

Probabilistic Inference

- Suppose there's a horrible, but very rare disease The probability that you contracted it is 0.01%
- But there's a very accurate test for it The test is 99% accurate
- Unfortunately, you tested positive...
Should you panic?

Conditional Probability

$$
P(A \mid B) \equiv P(A \text { and } B) / P(B)
$$

$P(A)=$ prob. of A relative to entire event space $P(A \mid B)=$ prob. of A considering that we know B is true

More on Conditional Probability

- What if $P(A \mid B)=P(A)$?
A and B must be statistically independent!
- Is $P(A \mid B)=P(B \mid A)$?
$A=$ having studied anatomy
$B=$ being a doctor
$P($ "being a doctor") $=1 / 1000$
$P($ "having studied anatomy") $=12 / 1000$
P ("being a doctor who studied anatomy") $=1 / 1000$
$P($ "having studied anatomy" | "being a doctor") = 1
If you're a doctor, you must have studied anatomy...
$P($ "being a doctor" | "having studied anatomy") $=1 / 12$
If you've studied anatomy, you're more likely to be a
doctor, but you could also be a biologist, for example

000	Bayes' Theorem
	- You want to find
	P ("have disease"\|"test positive")
	- But you only know
	- How rare the disease is
	- How accurate the test is
	- Use Bayes' Theorem (hence Bayesian Inference)
	$P(A \mid B)=\frac{P(B \mid A) P(A)}{} \text { Prior probability }^{\text {Pr }}$
	 Posterior probability

How do we model a language?

- Brute force counts?
- Think of all the things that have ever been said or will ever be said, of any length
- Count how often each one occurs
- Is understanding the path to enlightenment?
- Figure out how meaning and thoughts are expressed
- Build a model based on this
- Throw up our hands and admit defeat?

