
1

LBSC 796/INFM 718R: Week 5
Indexing

Jimmy Lin
College of Information Studies
University of Maryland

Monday, February 27, 2006

Muddy Points

Probability of a single word vs. probability of a
sequence

Uniform priors

Smoothing

Difference between vector space and language
models

)(
)()|()|(

BP
APABPBAP =

Why smoothing?

P(w) w
0.125 cool
0.125 I
0.125 is
0.125 language
0.125 modeling
0.125 think
0. 250 very

Model M

I think language modeling is very very cool

P(“language modeling think”)
P(“cool language modeling”)
P(“cool cool modeling”)
P(“language modeling retrieval”)

What are the probabilities?

Some Questions for Today

How long will it take to do a search?

How do I measure speed?

How big a computer will I need?
How much RAM?
How much disk space?

What if more documents arrive?

How do I index the Web?

Assumptions

Optimize for retrieval
Searching should be fast: users are impatient

Indexing speed isn’t critical
Document collection is relatively stable

When do these assumptions start to break down?

Algorithms

What is an algorithm?

Think “recipe” for problem solving

Today’s focus: algorithms for information retrieval
What data structures are involved?
How much space do they take up?
How fast are they?

a precise rule (or set of rules) specifying how to solve
some problem

2

Indexing

Search

Query

Ranked List

Indexing Index

Acquisition Collection

The Starting Point

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0
0
1
1
0
0
0
0
0
1
0
0
1
0
1
1
0

0
1
0
0
1
0
0
1
0
0
1
1
0
0
0
0
1

Term D
oc

 1
D

oc
 2

0
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
0

1
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1

D
oc

 3
D

oc
 4

0
0
0
1
0
1
1
0
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
1

D
oc

 5
D

oc
 6

0
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0

1
0
0
0
1
0
0
1
0
0
1
1
1
1
0
0
0

D
oc

 7
D

oc
 8

The term-document matrix has “bag of words” information
about the collection

Small yet Fast

Can we make this data structure smaller, keeping
in mind the need for fast retrieval?

Observations:
The nature of the search problem requires us to quickly
find which documents contain a term
The term-document matrix is very sparse
Some terms are more useful than others

Why is size important?

RAM
Typical size: 1 GB
Typical access speed: 50 ns

Hard drive:
Typical size: 80 GB (my laptop)
Typical access speed: 10 ms

Hard drive is 200,000x slower than RAM!

Why is this an important issue?

Postings

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0
0
1
1
0
0
0
0
0
1
0
0
1
0
1
1
0

0
1
0
0
1
0
0
1
0
0
1
1
0
0
0
0
1

Term D
oc

 1
D

oc
 2

0
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
0

1
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1

D
oc

 3
D

oc
 4

0
0
0
1
0
1
1
0
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
1

D
oc

 5
D

oc
 6

0
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0

1
0
0
0
1
0
0
1
0
0
1
1
1
1
0
0
0

D
oc

 7
D

oc
 8

Postings

1, 3

1, 3, 5, 7

3, 5, 7

1, 3, 5, 7, 8

1, 3, 5, 7

3, 5

1, 3, 7

2, 6, 8

2, 4, 6

2, 4, 6

2, 4, 6, 8

2, 4, 8

2, 4, 6, 8

3

4, 8

1, 5, 7

6, 8

An Inverted Index

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

Term Postings

1, 3

1, 3, 5, 7

3, 5, 7

1, 3, 5, 7, 8

1, 3, 5, 7

3, 5

1, 3, 7

2, 6, 8

2, 4, 6

2, 4, 6

2, 4, 6, 8

2, 4, 8

2, 4, 6, 8

3

4, 8

1, 5, 7

6, 8

3

What goes in the postings?

Boolean retrieval
Just the document number

Ranked Retrieval
Document number and term weight (tf.idf, ...)

Proximity operators
Word offsets for each occurrence of the term

The Retrieval Process

During retrieval:
Find the relevant postings based on query terms
Manipulate the postings based on the query
Return appropriate documents

Example with Boolean queries

Further Compressing the Index

Postings can still be quite large
Especially if you have a large collection

Idea: encode differences instead of document
numbers

Many other ways to compress the postings

What about dropping unimportant terms from the
index?

How much space does stopword removal save?

e.g., 1 million documents → 20-bit document numbers

37, 42, 43, 48, 97, 98, 243 →
37, 5, 1, 5, 49, 1, 145

Zipf’s Law

George Kingsley Zipf (1902-1950) observed that
for many frequency distributions, the nth most
frequent event is related to its frequency in the
following manner:

crf =⋅ or

r
cf =

f = frequency
r = rank
c = constant

Zipfian Distribution Zipfian Distribution

Key points:
A few elements occur very frequently
A medium number of elements have medium frequency
Many elements occur very infrequently

What’s the big deal?
English words obey Zipf’s Law

4

Word Frequency in English

the 1130021 from 96900 or 54958
of 547311 he 94585 about 53713
to 516635 million 93515 market 52110
a 464736 year 90104 they 51359
in 390819 its 86774 this 50933
and 387703 be 85588 would 50828
that 204351 was 83398 you 49281
for 199340 company 83070 which 48273
is 152483 an 76974 bank 47940
said 148302 has 74405 stock 47401
it 134323 are 74097 trade 47310
on 121173 have 73132 his 47116
by 118863 but 71887 more 46244
as 109135 will 71494 who 42142
at 101779 say 66807 one 41635
mr 101679 new 64456 their 40910
with 101210 share 63925

Frequency of 50 most common words in English
(sample of 19 million words)

Does it fit Zipf’s Law?

the 59 from 92 or 101
of 58 he 95 about 102
to 82 million 98 market 101
a 98 year 100 they 103
in 103 its 100 this 105
and 122 be 104 would 107
that 75 was 105 you 106
for 84 company 109 which 107
is 72 an 105 bank 109
said 78 has 106 stock 110
it 78 are 109 trade 112
on 77 have 112 his 114
by 81 but 114 more 114
as 80 will 117 who 106
at 80 say 113 one 107
mr 86 new 112 their 108
with 91 share 114

The following shows rf*1000/n
r is the rank of word w in the sample
f is the frequency of word w in the sample
n is the total number of word occurrences in the sample

IR and Zipf's Law

What’s the relevance of Zipf’s Law to information
retrieval?

Other Zipfian Distributions

Library book checkout patterns

Website popularity

Incoming Web page requests

Outgoing Web page requests

Document size on Web

How big is the inverted index?

Postings take up most of the space

Heap’s Law tells us about vocabulary size

When adding new documents, the system is likely to
have seen terms already
But the postings keep growing

βKnV =
6020 ., ≈≈ βK

V is vocabulary size
n is corpus size (number of documents)
K and β are constants

How big are the postings?
Very compact for Boolean retrieval

About 10% of the size of the documents

Not much larger for ranked retrieval
Perhaps 20% of collection size

Enormous for proximity operators
Sometimes larger than the document collection

5

So far…

We have discussed:
The data structure used for indexing and retrieval
Methods for compressing the inverted index

We have not discussed:
How the inverted index is actually built
How a system looks up the query terms
How fast all these operations are

Decoupling the Inverted Index

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

Postings

1, 3

1, 3, 5, 7

3, 5, 7

1, 3, 5, 7, 8

1, 3, 5, 7

3, 5

1, 3, 7

2, 6, 8

2, 4, 6

2, 4, 6

2, 4, 6, 8

2, 4, 8

2, 4, 6, 8

3

4, 8

1, 5, 7

6, 8

The term Index

Terms in the Collection

Let’s focus on the term index

The postings are relatively simple
During indexing: once you find the correct postings, add
information from current document
During retrieval: once you find the correct postings,
manipulate based on query operator

Questions
How do you find the correct posting quickly?
What happens when you come across a new term?

How do you measure speed?

We want to know if one algorithm is faster than
another

What do we measure?
Number of clock cycles?
Number of instructions?
Clock time?

What’s wrong with these measures?

Big-O Notation

A mathematical method for quantifying the
running time of an algorithm

Abstracts away from actual implementation
Abstracts away from specific machine architecture

Useful for theoretical considerations of speed

Best illustrate with examples…

Linear Dictionary Lookup

How long does this take, in the
worst case?

Running time is proportional to
number of entries in the dictionary

This algorithm is O(n)
= linear time algorithm

jambalaya

kingdom

tax

complex

respondent

arcade

peace

loiter

wingman

cadence

daffodil

subterfuge

belligerent

zebra

astronomical

relaxation

Suppose we want to find the word “complex”

Found it!

6

With a Sorted Dictionary

How long does this take, in the
worst case?

zebra

wingman

tax

subterfuge

respondent

relaxation

peace

loiter

kingdom

jambalaya

daffodil

complex

cadence

belligerent

astronomical

arcade

Let’s try again, except this time with a sorted dictionary: find “complex”

Found it!

Binary Search: Analysis

Algorithm:
Look in the middle entry of a region, call this x
If the entry you’re looking for comes before x, then look
in first half, otherwise look in second half
Repeat until you find what you’re looking for

Analysis:
Each time we look up an entry, we cut down the number
to consider by a half
How many times can you divide a number by 2?

This algorithm is O(lg n)

Which is faster?

Two algorithms:
O(n): Sequentially search through every entry
O(lg n): Binary search

Big-O notation
Tells us the asymptotic worst case running time of an
algorithm
Allows us to compare the speed of different algorithms

What was glossed over?

How much effort did it take to sort the dictionary
in the first place?

General strategy: reduce search time by doing
work ahead of time

Selection Sort

One of the simplest sorting algorithms:
Find smallest number, move it to the first position
Find 2nd smallest number, move it to the 2nd position
Find 3rd smallest number, move it to the 3rd position
…

This algorithm is O(n2)
= quadratic (polynomial) algorithm

Faster sorting algorithm: Quick sort = O(n log n)

Satisfiability

Given a boolean expression, is there an
assignment of TRUE and FALSE that makes the
entire expression true?

3-SAT: expression grouped into clauses of three
variables

The simplest algorithm is to try all possible
combinations

This algorithm is O(2n)
= exponential algorithm

E = (x1 or ~x2 or ~x3) and (x1 or x2 or x4)

Solution: x1 = TRUE, x2 = TRUE, x3 = TRUE, x4 = TRUE

7

Do the details matter?

Arrange the following from fastest to slowest:
O(n log n)
O(n2)
O(log n)
O(n)
O(2n)

What about?
10n, 100n, 1000n
n2, 2n2, 2n2 + 100

1

3

2
5

4

“Asymptotic” Complexity

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40

10n
n^2
100n

0

20000

40000

60000

80000

100000

120000

140000

50 200 350

10n
n^2
100n
100n+25263

“Asymptotic” Complexity Irrelevant Details

Big-O notation is concerned with
Asymptotic complexity
Worst-case running time

Therefore
10n, 100n, 1000n → O(n)
n2, 2n2, 2n2 + 100 → O(n2)
lg n, log8 n, log n, ln n → O(log n)

How big?

Constant, i.e., O(1)
n doesn’t matter

Sublinear, e.g., O(log n)
n = 65536 → log n = 16

Linear, i.e. O(n)
n = 65536 → n = 65536

Polynomial, e.g., O(n2)
n = 65536 → n2 = 4,294,967,296

Exponential, e.g., O(2n)
n = 65536 → beyond astronomical

Linear Term Index

Keep terms in a list, use binary search to look up

Advantages
Quick searching
Economic use of storage

Disadvantages
Long seek times

Are there alternatives for storing the term index?

8

Binary Tree

A tree structure where
Each node has at most two children
The left child comes before the parent
The right child comes after the parent

elk

bee hog

cat

dog

foxant

gnu

Input: elk, hog, bee, fox, cat, gnu, ant, dog

Binary Tree Operations

Searching (lookup x):
Start at the root, compare current node to x
Follow left child if x comes before current node
Follow right child if x comes after current node
Repeat until x is found

Indexing (adding term x) :
Search for position where you would expect to see x
Insert x there

Binary Trees

Advantages
Can be searched quickly
Easy to add an extra term
Economical use of storage (although less so than linear
term list)

Disadvantages
Trees tend to become unbalanced

Unbalanced Trees

The shape of a binary trees depends on insertion
order of terms

What’s the worst case scenario?

The need for balanced trees

B-Trees

A balanced, multiway search tree

50 65

10 19 35 55 59 70 90 98

1 5 8 9

12 14 18

36 47 66 68

72 73

91 95 97

21 24 28

Indexing and Searching

Indexing
Access the term index
Find the correct postings and add document accordingly
Relatively slow process (hours, even days)

Searching
Lookup the query terms in term index
Read the postings
Manipulate the postings based on query
Very fast (seconds)

9

Indexing the Web

We’ve assumed that the document collection is
readily available

How do we index the Web?

Web Crawlers

How do Web search engines know what to
index?

Main idea:
Start with known sites
Record information for these sites
Follow the links from each site
Record information found at new sites
Repeat

Web Crawling Algorithm

Put a set of known sites on a queue

Repeat the until the queue is empty:
Take the first page off of the queue
Check to see if this page has been processed
If this page has not yet been processed:

• Add this page to the index
• Add each link on the current page to the queue
• Record that this page has been processed

Web Crawling Issues

Size

Freshness

Different languages

The static collection assumption

Adversaries

Dynamic content

“Dark matter”

Technical problems
Missing/broken links
Invalid HTML

Summary

Information retrieval systems are only useful if
they’re responsive

Users are impatient
Interaction is critical to the information seeking process

Building fast systems that operate on large
collections is hard!

Tradeoffs in different data structures
Tradeoffs in searching/indexing cost

One Minute Paper

What was the muddiest point in today’s class?

