

## **Today's Topics**

- Functional programming
- MapReduce
- Distributed file system



## **Functional Programming**

- MapReduce = functional programming meets distributed processing on steroids
  - Not a new idea... dates back to the 50's (or even 30's)
- What is functional programming?
  - Computation as application of functions
  - Theoretical foundation provided by lambda calculus
- How is it different?
  - Traditional notions of "data" and "instructions" are not applicable
  - Data flows are implicit in program
  - Different orders of execution are possible
- Exemplified by LISP and ML



### **Overview of Lisp**

- Lisp ≠ Lost In Silly Parentheses
- We'll focus on particular a dialect: "Scheme"
- Lists are primitive data types

'(1 2 3 4 5) '((a 1) (b 2) (c 3))

• Functions written in prefix notation

 $(+ 1 2) \rightarrow 3$  $(* 3 4) \rightarrow 12$  $(sqrt (+ (* 3 3) (* 4 4))) \rightarrow 5$  $(define x 3) \rightarrow x$  $(* x 5) \rightarrow 15$ 

### **Functions**

• Functions = lambda expressions bound to variables

```
(define foo
(lambda (x y)
_____(sqrt (+ (* x x) (* y y)))))
```

#### Syntactic sugar for defining functions

• Above expressions is equivalent to:

(define (foo x y) (sqrt (+ (\* x x) (\* y y))))

• Once defined, function can be applied:

(foo 3 4)  $\rightarrow$  5



# **Other Features**



- No distinction between "data" and "code"
- Easy to write self-modifying code
- Higher-order functions
  - Functions that take other functions as arguments

```
(define (bar f x) (f (f x)))
Doesn't matter what f is, just apply it twice.
```

```
(define (baz x) (* x x))
(bar baz 2) \rightarrow 16
```





## $\textbf{Lisp} \rightarrow \textbf{MapReduce?}$

- What does this have to do with MapReduce?
- After all, Lisp is about processing lists
- Two important concepts in functional programming
  - Map: do something to everything in a list
  - Fold: combine results of a list in some way



## Мар

- Map is a higher-order function
- How map works:
  - Function is applied to every element in a list
  - Result is a new list





## **Map/Fold in Action**

• Simple map example:

(map (lambda (x) (\* x x)) '(1 2 3 4 5)) → '(1 4 9 16 25)

• Fold examples:

 $(fold + 0 '(1 2 3 4 5)) \rightarrow 15$  $(fold * 1 '(1 2 3 4 5)) \rightarrow 120$ 

#### • Sum of squares:

(define (sum-of-squares v) (fold + 0 (map (lambda (x) (\* x x)) v))) (sum-of-squares '(1 2 3 4 5)) → 55

## $\textbf{Lisp} \rightarrow \textbf{MapReduce}$

- Let's assume a long list of records: imagine if...
  - We can parallelize map operations
  - We have a mechanism for bringing map results back together in the fold operation
- That's MapReduce! (and Hadoop)

#### • Observations:

- No limit to map parallelization since maps are indepedent
- We can reorder folding if the fold function is commutative and associative



## **Typical Problem**

• Iterate over a large number of records

Ma cxtract something of interest from each

- Shuffle and sort intermediate results
- Aggregate intermediate results
- Generate final output

**Key idea:** provide an abstraction at the point of these two operations



### MapReduce

• Programmers specify two functions:

 $\frac{\text{map}(k, v) \rightarrow \langle k', v' \rangle^*}{\text{reduce}(k', v') \rightarrow \langle k', v' \rangle^*}$ 

- All v' with the same k' are reduced together
- Usually, programmers also specify:

**partition** (k', number of partitions )  $\rightarrow$  partition for k'

- Often a simple hash of the key, e.g. hash(k') mod n
- Allows reduce operations for different keys in parallel

#### • Implementations:

- Google has a proprietary implementation in C++
- Hadoop is an open source implementation in Java (lead by Yahoo)





## **Recall these problems?**

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?



### **MapReduce Runtime**

- Handles scheduling
  - Assigns workers to map and reduce tasks
- Handles "data distribution"
  - Moves the process to the data
- Handles synchronization
  - Gathers, sorts, and shuffles intermediate data
- Handles faults
  - Detects worker failures and restarts
- Everything happens on top of a distributed FS (later)



Map(String input\_key, String input\_value): // input\_key: document name // input\_value: document contents for each word w in input\_values: EmitIntermediate(w, "1");

Reduce(String key, Iterator intermediate\_values): // key: a word, same for input and output // intermediate\_values: a list of counts int result = 0; for each v in intermediate\_values: result += ParseInt(v); Emit(AsString(result));





## **Bandwidth Optimization**

- Issue: large number of key-value pairs
- Solution: use "Combiner" functions
  - Executed on same machine as mapper
  - Results in a "mini-reduce" right after the map phase
  - Reduces key-value pairs to save bandwidth



## **Skew Problem**

- o Issue: reduce is only as fast as the slowest map
- Solution: redundantly execute map operations, use results of first to finish

- Addresses hardware problems...
- But not issues related to inherent distribution of data



## **Distributed File System**

• Don't move data to workers... Move workers to the data!

- Store data on the local disks for nodes in the cluster
- Start up the workers on the node that has the data local

#### • Why?

- Not enough RAM to hold all the data in memory
- Disk access is slow, disk throughput is good
- A distributed file system is the answer
  - GFS (Google File System)
  - HDFS for Hadoop



## **GFS: Assumptions**

- Commodity hardware over "exotic" hardware
- High component failure rates
  - Inexpensive commodity components fail all the time
- "Modest" number of HUGE files
- Files are write-once, mostly appended to
  - Perhaps concurrently
- Large streaming reads over random access
- High sustained throughput over low latency



## **GFS: Design Decisions**

- Files stored as chunks
  - Fixed size (64MB)
- Reliability through replication
  - Each chunk replicated across 3+ chunkservers
- Single master to coordinate access, keep metadata
  - Simple centralized management
- No data caching
  - Little benefit due to large data sets, streaming reads
- Simplify the API
  - Push some of the issues onto the client





## **Single Master**

- We know this is a:
  - Single point of failure
  - Scalability bottleneck
- GFS solutions:
  - Shadow masters
  - Minimize master involvement
    - Never move data through it, use only for metadata (and cache metadata at clients)
    - Large chunk size
    - Master delegates authority to primary replicas in data mutations (chunk leases)

• Simple, and good enough!



- Metadata storage
- Namespace management/locking
- Periodic communication with chunkservers
  - Give instructions, collect state, track cluster health
- Chunk creation, re-replication, rebalancing
  - · Balance space utilization and access speed
  - Spread replicas across racks to reduce correlated failures
  - Re-replicate data if redundancy falls below threshold
  - Rebalance data to smooth out storage and request load



## Master's Responsibilities (2/2)

### • Garbage Collection

- Simpler, more reliable than traditional file delete
- Master logs the deletion, renames the file to a hidden name
- Lazily garbage collects hidden files

#### • Stale replica deletion

• Detect "stale" replicas using chunk version numbers



The iSchool University of Maryland

### Metadata

- Global metadata is stored on the master
  - File and chunk namespaces
  - Mapping from files to chunks
  - Locations of each chunk's replicas
- All in memory (64 bytes / chunk)
  - Fast
  - Easily accessible
- Master has an operation log for persistent logging of critical metadata updates
  - Persistent on local disk
  - Replicated
  - Checkpoints for faster recovery

## **Mutations**

- Mutation = write or append
  - Must be done for all replicas
- Goal: minimize master involvement

#### • Lease mechanism:

• Master picks one replica as primary; gives it a "lease" for mutations

The iSchool University of Maryland

The iSchool University of Maryland

- Primary defines a serial order of mutations
- All replicas follow this order
- Data flow decoupled from control flow



- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

### How is MapReduce different?







![](_page_17_Picture_1.jpeg)