maryland

reduce

k1, values…

final k1 values

reduce

k2, values…

final k2 values

reduce

k3, values…

final k3 values

Recall these problems?
How do we assign work units to workers?

What if we have more work units than workers?

f ?What if workers need to share partial results?

How do we aggregate partial results?

How do we know all the workers have finished?

What if workers die?

The iSchool
University of Maryland

9

MapReduce Runtime
Handles scheduling

Assigns workers to map and reduce tasks

Handles “data distribution”
Moves the process to the data

Handles synchronization
Gathers, sorts, and shuffles intermediate data

Handles faults
Detects worker failures and restarts

E thi h t f di t ib t d FS (l t)

The iSchool
University of Maryland

Everything happens on top of a distributed FS (later)

“Hello World”: Word Count

Map(String input_key, String input_value):
// input_key: document name
// input value: document contents// input_value: document contents
for each word w in input_values:

EmitIntermediate(w, "1");

Reduce(String key, Iterator intermediate_values):
// key: a word, same for input and output
// intermediate_values: a list of counts
int result = 0;
for each v in intermediate_values:

The iSchool
University of Maryland

_
result += ParseInt(v);
Emit(AsString(result));

10

Source: Dean and Ghemawat (OSDI 2004)

Bandwidth Optimization
Issue: large number of key-value pairs

Solution: use “Combiner” functions
Executed on same machine as mapperExecuted on same machine as mapper
Results in a “mini-reduce” right after the map phase
Reduces key-value pairs to save bandwidth

The iSchool
University of Maryland

11

Skew Problem
Issue: reduce is only as fast as the slowest map

Solution: redundantly execute map operations, use results
of first to finishof first to finish

Addresses hardware problems...
But not issues related to inherent distribution of data

The iSchool
University of Maryland

How do we get data to the workers?

NAS

Compute Nodes

SAN

The iSchool
University of Maryland

What’s the problem here?

12

Distributed File System
Don’t move data to workers… Move workers to the data!

Store data on the local disks for nodes in the cluster
Start up the workers on the node that has the data local

Why?
Not enough RAM to hold all the data in memory
Disk access is slow, disk throughput is good

A distributed file system is the answer
GFS (Google File System)

The iSchool
University of Maryland

HDFS for Hadoop

GFS: Assumptions
Commodity hardware over “exotic” hardware

High component failure rates
Inexpensive commodity components fail all the timeInexpensive commodity components fail all the time

“Modest” number of HUGE files

Files are write-once, mostly appended to
Perhaps concurrently

Large streaming reads over random access

The iSchool
University of Maryland

High sustained throughput over low latency

GFS slides adapted from material by Dean et al.

13

GFS: Design Decisions
Files stored as chunks

Fixed size (64MB)

Reliability through replicationReliability through replication
Each chunk replicated across 3+ chunkservers

Single master to coordinate access, keep metadata
Simple centralized management

No data caching
Little benefit due to large data sets, streaming reads

The iSchool
University of Maryland

Little benefit due to large data sets, streaming reads

Simplify the API
Push some of the issues onto the client

Source: Ghemawat et al. (SOSP 2003)

14

Single Master
We know this is a:

Single point of failure
Scalability bottleneck

GFS solutions:
Shadow masters
Minimize master involvement

• Never move data through it, use only for metadata (and cache
metadata at clients)

• Large chunk size

The iSchool
University of Maryland

• Master delegates authority to primary replicas in data mutations
(chunk leases)

Simple, and good enough!

Master’s Responsibilities (1/2)
Metadata storage

Namespace management/locking

Periodic communication with chunkservers
Give instructions, collect state, track cluster health

Chunk creation, re-replication, rebalancing
Balance space utilization and access speed
Spread replicas across racks to reduce correlated failures
Re-replicate data if redundancy falls below threshold

The iSchool
University of Maryland

Re replicate data if redundancy falls below threshold
Rebalance data to smooth out storage and request load

15

Master’s Responsibilities (2/2)
Garbage Collection

Simpler, more reliable than traditional file delete
Master logs the deletion, renames the file to a hidden name
Lazily garbage collects hidden files

Stale replica deletion
Detect “stale” replicas using chunk version numbers

The iSchool
University of Maryland

Metadata
Global metadata is stored on the master

File and chunk namespaces
Mapping from files to chunks
Locations of each chunk’s replicas

All in memory (64 bytes / chunk)
Fast
Easily accessible

Master has an operation log for persistent logging of
critical metadata updates

The iSchool
University of Maryland

critical metadata updates
Persistent on local disk
Replicated
Checkpoints for faster recovery

16

Mutations
Mutation = write or append

Must be done for all replicas

Goal: minimize master involvementGoal: minimize master involvement

Lease mechanism:
Master picks one replica as primary; gives it a “lease” for mutations
Primary defines a serial order of mutations
All replicas follow this order
Data flow decoupled from control flow

The iSchool
University of Maryland

Parallelization Problems
How do we assign work units to workers?

What if we have more work units than workers?

f ?What if workers need to share partial results?

How do we aggregate partial results?

How do we know all the workers have finished?

What if workers die?

The iSchool
University of Maryland

How is MapReduce different?

17

From Theory to Practice

1. Scp data to cluster
2. Move data into HDFS

Hadoop Cluster
You

3. Develop code locally

4. Submit MapReduce job
4a. Go back to Step 3

The iSchool
University of Maryland

5. Move data out of HDFS
6. Scp data from cluster

On Amazon: With EC2

1. Scp data to cluster
2. Move data into HDFS

0. Allocate Hadoop cluster

EC2

You

3. Develop code locally

4. Submit MapReduce job
4a. Go back to Step 3

EC2

Your Hadoop Cluster

The iSchool
University of Maryland

5. Move data out of HDFS
6. Scp data from cluster
7. Clean up!

Uh oh. Where did the data go?

18

On Amazon: EC2 and S3

S3EC2

Copy from S3 to HDFS

Your Hadoop Cluster

(Persistent Store)
EC2

(The Cloud)

The iSchool
University of Maryland

Copy from HFDS to S3

Questions?

