

•••	Probability
	 What is probability?
	 Statistical: relative frequency as n→∞
	 Subjective: degree of belief
	 Thinking probabilistically
	 Imagine a finite amount of "stuff" (= probability mass)
	 The total amount of "stuff" is one
	 The event space is "all the things that could happen"
	Distribute that "mass" over the possible events Sum of all probabilities have to add up to one
	• Sum of all probabilities have to add up to one

Doctors and Anatomy
$P(A B) \equiv P(A \text{ and } B) / P(B)$
What is P("having studied anatomy" "being a doctor")? A = having studied anatomy B = being a doctor
P("being a doctor") = 1/1000 P("having studied anatomy") = 12/1000 P("being a doctor who studied anatomy") = 1/1000
P("having studied anatomy" "being a doctor") = 1

More on Conditional Probability
What if P(A B) = P(A)?
A and B must be statistically independent!
 Is P(A B) = P(B A)?
A = having studied anatomy B = being a doctor
P("being a doctor") = 1/1000 P("having studied anatomy") = 12/1000 P("being a doctor who studied anatomy") = 1/1000
P("having studied anatomy" "being a doctor") = 1 If you're a doctor, you must have studied anatomy
P("being a doctor" "having studied anatomy") = 1/12
If you've studied anatomy, you're more likely to be a doctor, but you could also be a biologist, for example

What is a Language Model?
 Probability distribution over strings of text
How likely is a string in a given "language"?
p ₁ = P("a quick brown dog")
p ₂ = P("dog quick a brown")
р ₃ = Р("быстрая brown dog")
р ₄ = Р("быстрая собака")
In a language model for English: $p_1 > p_2 > p_3 > p_4$
 Probabilities depend on what language we're
modeling
In a language model for Russian: $p_1 < p_2 < p_3 < p_4$

•••	One Minute Paper
	o What was the muddlest point in today's class?