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Abstract 
We present a new technique for question answering called 
Predictive Annotation. Predictive Annotation identifies po- 
tential answers to questions in text, annotates them accord- 
ingly and indexes them. This technique, along with a com- 
plementary analysis of questions, passage-level ranking and 
answer selection, produces a system effective at answering 
natural-language fact-seeking questions posed against large 
document collections. Experimental results show the effects 
of different parameter settings and lead to a number of general 
observations about the question-answering problem. 

1. Introduction 
Question-answering is an area of Information Retrieval (IR) 
that is attracting increasingly more attention, as evidenced by 
new tracks in conferences such as AAAI[1] and TREC[5,14], 
and several Web sites. A Question-answering system 
searches a large text collection and finds a short phrase or 
sentence that precisely answers a user's question. To solve 
the Question-answering problem, we might first turn to tradi- 
tional IR techniques', which have been applied successfully to 
large scale text search problems[6]. Unfortunately, traditional 
text search engines typically return lists of documents in re- 
sponse to a user's query, and therefore provide inappropriate 
solutions to this problem. Alternatively, the Natural Lan- 
guage Processing (NLP) and Information Extraction (IE) 
communities have developed techniques for extracting very 
precise answers from text. However, these communities use 
domain specific techniques applied to relatively small text 
collections. 

It would appear that an approach combining the strengths of 
IR and NLP/IE might provide an appropriate way to answer 
questions using large bodies of text. The extent to which 
information extraction or deep parsing techniques must be 
applied to solve the Question-answering problem is an open 
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question. We explore this question and present results show- 
ing that combining shallow NLP/IE techniques with a custom 
text search produces an effective Question-answering system. 
In particular, we describe a new text-processing technique 
called Predictive Annotation (PA) and analyze its effective- 
ness using the TREC8 benchmark. Our analysis reveals a 
number of characteristics about the Question-answering prob- 
lem, leading to a variety of widely applicable system parame- 
ter settings. 

This paper is in 5 sections. In Section 2 we describe the 
search system we implemented. In Section 3 we analyze the 
performance of the system. We also attempt to determine the 
limits of our approach. We discuss related work in Section 4 
and in Section 5 we conclude and discuss future work. 

2. The GuruQA System 
Our approach is based on the following observations about 
fact-seeking questions: 

• Questions can be classified by the kind of answer 
they are seeking. 

• Answers are usually in the form of phrases. 
• Answer phrases can be classified by the same 

scheme as the questions. 
• Answers can be extracted from text using shallow 

parsing techniques. 
• The context of the answer phrase that validates it as 

an answer to the question is usually a small fraction 
of the document it is embedded in. 

We took our existing prototype search engine Guru[19] and 
modified it in three significant ways. We modified the query 
analysis to detect the question type and to modify the question 
accordingly. We modified the indexing process to perform 
shallow linguistic analysis of the text and to identify and an- 
notate appropriate phrases with class labels. We modified the 
search engine to rank passages instead of documents, and to 
use a simple ranking formula. These steps combined to pro- 
duce a system that performed well in the TREC8 QA track. 

The complete GuruQA system is depicted in Figure 1. Two 
components, Query Analysis and Textract/Resporator, in- 
volve the generation of QA-Tokens, which we now describe. 
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Figure 1. Block diagram of the GuruQA system. 

QA-Tokens 
We observed earlier that both questions and answer phrases 
could be classified. The question immediately arises of what 
is the most appropriate granularity of such a classification. 
The coarsest useful granularity would be according to the so- 
called "wh-words"; a much finer level would be to use, at 
least for noun phrases, the basic object categories of Rosch et 
al.[11]. We chose an intermediate level of about 20 catego- 
ries which correspond fairly closely to the named-entity types 
of [13]: each such category is identified by a construct we call 
a QA-Token. The QA-Token serves both as a category label 
and a text-string used in the search process. Table 1 lists our 
QA-Tokens, along with associated question types and repre- 
sentative matching text phrases. 

QA-Token Question type 
P L A C E S  Where  

C O U N T R Y $  Where /What  
country 

ROLES 

Example 
In the Rocky 
Mountains 
United King- 
dom 
Massachusetts S T A T E S  Where /What  state 

P E R S O N S  Who Albert  Einstein 
Who Doctor 
Who/What /Which  
/Where /Name the 

NAMES x Shakespeare 
Festival 

O R G $  Who/What  The US Post 
Office 

D U R A T I O N S  For  5 centuries How long 
How old AGES 

YEARS 
TIMES 

When/What  year 
When 

D A T E S  When/What  dam 
V O L U M E S  How big 

30 years old 
1999 
In the afternoon 
July 4 th, 1776 
3 gallons 

1 The NAMES token was used for proper names that Textract 
was unable to subclassify as Person, Place or Organization. 

AREAS 
LENGTHS 

WEIGHTS 
NUMBERS 
METHODS 

How big 
How 
big/ long/high 
How big/heavy 
How many 

MONEYS 

How 
R A T E S  How much 

How much 

4 square inches 
5 miles 

25 tons  
1,234.5 
By rubbing 
50 per  cent 
$4 million 

Table 1. List of QA-Tokens used in GuruQA 

Textract 
An important subsystem which we took great advantage of is 
the Textract text-processing system[2,17]. Textract provides 
basic document tokenization plus advanced text processing 
including lemmatization and annotation. The annotators in- 
elude Nominator, which finds proper names, Terminator 
which finds technical terms (e.g. operating system), and Ab- 
breviator which finds and resolves abbreviations. As well as 
generating document- and collection-level statistics, Textract 
also aggregates alternate forms of proper names and selects 
canonical forms. 

The internal representation of text in Textract is the word-list, 
a linked list of tokens representing the individual words in the 
source, along with properties such as lemrna form, potential 
part of speech (from a dictionary) and capitalization. When 
an annotator detects a sequence of tokens of interest (for ex- 
ample when Nominator detects that Bill Clinton is a name), it 
annotates the word-list with a new token representing the 
recognized entity. Bill Clinton will be annotated as a PER- 
SON, with a pointer to the canonical form dictionary gener- 
ated for the collection (which would likely have automatically 
registered Bill Clinton as a variant form of William Jefferson 
Clinton). Other functions of Textract include normalizing 
numbers, dates and monetary amounts. 

Indexing 
Prior to indexing, the collection is processed by Textract 
which is augmented by an additional annotator called Respo- 
rator. The purpose of Resporator is to identify the potential 
answer phrases in the text and annotate them with the corre- 
sponding QA-Token. Resporator consults a file of patterns 
for each QA-Token which it applies at each point in the word- 
list. Resporator runs after the previously described annota- 
tors, so quantities that the other annotators detect can be rep- 
resented as quantities in the Resporator patterns. These pat- 
terns are written in a regular-expression-like language where 
tokens can be: 

* Lemrna forms of words (e.g. "be" which will match 
"am, is, are, was, were, be") 

* Literal forms of words (e.g. "\am" which will match 
"am") 

• Set-names (e.g. "_TIME" which will match "sec- 
ond, minute, hour, day, week ...") 

• Textract-names (e.g. ":CARDINAL" which will 
match any cardinal number recognized by Textract) 

185 



• Function names (e.g. "%ING" which calls a func- 
tion to test if the word ends in 'ing') 

Thus one of the patterns for the DURATIONS QA-Token 
might be 

for :CAFIDINAL _TIME 

The indexing process takes as input the word-list from Tex- 
tract and indexes each word it encounters. When a Respora- 
tor annotation is encountered, it indexes the QA-Token as a 
text item, along with the underlying text as if the annotation 
didn't exist. Both the base form and the annotation are re- 
corded at the same offset in the document. 

Query Analysis 
The query analysis stage takes the input question and converts 
it to a form suitable for the search engine. Here we match the 
question against one of about 400 templates. The purpose of 
the template matching is to introduce one or more QA-Tokens 
into the query and at the same time to remove unnecessary or 
unwanted words. Query words are converted to lemma form 
before matching, and lists of synonyms and categorical 
equivalents (e.g. all measures of time or adjectives of size) are 
consulted. So, for example, the query "How tall is the Matter- 
horn" gets translated into "LENGTHS is the Matterhorn" 
(LENGTHS represents a one-dimensional distance measure 
regardless of orientation). A conflict-resolution algorithm 
based on coverage is used when two or more templates match 
a query. In case no suitable template is found, weights are 
assigned to different parts of the question. In particular, the 
first noun phrase gets the same weight as a QA-Token. Stop 
words are removed subsequently. 

There are two kinds of ambiguity that affect this process, 
semantic and granular. Semantic ambiguity occurs with ques- 
tions like "How long ..." which could be asking about time or 
distance (or conceivably, for works of literature, number of 
pages). Granular ambiguity occurs when there are QA- 
Tokens that represent nested classes (for example DATES and 
YEARS for "When" questions; PERSONS, ORG$, ROLES, 
and NAMES for ''Who" questions). To this end we use the 
@SYN0 operator which the search engine understands as 
enclosing a set of disjunctive entities (QA-Tokens or regular 
words) of which only one need match. 

The query analysis also introduces operators to weight the 
query terms and to express the window size and type for 
matching. These are described later. 

Matching and Ranking 
The GuruQA search engine is a modified form of the Guru 
search engine, which returns ranked lists of documents in the 
traditional manner. GurnQA differs in that it ranks passages 
rather than entire documents. These passages are in the form 
of contiguous sequences of N sentences (possibly crossing 
paragraph boundaries), where N is passed to the search engine 
from Query Analysis as an argument in the @WIN() operator. 
Since the infrastructure of GuruQA is document-based, the 
search engine assigns each document the score of the best- 

matching passage of size N within it. This technique allowed 
us to most easily adapt an existing search engine to Question- 
Answenng, but had the potential disadvantage of not being 
able to return multiple passages per document. 

Ranking is a type of combination match, rather than tradi- 
tional if*idOl2]. We contend that the optimum matching 
passage only need have a single instance of each of the query 
terms in it, so that term frequency is irrelevant. The search 
engine will, for each passage, assign a score computed ini- 
tially by summing the weights of each query term found in the 
passage. The weights for each query term are set in Query 
Analysis. We do not use idf, but rather a very coarse weight- 
ing scale: QA-Tokens have a score of 400, proper names a 
score of 200 and common words a score of 100. To act as a 
tie-breaker, the search engine computes the density of the 
match and from it assigns a delta score in the range 0-99. The 
density is inversely proportional to the distance (in words) 
between the first passage word that matched and the last; all 
matching words being consecutive would give a density of 99. 
The order of the words is irrelevant. The search engine holds 
off matching QA-Tokens till last, and ensures that they do not 
match words that had already matched. For example, the 
question: "What is the capital of Sri Lanka", is converted by 
Query Analysis to "PLACES capital Sd Lanka" (weight and 
window operators not shown); it is important for the PLACES 
QA-Token not to match "Sri Lanka" in text. 

There is a serious issue concerning optimal window (passage) 
size. On the one hand, a small window containing a match for 
all of the query terms is, we felt, quite likely to express the 
same relation between the query terms as is intended by the 
question. On the other hand, a larger window size will deal 
with those cases where the question is answered (or more 
accurately, the correct answer is justified by matching quali- 
fying phrases and clauses) over a span of several sentences. 
A larger window will be more likely to avoid problems with 
anaphora, but by the same token will be liable to noise from 
extraneous terms. 

We assert that if a window W generates a certain score and a 
larger window W" which contains W generates the same 
score, then the smaller passage will be preferred. This leads 
us to the concept of a dynamic window of size N. Using this, 
a document's score is the score of the best passage of any 
size from 1 to N sentences, with smaller passages beating 
equal-scoring containing passages. 

Answer Selection 
GuruQA returns top-matching passages; to complete the task 
we need to select the best answer phrases from these. For 
TREC8, we experimented with two different answer-selection 
algorithms, AnSel and WerLect, as reported in [20,21]. For 
this paper, we concentrate on the performance of the overall 
better-performing of these, namely AnSel. The TREC8 QA- 
tracks required submissions of the system's best 5 answers of 
length up to 50 bytes and up to 250 bytes. Using AnSel, we 
computed the 5 most likely named entities, and generated a 50 
or 250-byte span of text surrounding the entity. For purposes 
of this paper, though, we judge the correctness of the named 
entity itself. On the rare occasions when there were no QA- 
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Tokens associated with the query, we discovered that Wer- 
Lect performed better than the default AnSel behavior, but we 
don't explore this difference here. 

AnSel scores all of the named entities labelled with QA- 
Tokens found within the top 10 passages returned by the 
search engine. AnSel is a linear classifier using a set of seven 
features with weights developed by a machine-learning algo- 
rithm employing logistic regression, with a little hand- 
tweaking. The features used were: sequential position of 
named entity amongst all of those returned, sequential posi- 
tion of named entity amongst all of those returned in the same 
passage, number of named entities in the passage, number of 
words in the entity not in the query, the position of the QA- 
Token for the entity in the @SYN0 component of the query 
(or 1 if the QA-Token was not in a @SYN0 group), the aver- 
age distance in words between the beginning of the entity and 
the words in the query that also appear in the passage, and the 
passage relevance as computed by GuruQA. 

3. Analysis 
We used the TREC8 Question-answering testbed to evaluate 
the performance of our system and explore various character- 
istics of the Question-answering problem p e r  se. Below we 
describe the testbed and explore the effects of window size, 
window type and question types on Question-anwering sys- 
tems. 

Testbed 
The testbed for our system was the Question-Answering track 
introduced by NIST in 1999. Understanding that participants 
would be drawn from both the NLP and IR communities, sub- 
tracks for both 50-byte and 250-byte answers were estab- 
lished. 200 questions were sent out to the participants, and 
the top 5 answers in either or both categories were sent back. 
NIST used a team of judges to score the responses. A partici- 
pant's score for a particular question was calculated as the 
reciprocal rank of the first correct answer noted. If all 5 an- 
swers were wrong, a score of 0 was assessed. A participant's 
overall score was calculated as the mean reciprocal rank 
(MRR) across all 200 questions (in practice 198 since 2 ques- 
tions were later discarded). 

Window Size 
Based on limited experimentation with the relatively small 
amount of training data made available by NIST, we chose to 
operate GuruQA with a dynamic window size of 3. After the 
conference, a set of correct answers was made available. 
Using these judgments, we were able to run our system on the 
same questions for a variety of window sizes, fixed and dy- 
namic. The overall MRR as a function of window size and 
type is shown in Table 2. 

We see that for every size tested, dynamic windows perform 
better than fixed, as expected. Our testing with the 38 train- 
ing questions led us to believe that a dynamic window size of 
3 sentences was optimum, but the results with a collection 
over 5 times larger suggests that the optimum is 2, and in fact 
we see that 3 sentences is a local minimum! We believe. 

though, that there is no real significance in the differences in 
overall performance between window sizes 2-7. Figure 2 
shows MRR by window size. 

1 2 3 4 5 7 10 

Fixed 0.328 0.314 0.317 0.313 0.311 0.233 0.167 

Dynamic 0.366 0.351 0.36 0.356 0.351 0.330 

Table 2. Overall  MRR as a function of  window type 
and size 

Window Size Comparison 
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Figure 2. Performance (MRR) as a function of window size. 

Examining the performance by question type, however, does 
reveal some differences. When the questions are grouped 
according to 9 broad classes, the performance of each group, 
along with the overall performance, is shown in Figures 3 and 
4. The number of questions of each class is shown in Table 3. 
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Using Fixed Windows 
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A 
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Figure 3. Performance as a function of fixed window size. 
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Using Dynamic Windows 
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Figure 4. Performance as a function of dynamic window size. 

Two general conclusions can be reached from this data, al- 
though it is conceded that some categories contain too few 
questions to make strong statements about. Firstly, varying 
the window size did not affect each question type equally. 
The most representative question types (Who/When/Where) 
performed about equally, but some of the other types showed 
divergent behavior, which might permit some advantage to be 
taken. Secondly, some kinds of questions are handled much 
better than others by our system. Weights and Measures (e.g. 
weight, length, volume, etc.) do far better than others, al- 
though Numbers do well with small windows. How and Why 
questions got zero scores. We will examine these issues in a 
little more detail in the next sections. 

Class of Question Count 

Who/Person 55 
Weights & Measures 9 
Misc. Other QA-Tokens 8 
Money/Rate 7 
How/Why/Other 8 

Class of 
Question 
Number 
Where 
When 
Names 
Overall 

Count 

21 
40 
26 
24 
198 

Table 3. Cardinality of Question Classes 

Varying the Window Size 
Since it appears that the performance for a given question 
class is a function of window size, we ask by how much the 
performance might improve if we vary the window size by 
question class. Using the results from the TREC8 questions 
we determined that the overall performance with variable 
dynamic window size increases to 0.394, compared with 
0.366 for a uniform dynamic window size of 2. This im- 
provement of 7.7% is only suggestive; we will know better 
when we test on a different set of questions. 

Dealing with How and Why 
How and Why questions are difficult for all question- 
answering systems; in particular, Predictive Annotation is by 
design primarily for fact-seeking questions rather than those 
seeking explanations. The difficulty is not in identifying the 
question type, but rather answer phrases in the text. We look 
briefly here at what we did for such cases, and what it might 

take to improve our treatment. For both of these question 
types, we looked for sufficient but not necessary conditions 
for detecting instances of such answers. Given our observa- 
tions that in collections of news articles, events are often men- 
tioned several if not many times, we considered this to be a 
reasonable first step. 

One way in which methods and procedures are described in 
English is the word "by" followed by the present participle. 
Hence the pattern that Resporator uses, in fact the only pattern 
Resporator uses for How (the METHODS QA-Token) is 

by %ING 
This might have seemed to be perfectly adequate to answer 
the question: "How did Socrates die?". Unfortunately for 
us, the answers lay in sentences like: 

"We also meet snake root, which is toxic, and 
poison hemlock, which for over two thousand 
years has been famous for curing Socrates of 
life." 

and 
"His chapter on wifely nagging traces nagging 
back to the late Cretaceous period and notes 
that one of the all-time nags was Socrates' 
spouse, Xanthippe. Hemlock was a pleasure by 
comparison." 

We did not use a QA-Token for Why questions. Rather, on 
observing that reasons and explanations were usually intro- 
duced by words such as "because" and phrases such as "re- 
suiting in" or "as a result of" we simply replaced the word 
"why" in the query with: 

@SYN(because, cause, result) 

Now, explanations are also introduced by "in order to" or 
simply "to", followed by a verb; these phrases will generally 
either begin a sentence or will follow a main clause. To take 
advantage of these observations, sentence parsing or at least 
part-of-speech tagging is required. This will enable the an- 
swer to the question "Why did David Koresh ask the FBI 
for a word processor?", namely "to record his revela- 
tions" to be found. 

Limitations of PA 
We estimated the limitations of our approach by classifying 
the problems with questions whose reciprocal ranking was 
zero. We identify three groups: 

1. Missing patterns (either in Question Analysis or Re- 
sporator text analysis) 

2. Needed extensions or variations compatible with 
PA. 

3. Extensions beyond the scope of PA. 
The approach we took was to analyze the internal workings of 
GuruQA for each of the questions with rank 0 in order to 
discover the most likely reason for the failure. Where possi- 
ble, the cause was verified by simulating the correct behavior 
of the identified faulty component and checking that the cor- 
rect response was generated in the top 5 2 

2 The correct behavior was verified by simulation rather than 
fixing the component since in many cases a more general 
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For our purposes the response was the selected named entity, 
rather than a 50 or 250-byte passage surrounding it. This 
made our judgments both more severe than TREC8 but more 
accurate as a measure of correct system performance. This is 
because it often happens that incorrectly selected named enti- 
ties are in the vicinity of the correct ones, which can cause the 
TREC8-style passage-based responses to be rated correct 
even though the system technically failed. 

Our system with a dynamic window of size 3 and bugs fixed 
got 143 of 198 right (in the top 5). Each of the 55 remaining 
questions was put into one of the three above mentioned prob- 
lem groups. Note that inappropriate window size is not listed 
as the cause of an error below. This is because this analysis 
was performed for windows of size 3, and for each question a 
window of size 3 was found to suffice for human answering. 
While we had found some few cases where the system per- 
formed better with a window different from 3, it was gener- 
ally the case that some fix other than window size increase 
would have fixed the performance at 3 sentences. Our error 
types are tabulated in Table 4. 

Category 
1. Missing Patterns 
Question Analysis 

Resporator 

Example 

Not having appropri- 
ate question template. 
Resporator missing a 
pattern to annotate text 
before indexing 

2. More Complex 
Extensions/Fixes 
Synonyms/Taxon- Question term is a 
omy synonym or hyponym 

of term in text 
3. Beyond PA 
Anaphora 

Text Understanding 

Proper nouns referred 
to by "the club", "the 
company", etc. 
Generally, deeper 
parsing & understand- 
ing required. 

N o .  

13 

18 

10 

Table 4. Classification of Errors and their Counts 

When patterns are detected to be missing from either the 
Question Analysis or Resporator processes, then these can be 
added without trouble. We did not consider this error condi- 
tion to be a kind of bug, since these fixes will not guarantee 
that missing patterns won't be found when we next run our 
system on a collection of different questions. Since the per- 
formance of the system is a function of the completeness of 
the pattern set, this category must be considered a potential 
er~r source of our approach. However, it seems reasonable 
that over time, the size of tMs category will shrink considera- 
bly as full coverage develops. 

solution, which would require careful planning and design, 
was preferred to a quick fix. Besides, a frozen version of the 
system was required for performing the window-size experi- 
ments described earlier. 

Automatic synonym or hyper/hyponym expansion is not easy 
to get working effectively, as was shown by Voorhees[16]. 
However, since our very QA-Tokens are in effect hypernyms 
we are not convinced that some progress cannot be made 
without mining precision. 

The remaining sources of error - failures of anaphora resolu- 
tion and text understanding - are ones that we do not think are 
readily removable with our Predictive Annotation technique 
alone. That is not to say that other technology working in 
conjunction with PA will not work, but simple extensions of 
our system in the manner of adding patterns will not address 
this problem. Quantitatively, 7% of the TREC8 questions 
cannot be handled by PA; a further 5% require an effective 
treatment of synonyms. 

Performance by Question Type 
Given the differences in performance by question types, we 
asked whether there was a simple explanation. We examined 
whether the occurrence frequencies of the QA-Tokens were 
correlated with performance, thinking that maybe the rarer 
tokens would be associated with higher precision. Such a 
discovery would help guide us in choosing the appropriate 
granularity for these types of QA-Tokens and others that we 
plan to add. The numbers of occurrences in our TREC8 index 
of the different QA-Tokens are shown in Table 5. 

QA-Token 
NAMES 
NUMBERS 
ORG$ 
PERSONS 
ROLES 
PLACES 
DATES 
C O U N T R Y $  

Occurrences Documents 
7,271,982 509 899 
4,674,907 430950  
3,366,153 
3,344,594 
2,506,693 

466 423 
398.304 
430938  

2,066,163 400 266 
1,840,322 463646  

876,485 194 648 
MONEYS 858,842 181 687 

659,343 TIMES 
RATES 
YEARS 
DURATIONS 
METHODS 
STATES 
LENGTHS 
AGES 
WEIGHTS 
AREAS 
V O L U M E S  

272 453 
629,218 158,541 
416,926 170,181 
348,523 179,031 
144,419 96,646 
133,404 47,830 
112,081 54,029 
62,745 35,756 
32,156 11,731 
18,026 9,067 
3,909 2,380 

Table 5. Term and Document Occurrences of QA-Tokens 
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Figure 6. Scatter plot of terms (labelled) and documents 
against mean reciprocal rank for dynamic windows of size 2. 
Note that only the points for Terms are labelled. 

When these were aggregated according to the question classes 
of Table 3 and plotted against the mean reciprocal rank with 
dynamic windows of size 2, the graph in Figure 6 was pro- 
duced. No correlation is apparent. We think that this does 
not necessarily mean that no correlation exists, but rather 
there are too few questions examined in some of the classes to 
solidly identify a trend. 

4.Related Work 
The phrase "Question Answering" has been used in the litera- 
ture to describe a number of related but distinct activities. 
The database community uses the phrase to describe tech- 
niques that support natural language query front ends to tradi- 
tional database backends[4]. In the Artificial Intelligence 
community, Question Answering refers to a variety of tech- 
niques for answering questions using some sort of knowledge 
representation scheme, a theory for reasoning over this 
knowledge, and an inference engine that implements the the- 
try[15]. 

Our Question Answering technique differs from both of these 
previous approaches in two significant ways. First, our un- 
derlying source of facts for answering questions is a docu- 
ment collection consisting of free text documents. Second, 
the free text documents are analyzed and searched in a fully 
automatic fashion with no human intervention required to 
extract, categorize, or organize the information contained 
within the documents. 

The problem of answering questions using automatically 
processed text documents has been pursued by two different 
communities. The Message Understanding community has 
focussed on automatic fact extraction from free text docu- 
ments[10]. The extracted facts are then represented in a struc- 
tured form that supports reasoning over the facts. This ap- 
proach typically requires significant human engineering to 
customize the fact extraction process for a particular domain, 
and hence does not provide the same level of domain inde- 
pendence as our question answering technique. 

The Information Retrieval community has pursued question 
answering at a much more general level[12,18]. There the 
problem is cast more broadly as the problem of satisfying a 
user's information need. The typical approach is to return a 
set or a rank ordered list of documents that will satisfy the 
user's information need. This differs significantly from the 
goal of the Question Answenng system presented here, which 
strives to identify the specific phrase or sentence that immedi- 
ately answers the user's question. 

The earliest work most similar to that presented here is the 
MURAX system described by Kupiec[8]. MURAX answers 
a question by first processing the question with a Boolean 
search engine, asserting possible answers based on the search 
results using part-of-speech tagging and shallow NLP tech- 
niques, and testing the assertions with additional queries 
against the search engine. 

Other similar work has come from the inaugural Question 
Answering track at the TREC8 conference[5]. Our approach 
is similar to many others in the way questions are typed and 
mapped to named entities. The main differences lie in the 
degree of natural language processing and use of ontologies. 

5. Conclusions 
We presented in this paper Predictive Annotation and ana- 
lyzed its performance in the TREC8 Question-Answenng 
track. Predictive Annotation uses shallow pattern-matching 
of the textual material to augment it with a set of named entity 
identifiers called QA-Tokens which are indexed along with 
the text. Question analysis replaces question words with QA- 
Tokens, and bag-of-word matching of short passages takes 
place, using a very simple scoring mechanism. We project 
that our techniques can in pnnciple handle of the order of 
90% of the questions used in this track (as distinct from the 
72% achieved in practice). We determined that short, dy- 
namic windows in the range of 2-7 sentences were effective, 
which would lead to a recommendation to use a size of 2, due 
to the reduced computation entailed. 

It might be instructive to list the approaches we did not use. 
We did not use deep NLP or any IE template-matching. We 
did not use part-of-speech tagging, nor any standard thesaurus 
or ontology such as WordNet[9]. We did not even use a vari- 
ant of tf*idf scoring. We think these are all important and 
worthwhile techniques, and ones which we will probably use 
to some extent in the future, but we were primarily interested 
in how well PA works by itself. We conclude that PA is very 
effective at fact-oriented question answering, and only fails 
when responses require text understanding, anaphora resolu- 
tion or automatic synonym or hypernym substitution, which 
are all hard problems for any IR system. 
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