
Question-Answering by Predictive Annotation
John Prager, Eric Brown, Anni Coden

IBM T.J. Watson Research Center
Yorktown Heights, N.Y. 10598
iprager/ewb/anni @ us.ibm.com

Dragomir Radev
University of Michigan
Ann Arbor, Michigan

radev @ umich.edu

Abstract
We present a new technique for question answering called
Predictive Annotation. Predictive Annotation identifies po-
tential answers to questions in text, annotates them accord-
ingly and indexes them. This technique, along with a com-
plementary analysis of questions, passage-level ranking and
answer selection, produces a system effective at answering
natural-language fact-seeking questions posed against large
document collections. Experimental results show the effects
of different parameter settings and lead to a number of general
observations about the question-answering problem.

1. Introduction
Question-answering is an area of Information Retrieval (IR)
that is attracting increasingly more attention, as evidenced by
new tracks in conferences such as AAAI[1] and TREC[5,14],
and several Web sites. A Question-answering system
searches a large text collection and finds a short phrase or
sentence that precisely answers a user's question. To solve
the Question-answering problem, we might first turn to tradi-
tional IR techniques', which have been applied successfully to
large scale text search problems[6]. Unfortunately, traditional
text search engines typically return lists of documents in re-
sponse to a user's query, and therefore provide inappropriate
solutions to this problem. Alternatively, the Natural Lan-
guage Processing (NLP) and Information Extraction (IE)
communities have developed techniques for extracting very
precise answers from text. However, these communities use
domain specific techniques applied to relatively small text
collections.

It would appear that an approach combining the strengths of
IR and NLP/IE might provide an appropriate way to answer
questions using large bodies of text. The extent to which
information extraction or deep parsing techniques must be
applied to solve the Question-answering problem is an open

Permlss,on to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or cornmerc=al advan-
tage and that copras bear thin notme and the full citation on the first page
'To copy otherwise, to repubhsh, to post on servers or to
redistribute to |isis, requires prior specific permission and/or 8 fee.
SIGIR 2000 7/00 Athens, Greece
© 2000 ACM 1-58113-226-3100/0007. -$5 .00

question. We explore this question and present results show-
ing that combining shallow NLP/IE techniques with a custom
text search produces an effective Question-answering system.
In particular, we describe a new text-processing technique
called Predictive Annotation (PA) and analyze its effective-
ness using the TREC8 benchmark. Our analysis reveals a
number of characteristics about the Question-answering prob-
lem, leading to a variety of widely applicable system parame-
ter settings.

This paper is in 5 sections. In Section 2 we describe the
search system we implemented. In Section 3 we analyze the
performance of the system. We also attempt to determine the
limits of our approach. We discuss related work in Section 4
and in Section 5 we conclude and discuss future work.

2. The GuruQA System
Our approach is based on the following observations about
fact-seeking questions:

• Questions can be classified by the kind of answer
they are seeking.

• Answers are usually in the form of phrases.
• Answer phrases can be classified by the same

scheme as the questions.
• Answers can be extracted from text using shallow

parsing techniques.
• The context of the answer phrase that validates it as

an answer to the question is usually a small fraction
of the document it is embedded in.

We took our existing prototype search engine Guru[19] and
modified it in three significant ways. We modified the query
analysis to detect the question type and to modify the question
accordingly. We modified the indexing process to perform
shallow linguistic analysis of the text and to identify and an-
notate appropriate phrases with class labels. We modified the
search engine to rank passages instead of documents, and to
use a simple ranking formula. These steps combined to pro-
duce a system that performed well in the TREC8 QA track.

The complete GuruQA system is depicted in Figure 1. Two
components, Query Analysis and Textract/Resporator, in-
volve the generation of QA-Tokens, which we now describe.

184

T;esX oa:atto r Indexer

GuruQA
\

Ranked
HitList ~ - ~ AnSel

\
~ - - - ~ - ~ Hit List I

Answer selection

Figure 1. Block diagram of the GuruQA system.

QA-Tokens
We observed earlier that both questions and answer phrases
could be classified. The question immediately arises of what
is the most appropriate granularity of such a classification.
The coarsest useful granularity would be according to the so-
called "wh-words"; a much finer level would be to use, at
least for noun phrases, the basic object categories of Rosch et
al.[11]. We chose an intermediate level of about 20 catego-
ries which correspond fairly closely to the named-entity types
of [13]: each such category is identified by a construct we call
a QA-Token. The QA-Token serves both as a category label
and a text-string used in the search process. Table 1 lists our
QA-Tokens, along with associated question types and repre-
sentative matching text phrases.

QA-Token Question type
P L A C E S Where

C O U N T R Y $ Where /What
country

ROLES

Example
In the Rocky
Mountains
United King-
dom
Massachusetts S T A T E S Where /What state

P E R S O N S Who Albert Einstein
Who Doctor
Who/What /Which
/Where /Name the

NAMES x Shakespeare
Festival

O R G $ Who/What The US Post
Office

D U R A T I O N S For 5 centuries How long
How old AGES

YEARS
TIMES

When/What year
When

D A T E S When/What dam
V O L U M E S How big

30 years old
1999
In the afternoon
July 4 th, 1776
3 gallons

1 The NAMES token was used for proper names that Textract
was unable to subclassify as Person, Place or Organization.

AREAS
LENGTHS

WEIGHTS
NUMBERS
METHODS

How big
How
big/ long/high
How big/heavy
How many

MONEYS

How
R A T E S How much

How much

4 square inches
5 miles

25 tons
1,234.5
By rubbing
50 per cent
$4 million

Table 1. List of QA-Tokens used in GuruQA

Textract
An important subsystem which we took great advantage of is
the Textract text-processing system[2,17]. Textract provides
basic document tokenization plus advanced text processing
including lemmatization and annotation. The annotators in-
elude Nominator, which finds proper names, Terminator
which finds technical terms (e.g. operating system), and Ab-
breviator which finds and resolves abbreviations. As well as
generating document- and collection-level statistics, Textract
also aggregates alternate forms of proper names and selects
canonical forms.

The internal representation of text in Textract is the word-list,
a linked list of tokens representing the individual words in the
source, along with properties such as lemrna form, potential
part of speech (from a dictionary) and capitalization. When
an annotator detects a sequence of tokens of interest (for ex-
ample when Nominator detects that Bill Clinton is a name), it
annotates the word-list with a new token representing the
recognized entity. Bill Clinton will be annotated as a PER-
SON, with a pointer to the canonical form dictionary gener-
ated for the collection (which would likely have automatically
registered Bill Clinton as a variant form of William Jefferson
Clinton). Other functions of Textract include normalizing
numbers, dates and monetary amounts.

Indexing
Prior to indexing, the collection is processed by Textract
which is augmented by an additional annotator called Respo-
rator. The purpose of Resporator is to identify the potential
answer phrases in the text and annotate them with the corre-
sponding QA-Token. Resporator consults a file of patterns
for each QA-Token which it applies at each point in the word-
list. Resporator runs after the previously described annota-
tors, so quantities that the other annotators detect can be rep-
resented as quantities in the Resporator patterns. These pat-
terns are written in a regular-expression-like language where
tokens can be:

* Lemrna forms of words (e.g. "be" which will match
"am, is, are, was, were, be")

* Literal forms of words (e.g. "\am" which will match
"am")

• Set-names (e.g. "_TIME" which will match "sec-
ond, minute, hour, day, week ...")

• Textract-names (e.g. ":CARDINAL" which will
match any cardinal number recognized by Textract)

185

• Function names (e.g. "%ING" which calls a func-
tion to test if the word ends in 'ing')

Thus one of the patterns for the DURATIONS QA-Token
might be

for :CAFIDINAL _TIME

The indexing process takes as input the word-list from Tex-
tract and indexes each word it encounters. When a Respora-
tor annotation is encountered, it indexes the QA-Token as a
text item, along with the underlying text as if the annotation
didn't exist. Both the base form and the annotation are re-
corded at the same offset in the document.

Query Analysis
The query analysis stage takes the input question and converts
it to a form suitable for the search engine. Here we match the
question against one of about 400 templates. The purpose of
the template matching is to introduce one or more QA-Tokens
into the query and at the same time to remove unnecessary or
unwanted words. Query words are converted to lemma form
before matching, and lists of synonyms and categorical
equivalents (e.g. all measures of time or adjectives of size) are
consulted. So, for example, the query "How tall is the Matter-
horn" gets translated into "LENGTHS is the Matterhorn"
(LENGTHS represents a one-dimensional distance measure
regardless of orientation). A conflict-resolution algorithm
based on coverage is used when two or more templates match
a query. In case no suitable template is found, weights are
assigned to different parts of the question. In particular, the
first noun phrase gets the same weight as a QA-Token. Stop
words are removed subsequently.

There are two kinds of ambiguity that affect this process,
semantic and granular. Semantic ambiguity occurs with ques-
tions like "How long ..." which could be asking about time or
distance (or conceivably, for works of literature, number of
pages). Granular ambiguity occurs when there are QA-
Tokens that represent nested classes (for example DATES and
YEARS for "When" questions; PERSONS, ORG$, ROLES,
and NAMES for ''Who" questions). To this end we use the
@SYN0 operator which the search engine understands as
enclosing a set of disjunctive entities (QA-Tokens or regular
words) of which only one need match.

The query analysis also introduces operators to weight the
query terms and to express the window size and type for
matching. These are described later.

Matching and Ranking
The GuruQA search engine is a modified form of the Guru
search engine, which returns ranked lists of documents in the
traditional manner. GurnQA differs in that it ranks passages
rather than entire documents. These passages are in the form
of contiguous sequences of N sentences (possibly crossing
paragraph boundaries), where N is passed to the search engine
from Query Analysis as an argument in the @WIN() operator.
Since the infrastructure of GuruQA is document-based, the
search engine assigns each document the score of the best-

matching passage of size N within it. This technique allowed
us to most easily adapt an existing search engine to Question-
Answenng, but had the potential disadvantage of not being
able to return multiple passages per document.

Ranking is a type of combination match, rather than tradi-
tional if*idOl2]. We contend that the optimum matching
passage only need have a single instance of each of the query
terms in it, so that term frequency is irrelevant. The search
engine will, for each passage, assign a score computed ini-
tially by summing the weights of each query term found in the
passage. The weights for each query term are set in Query
Analysis. We do not use idf, but rather a very coarse weight-
ing scale: QA-Tokens have a score of 400, proper names a
score of 200 and common words a score of 100. To act as a
tie-breaker, the search engine computes the density of the
match and from it assigns a delta score in the range 0-99. The
density is inversely proportional to the distance (in words)
between the first passage word that matched and the last; all
matching words being consecutive would give a density of 99.
The order of the words is irrelevant. The search engine holds
off matching QA-Tokens till last, and ensures that they do not
match words that had already matched. For example, the
question: "What is the capital of Sri Lanka", is converted by
Query Analysis to "PLACES capital Sd Lanka" (weight and
window operators not shown); it is important for the PLACES
QA-Token not to match "Sri Lanka" in text.

There is a serious issue concerning optimal window (passage)
size. On the one hand, a small window containing a match for
all of the query terms is, we felt, quite likely to express the
same relation between the query terms as is intended by the
question. On the other hand, a larger window size will deal
with those cases where the question is answered (or more
accurately, the correct answer is justified by matching quali-
fying phrases and clauses) over a span of several sentences.
A larger window will be more likely to avoid problems with
anaphora, but by the same token will be liable to noise from
extraneous terms.

We assert that if a window W generates a certain score and a
larger window W" which contains W generates the same
score, then the smaller passage will be preferred. This leads
us to the concept of a dynamic window of size N. Using this,
a document's score is the score of the best passage of any
size from 1 to N sentences, with smaller passages beating
equal-scoring containing passages.

Answer Selection
GuruQA returns top-matching passages; to complete the task
we need to select the best answer phrases from these. For
TREC8, we experimented with two different answer-selection
algorithms, AnSel and WerLect, as reported in [20,21]. For
this paper, we concentrate on the performance of the overall
better-performing of these, namely AnSel. The TREC8 QA-
tracks required submissions of the system's best 5 answers of
length up to 50 bytes and up to 250 bytes. Using AnSel, we
computed the 5 most likely named entities, and generated a 50
or 250-byte span of text surrounding the entity. For purposes
of this paper, though, we judge the correctness of the named
entity itself. On the rare occasions when there were no QA-

186

Tokens associated with the query, we discovered that Wer-
Lect performed better than the default AnSel behavior, but we
don't explore this difference here.

AnSel scores all of the named entities labelled with QA-
Tokens found within the top 10 passages returned by the
search engine. AnSel is a linear classifier using a set of seven
features with weights developed by a machine-learning algo-
rithm employing logistic regression, with a little hand-
tweaking. The features used were: sequential position of
named entity amongst all of those returned, sequential posi-
tion of named entity amongst all of those returned in the same
passage, number of named entities in the passage, number of
words in the entity not in the query, the position of the QA-
Token for the entity in the @SYN0 component of the query
(or 1 if the QA-Token was not in a @SYN0 group), the aver-
age distance in words between the beginning of the entity and
the words in the query that also appear in the passage, and the
passage relevance as computed by GuruQA.

3. Analysis
We used the TREC8 Question-answering testbed to evaluate
the performance of our system and explore various character-
istics of the Question-answering problem p e r se. Below we
describe the testbed and explore the effects of window size,
window type and question types on Question-anwering sys-
tems.

Testbed
The testbed for our system was the Question-Answering track
introduced by NIST in 1999. Understanding that participants
would be drawn from both the NLP and IR communities, sub-
tracks for both 50-byte and 250-byte answers were estab-
lished. 200 questions were sent out to the participants, and
the top 5 answers in either or both categories were sent back.
NIST used a team of judges to score the responses. A partici-
pant's score for a particular question was calculated as the
reciprocal rank of the first correct answer noted. If all 5 an-
swers were wrong, a score of 0 was assessed. A participant's
overall score was calculated as the mean reciprocal rank
(MRR) across all 200 questions (in practice 198 since 2 ques-
tions were later discarded).

Window Size
Based on limited experimentation with the relatively small
amount of training data made available by NIST, we chose to
operate GuruQA with a dynamic window size of 3. After the
conference, a set of correct answers was made available.
Using these judgments, we were able to run our system on the
same questions for a variety of window sizes, fixed and dy-
namic. The overall MRR as a function of window size and
type is shown in Table 2.

We see that for every size tested, dynamic windows perform
better than fixed, as expected. Our testing with the 38 train-
ing questions led us to believe that a dynamic window size of
3 sentences was optimum, but the results with a collection
over 5 times larger suggests that the optimum is 2, and in fact
we see that 3 sentences is a local minimum! We believe.

though, that there is no real significance in the differences in
overall performance between window sizes 2-7. Figure 2
shows MRR by window size.

1 2 3 4 5 7 10

Fixed 0.328 0.314 0.317 0.313 0.311 0.233 0.167

Dynamic 0.366 0.351 0.36 0.356 0.351 0.330

Table 2. Overall MRR as a function of window type
and size

Window Size Comparison

0.6

0,5

~. 0.4

..G 0.3

0.2

0.1

0
1 2 3 4 5 7 10

Window Size

Fixed
-- I I-

Dynamic

Figure 2. Performance (MRR) as a function of window size.

Examining the performance by question type, however, does
reveal some differences. When the questions are grouped
according to 9 broad classes, the performance of each group,
along with the overall performance, is shown in Figures 3 and
4. The number of questions of each class is shown in Table 3.

0.8

~ 0 6

o
.~. 0.4

I~ 0.2

0

Using Fixed Windows

1 2 3 4 5 7 10

Window Size (Sentences)

Overall Who/Person

Number Weights&Meesures

Where Misc OATokens
- ,A- " l l -

When Money/Rate
A

Names How/Why/Other
V A

Figure 3. Performance as a function of fixed window size.

187

Using Dynamic Windows

0 8

0.6

04

02

2 3 4 5 7 10

Window Size (Sentences)

Overal l Who/Person
- - I I - , --F -.',~

Number Weights&Measures

Where Misc QATokens

When Money/Rate

Names How/Why/Other
IF Jk

Figure 4. Performance as a function of dynamic window size.

Two general conclusions can be reached from this data, al-
though it is conceded that some categories contain too few
questions to make strong statements about. Firstly, varying
the window size did not affect each question type equally.
The most representative question types (Who/When/Where)
performed about equally, but some of the other types showed
divergent behavior, which might permit some advantage to be
taken. Secondly, some kinds of questions are handled much
better than others by our system. Weights and Measures (e.g.
weight, length, volume, etc.) do far better than others, al-
though Numbers do well with small windows. How and Why
questions got zero scores. We will examine these issues in a
little more detail in the next sections.

Class of Question Count

Who/Person 55
Weights & Measures 9
Misc. Other QA-Tokens 8
Money/Rate 7
How/Why/Other 8

Class of
Question
Number
Where
When
Names
Overall

Count

21
40
26
24
198

Table 3. Cardinality of Question Classes

Varying the Window Size
Since it appears that the performance for a given question
class is a function of window size, we ask by how much the
performance might improve if we vary the window size by
question class. Using the results from the TREC8 questions
we determined that the overall performance with variable
dynamic window size increases to 0.394, compared with
0.366 for a uniform dynamic window size of 2. This im-
provement of 7.7% is only suggestive; we will know better
when we test on a different set of questions.

Dealing with How and Why
How and Why questions are difficult for all question-
answering systems; in particular, Predictive Annotation is by
design primarily for fact-seeking questions rather than those
seeking explanations. The difficulty is not in identifying the
question type, but rather answer phrases in the text. We look
briefly here at what we did for such cases, and what it might

take to improve our treatment. For both of these question
types, we looked for sufficient but not necessary conditions
for detecting instances of such answers. Given our observa-
tions that in collections of news articles, events are often men-
tioned several if not many times, we considered this to be a
reasonable first step.

One way in which methods and procedures are described in
English is the word "by" followed by the present participle.
Hence the pattern that Resporator uses, in fact the only pattern
Resporator uses for How (the METHODS QA-Token) is

by %ING
This might have seemed to be perfectly adequate to answer
the question: "How did Socrates die?". Unfortunately for
us, the answers lay in sentences like:

"We also meet snake root, which is toxic, and
poison hemlock, which for over two thousand
years has been famous for curing Socrates of
life."

and
"His chapter on wifely nagging traces nagging
back to the late Cretaceous period and notes
that one of the all-time nags was Socrates'
spouse, Xanthippe. Hemlock was a pleasure by
comparison."

We did not use a QA-Token for Why questions. Rather, on
observing that reasons and explanations were usually intro-
duced by words such as "because" and phrases such as "re-
suiting in" or "as a result of" we simply replaced the word
"why" in the query with:

@SYN(because, cause, result)

Now, explanations are also introduced by "in order to" or
simply "to", followed by a verb; these phrases will generally
either begin a sentence or will follow a main clause. To take
advantage of these observations, sentence parsing or at least
part-of-speech tagging is required. This will enable the an-
swer to the question "Why did David Koresh ask the FBI
for a word processor?", namely "to record his revela-
tions" to be found.

Limitations of PA
We estimated the limitations of our approach by classifying
the problems with questions whose reciprocal ranking was
zero. We identify three groups:

1. Missing patterns (either in Question Analysis or Re-
sporator text analysis)

2. Needed extensions or variations compatible with
PA.

3. Extensions beyond the scope of PA.
The approach we took was to analyze the internal workings of
GuruQA for each of the questions with rank 0 in order to
discover the most likely reason for the failure. Where possi-
ble, the cause was verified by simulating the correct behavior
of the identified faulty component and checking that the cor-
rect response was generated in the top 5 2

2 The correct behavior was verified by simulation rather than
fixing the component since in many cases a more general

188

For our purposes the response was the selected named entity,
rather than a 50 or 250-byte passage surrounding it. This
made our judgments both more severe than TREC8 but more
accurate as a measure of correct system performance. This is
because it often happens that incorrectly selected named enti-
ties are in the vicinity of the correct ones, which can cause the
TREC8-style passage-based responses to be rated correct
even though the system technically failed.

Our system with a dynamic window of size 3 and bugs fixed
got 143 of 198 right (in the top 5). Each of the 55 remaining
questions was put into one of the three above mentioned prob-
lem groups. Note that inappropriate window size is not listed
as the cause of an error below. This is because this analysis
was performed for windows of size 3, and for each question a
window of size 3 was found to suffice for human answering.
While we had found some few cases where the system per-
formed better with a window different from 3, it was gener-
ally the case that some fix other than window size increase
would have fixed the performance at 3 sentences. Our error
types are tabulated in Table 4.

Category
1. Missing Patterns
Question Analysis

Resporator

Example

Not having appropri-
ate question template.
Resporator missing a
pattern to annotate text
before indexing

2. More Complex
Extensions/Fixes
Synonyms/Taxon- Question term is a
omy synonym or hyponym

of term in text
3. Beyond PA
Anaphora

Text Understanding

Proper nouns referred
to by "the club", "the
company", etc.
Generally, deeper
parsing & understand-
ing required.

N o .

13

18

10

Table 4. Classification of Errors and their Counts

When patterns are detected to be missing from either the
Question Analysis or Resporator processes, then these can be
added without trouble. We did not consider this error condi-
tion to be a kind of bug, since these fixes will not guarantee
that missing patterns won't be found when we next run our
system on a collection of different questions. Since the per-
formance of the system is a function of the completeness of
the pattern set, this category must be considered a potential
er~r source of our approach. However, it seems reasonable
that over time, the size of tMs category will shrink considera-
bly as full coverage develops.

solution, which would require careful planning and design,
was preferred to a quick fix. Besides, a frozen version of the
system was required for performing the window-size experi-
ments described earlier.

Automatic synonym or hyper/hyponym expansion is not easy
to get working effectively, as was shown by Voorhees[16].
However, since our very QA-Tokens are in effect hypernyms
we are not convinced that some progress cannot be made
without mining precision.

The remaining sources of error - failures of anaphora resolu-
tion and text understanding - are ones that we do not think are
readily removable with our Predictive Annotation technique
alone. That is not to say that other technology working in
conjunction with PA will not work, but simple extensions of
our system in the manner of adding patterns will not address
this problem. Quantitatively, 7% of the TREC8 questions
cannot be handled by PA; a further 5% require an effective
treatment of synonyms.

Performance by Question Type
Given the differences in performance by question types, we
asked whether there was a simple explanation. We examined
whether the occurrence frequencies of the QA-Tokens were
correlated with performance, thinking that maybe the rarer
tokens would be associated with higher precision. Such a
discovery would help guide us in choosing the appropriate
granularity for these types of QA-Tokens and others that we
plan to add. The numbers of occurrences in our TREC8 index
of the different QA-Tokens are shown in Table 5.

QA-Token
NAMES
NUMBERS
ORG$
PERSONS
ROLES
PLACES
DATES
C O U N T R Y $

Occurrences Documents
7,271,982 509 899
4,674,907 430950
3,366,153
3,344,594
2,506,693

466 423
398.304
430938

2,066,163 400 266
1,840,322 463646

876,485 194 648
MONEYS 858,842 181 687

659,343 TIMES
RATES
YEARS
DURATIONS
METHODS
STATES
LENGTHS
AGES
WEIGHTS
AREAS
V O L U M E S

272 453
629,218 158,541
416,926 170,181
348,523 179,031
144,419 96,646
133,404 47,830
112,081 54,029
62,745 35,756
32,156 11,731
18,026 9,067
3,909 2,380

Table 5. Term and Document Occurrences of QA-Tokens

189

o

O

Frequency against Score (Dynamic/2)

15 Who/Person

10

Na~es

5 NHrnhc~r
O

Mac W ~ r e
Money/Rate

0 -Iow/Wl~t/Ot her ~aig hts& M,p.,~:su r e~.
0.1 0.2 0.3 0.4 05 0.6 0.7

Terms

• Documents

Mean Reciprocal Rank

Figure 6. Scatter plot of terms (labelled) and documents
against mean reciprocal rank for dynamic windows of size 2.
Note that only the points for Terms are labelled.

When these were aggregated according to the question classes
of Table 3 and plotted against the mean reciprocal rank with
dynamic windows of size 2, the graph in Figure 6 was pro-
duced. No correlation is apparent. We think that this does
not necessarily mean that no correlation exists, but rather
there are too few questions examined in some of the classes to
solidly identify a trend.

4.Related Work
The phrase "Question Answering" has been used in the litera-
ture to describe a number of related but distinct activities.
The database community uses the phrase to describe tech-
niques that support natural language query front ends to tradi-
tional database backends[4]. In the Artificial Intelligence
community, Question Answering refers to a variety of tech-
niques for answering questions using some sort of knowledge
representation scheme, a theory for reasoning over this
knowledge, and an inference engine that implements the the-
try[15].

Our Question Answering technique differs from both of these
previous approaches in two significant ways. First, our un-
derlying source of facts for answering questions is a docu-
ment collection consisting of free text documents. Second,
the free text documents are analyzed and searched in a fully
automatic fashion with no human intervention required to
extract, categorize, or organize the information contained
within the documents.

The problem of answering questions using automatically
processed text documents has been pursued by two different
communities. The Message Understanding community has
focussed on automatic fact extraction from free text docu-
ments[10]. The extracted facts are then represented in a struc-
tured form that supports reasoning over the facts. This ap-
proach typically requires significant human engineering to
customize the fact extraction process for a particular domain,
and hence does not provide the same level of domain inde-
pendence as our question answering technique.

The Information Retrieval community has pursued question
answering at a much more general level[12,18]. There the
problem is cast more broadly as the problem of satisfying a
user's information need. The typical approach is to return a
set or a rank ordered list of documents that will satisfy the
user's information need. This differs significantly from the
goal of the Question Answenng system presented here, which
strives to identify the specific phrase or sentence that immedi-
ately answers the user's question.

The earliest work most similar to that presented here is the
MURAX system described by Kupiec[8]. MURAX answers
a question by first processing the question with a Boolean
search engine, asserting possible answers based on the search
results using part-of-speech tagging and shallow NLP tech-
niques, and testing the assertions with additional queries
against the search engine.

Other similar work has come from the inaugural Question
Answering track at the TREC8 conference[5]. Our approach
is similar to many others in the way questions are typed and
mapped to named entities. The main differences lie in the
degree of natural language processing and use of ontologies.

5. Conclusions
We presented in this paper Predictive Annotation and ana-
lyzed its performance in the TREC8 Question-Answenng
track. Predictive Annotation uses shallow pattern-matching
of the textual material to augment it with a set of named entity
identifiers called QA-Tokens which are indexed along with
the text. Question analysis replaces question words with QA-
Tokens, and bag-of-word matching of short passages takes
place, using a very simple scoring mechanism. We project
that our techniques can in pnnciple handle of the order of
90% of the questions used in this track (as distinct from the
72% achieved in practice). We determined that short, dy-
namic windows in the range of 2-7 sentences were effective,
which would lead to a recommendation to use a size of 2, due
to the reduced computation entailed.

It might be instructive to list the approaches we did not use.
We did not use deep NLP or any IE template-matching. We
did not use part-of-speech tagging, nor any standard thesaurus
or ontology such as WordNet[9]. We did not even use a vari-
ant of tf*idf scoring. We think these are all important and
worthwhile techniques, and ones which we will probably use
to some extent in the future, but we were primarily interested
in how well PA works by itself. We conclude that PA is very
effective at fact-oriented question answering, and only fails
when responses require text understanding, anaphora resolu-
tion or automatic synonym or hypernym substitution, which
are all hard problems for any IR system.

References.
[1] AAAI Fall Symposium on Question Answering,

North Falmouth, MA, 1999.

190

[2] R. Byrd and Y. Ravin. "Identifying and Extracting
Relations in Text", Proceedings of NLDB 99, Kla-
genfurt, Austria.

[3] V. Chaudhri and R. Fikes. Question answering
systems: Papers from the 1999 AAAI fall sympo-
sium. Technical Report FS-99-02, AAAI Press,
1999.

[4] F.J. Damerau. Problems and some solutions in cus-
tomization of natural language database front ends.
ACM Trans. Inf. Syst., 3(2):165-184, Apr. 1985.

[5] D. Harman and E. Voorhees, editors. The Eighth
Text REtrieval Conference (TREC-8), Gaithers-
burg, MD, 2000. National Institute of Standards
and Technology Special Publication.

[6] D. Hawking, N. Craswell, and P. Thistlewaite.
Overview of TREC-7 very large collection track.
In D. K. Harman and E. M. Voorhees, editors, The
Seventh Text REtrieval Conference (TREC-7),
pages 91-104, Gaithersburg, MD, 1999. National
Institute of Standards and Technology Special Pub-
lication 500-242.

[7] V. A. Kulyukin, K.J. Hammond, and R.D. Burke.
"Answering Questions for an Organization
Online", Proceedings of AAAI'98.

[8] J. Kupiec. "Murax: A Robust Linguistic Approach
for Question Answering Using an On-line Ency-
clopaedia", Proceedings of SIGIR'93.

[9] G. Miller. "WordNet: A Lexical Database for Eng-
lish", Communications of the ACM 38(11) pp 39-
41, 1995

[10]Proc. of the Sixth Message Understanding Confer-
ence (MUC-6), November 1995, San Francisco:
Morgan Kaufmann.

[ll]E. Rosch et al. "Basic Objects in Natural Catego-
ries", Cognitive Psychology 8, 382-439, 1976.

[12] G. Salton and M.J. McGill. Introduction to Mod-
ern Information Retrieval. McGraw-Hill, New
York, 1983.

[13]R. Sfihari and W. Li. "Question Answering Sup-
ported by Information Extraction", Proceedings of
TREC8, Gaithersburg, Md., 1999.

[14]TREC Q&A Evaluation official Web site:
http://www.research.att.com/~singhal/qa-
track.htrnl

[15]E. Turban and J. Aronson. Decision Support Sys-
tems and Intelligent Systems. Prentice Hall, 1998.

[16]E. Voorhees. "Query Expansion using Lexical-
Semantic Relations", Proceedings ofSIGIR'94, 61-
69. 1994.

[17]N. Wacholder, Y. Ravin and M. Choi. "Disarn-
biguation of Proper Names in Text", Proceedings
ofANLP'97. Washington, DC, April 1997.

[18]I.H. Witten, A. Moffat, and T.C. Bell. Managing
Gigabytes: Compressing and Indexing Documents
and Images. Van Nostrand Reinhold, New York,
1994.

[19]E.W. Brown and H.A. Chong. The Guru System in
TREC-6. Proceedings of TREC6, Gaithersburg,
MD, 1998.

[20]J.M. Prager, D. Radev, E.W. Brown and A.R.
Coden. "The Use of Predictive Annotation for
Question-Answering in TREC8", Proceedings of
TREC8, Gaithersburg, MD., 2000.

[21]D. Radev, J.M.,Prager and V. Saran. "Ranking
Suspected Answers to Natural Language Questions
using Predictive Annotation", to be published in
Proceedings of ANLP'O0, Seattle, WA, 2000.

191

