
1

LBSC 796/INFM 718R: Week 3
Boolean and Vector Space Models

Jimmy Lin
College of Information Studies
University of Maryland

Monday, February 13, 2006

Muddy Points

Statistics, significance tests

Precision-recall curve, interpolation

MAP

Math, math, and more math!

Reading the book

The Information Retrieval Cycle
Source

Selection

Search

Query

Selection

Ranked List

Examination

Documents

Delivery

Documents

Query
Formulation

Resource

source reselection

System discovery
Vocabulary discovery
Concept discovery
Document discovery

What is a model?

A model is a construct designed help us
understand a complex system

A particular way of “looking at things”

Models inevitably make simplifying assumptions
What are the limitations of the model?

Different types of models:
Conceptual models
Physical analog models
Mathematical models
…

The Central Problem in IR
Information Seeker Authors

Concepts Concepts

Query Terms Document Terms

Do these represent the same concepts?

The IR Black Box

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

2

Today’s Topics

Boolean model
Based on the notion of sets
Documents are retrieved only if they satisfy Boolean
conditions specified in the query
Does not impose a ranking on retrieved documents
Exact match

Vector space model
Based on geometry, the notion of vectors in high
dimensional space
Documents are ranked based on their similarity to the
query (ranked retrieval)
Best/partial match

Next Time…

Language models
Based on the notion of probabilities and processes for
generating text
Documents are ranked based on the probability that
they generated the query
Best/partial match

Representing Text

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

How do we represent text?

How do we represent the complexities of
language?

Keeping in mind that computers don’t “understand”
documents or queries

Simple, yet effective approach: “bag of words”
Treat all the words in a document as index terms for
that document
Assign a “weight” to each term based on its
“importance”
Disregard order, structure, meaning, etc. of the words

What’s a “word”? We’ll return to this in a few lectures…

Sample Document
McDonald's slims down spuds
Fast-food chain to reduce certain types of
fat in its french fries with new cooking oil.
NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as
it moves to make all its fried menu items
healthier.

But does that mean the popular shoestring fries
won't taste the same? The company says no. "It's
a win-win for our customers because they are
getting the same great french-fry taste along with
an even healthier nutrition profile," said Mike
Roberts, president of McDonald's USA.

But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use,
but at least one nutrition expert says playing with
the formula could mean a different taste.

Shares of Oak Brook, Ill.-based McDonald's
(MCD: down $0.54 to $23.22, Research,
Estimates) were lower Tuesday afternoon. It was
unclear Tuesday whether competitors Burger
King and Wendy's International (WEN: down
$0.80 to $34.91, Research, Estimates) would
follow suit. Neither company could immediately
be reached for comment.

…

16 × said

14 × McDonalds

12 × fat

11 × fries

8 × new

6 × company french nutrition

5 × food oil percent reduce
taste Tuesday

…

“Bag of Words”

What’s the point?

Retrieving relevant information is hard!
Evolving, ambiguous user needs, context, etc.
Complexities of language

To operationalize information retrieval, we must
vastly simplify the picture

Bag-of-words approach:
Information retrieval is all (and only) about matching
words in documents with words in queries
Obviously, not true…
But it works pretty well!

3

Why does “bag of words” work?

Words alone tell us a lot about content

It is relatively easy to come up with words that
describe an information need

Random: beating takes points falling another Dow 355

Alphabetical: 355 another beating Dow falling points

“Interesting”: Dow points beating falling 355 another

Actual: Dow takes another beating, falling 355 points

Vector Representation

“Bags of words” can be represented as vectors
Why? Computational efficiency, ease of manipulation
Geometric metaphor: “arrows”

A vector is a set of values recorded in any
consistent order

“The quick brown fox jumped over the lazy dog’s back”

→ [1 1 1 1 1 1 1 1 2]

1st position corresponds to “back”
2nd position corresponds to “brown”
3rd position corresponds to “dog”
4th position corresponds to “fox”
5th position corresponds to “jump”
6th position corresponds to “lazy”
7th position corresponds to “over”
8th position corresponds to “quick”
9th position corresponds to “the”

Representing Documents

The quick brown
fox jumped over
the lazy dog’s
back.

Document 1

Document 2

Now is the time
for all good men
to come to the
aid of their party.

the

is
for

to

of

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
0

1
1
0
0
1
0
0
1
0
0
1
1
0
1
0
1
1

Term D
oc

um
en

t 1

D
oc

um
en

t 2

Stopword
List

Boolean Retrieval

Weights assigned to terms are either “0” or “1”
“0” represents “absence”: term isn’t in the document
“1” represents “presence”: term is in the document

Build queries by combining terms with Boolean
operators

AND, OR, NOT

The system returns all documents that satisfy the
query

Why do we say that Boolean retrieval is “set-based”?

AND/OR/NOT

A B

All documents

C

Logic Tables

A OR B

A AND B A NOT B

NOT B

0 1

1 1

0 1

0

1

A
B

(= A AND NOT B)

0 0

0 1

0 1

0

1

A
B

0 0

1 0

0 1

0

1

A
B

1 0

0 1B

4

Boolean View of a Collection

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0
0
1
1
0
0
0
0
0
1
0
0
1
0
1
1
0

0
1
0
0
1
0
0
1
0
0
1
1
0
0
0
0
1

Term
D

oc
 1

D
oc

 2
0
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
0

1
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1

D
oc

 3
D

oc
 4

0
0
0
1
0
1
1
0
0
1
0
0
1
0
0
1
0

0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
1

D
oc

 5
D

oc
 6

0
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0

1
0
0
0
1
0
0
1
0
0
1
1
1
1
0
0
0

D
oc

 7
D

oc
 8

Each column represents the view of
a particular document: What terms
are contained in this document?

Each row represents the view of a
particular term: What documents
contain this term?

To execute a query, pick out rows
corresponding to query terms and
then apply logic table of
corresponding Boolean operator

Sample Queries

fox
dog 0

0
0
0

1
1

0
0

1
1

0
0

0
1

0
0

Term

D
oc

 1
D

oc
 2

D
oc

 3
D

oc
 4

D
oc

 5
D

oc
 6

D
oc

 7
D

oc
 8

dog ∧ fox 0 0 1 0 1 0 0 0

dog ∨ fox 0 0 1 0 1 0 1 0

dog ¬ fox 0 0 0 0 0 0 0 0

fox ¬ dog 0 0 0 0 0 0 1 0

dog AND fox → Doc 3, Doc 5

dog OR fox → Doc 3, Doc 5, Doc 7

dog NOT fox → empty

fox NOT dog → Doc 7

good
party

0
0

1
0

0
0

1
0

0
0

1
1

0
0

1
1

g ∧ p 0 0 0 0 0 1 0 1

g ∧ p ¬ o 0 0 0 0 0 1 0 0

good AND party → Doc 6, Doc 8
over 1 0 1 0 1 0 1 1

good AND party NOT over → Doc 6

Term

D
oc

 1
D

oc
 2

D
oc

 3
D

oc
 4

D
oc

 5
D

oc
 6

D
oc

 7
D

oc
 8

Proximity Operators

More “precise” versions of AND
“NEAR n” allows at most n-1 intervening terms
“WITH” requires terms to be adjacent and in order
Other extensions: within n sentences, within n
paragraphs, etc.

Relatively easy to implement, but less efficient
Store position information for each word in the
document vectors
Perform normal Boolean computations, but treat WITH
and NEAR as extra constraints

Proximity Operator Example

quick

brown

fox

over

lazy

dog

back

now

time

all

good

men

come

jump

aid

their

party

0 1 (9)

Term

1 (13)
1 (6)

1 (7)

1 (8)

1 (16)

1 (1)

1 (2)
1 (15)
1 (4)

0

0
0

0

0
0

0

0

0

0

0

0

0
0

0

0

1 (5)

1 (9)

1 (3)

1 (4)

1 (8)

1 (6)

1 (10)

D
oc

 1

D
oc

 2

time AND come → Doc 2

time (NEAR 2) come → empty

quick (NEAR 2) fox → Doc 1

quick WITH fox → empty

Other Extensions

Ability to search on fields
Leverage document structure: title, headings, etc.

Wildcards
lov* = love, loving, loves, loved, etc.

Special treatment of dates, names, companies,
etc.

WESTLAW® Query Examples
What is the statute of limitations in cases involving the federal tort claims
act?

LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

What factors are important in determining what constitutes a vessel for
purposes of determining liability of a vessel owner for injuries to a seaman
under the “Jones Act” (46 USC 688)?

(741 +3 824) FACTOR ELEMENT STATUS FACT /P VESSEL SHIP BOAT /P
(46 +3 688) “JONES ACT” /P INJUR! /S SEAMAN CREWMAN WORKER

Are there any cases which discuss negligent maintenance or failure to
maintain aids to navigation such as lights, buoys, or channel markers?

NOT NEGLECT! FAIL! NEGLIG! /5 MAINT! REPAIR! /P NAVIGAT! /5 AID
EQUIP! LIGHT BUOY “CHANNEL MARKER”

What cases have discussed the concept of excusable delay in the
application of statutes of limitations or the doctrine of laches involving
actions in admiralty or under the “Jones Act” or the “Death on the High
Seas Act”?

EXCUS! /3 DELAY /P (LIMIT! /3 STATUTE ACTION) LACHES /P “JONES ACT”
“DEATH ON THE HIGH SEAS ACT” (46 +3 761)

5

Why Boolean Retrieval Works

Boolean operators approximate natural language
Find documents about a good party that is not over

AND can discover relationships between
concepts

good party

OR can discover alternate terminology
excellent party, wild party, etc.

NOT can discover alternate meanings
Democratic party

The Perfect Query Paradox

Every information need has a perfect set of
documents

If not, there would be no sense doing retrieval

Every document set has a perfect query
AND every word in a document to get a query for it
Repeat for each document in the set
OR every document query to get the set query

But can users realistically be expected to
formulate this perfect query?

Boolean query formulation is hard!

Why Boolean Retrieval Fails

Natural language is way more complex

AND “discovers” nonexistent relationships
Terms in different sentences, paragraphs, …

Guessing terminology for OR is hard
good, nice, excellent, outstanding, awesome, …

Guessing terms to exclude is even harder!
Democratic party, party to a lawsuit, …

Strengths and Weaknesses

Strengths
Precise, if you know the right strategies
Precise, if you have an idea of what you’re looking for
Efficient for the computer

Weaknesses
Users must learn Boolean logic
Boolean logic insufficient to capture the richness of
language
No control over size of result set: either too many
documents or none
When do you stop reading? All documents in the result
set are considered “equally good”
What about partial matches? Documents that “don’t
quite match” the query may be useful also

Ranked Retrieval

Order documents by how likely they are to be
relevant to the information need

Present hits one screen at a time
At any point, users can continue browsing through
ranked list or reformulate query

Attempts to retrieve relevant documents directly,
not merely provide tools for doing so

Why Ranked Retrieval?

Arranging documents by relevance is
Closer to how humans think: some documents are
“better” than others
Closer to user behavior: users can decide when to stop
reading

Best (partial) match: documents need not have all
query terms

Although documents with more query terms should be
“better”

Easier said than done!

6

A First Try

Form several result sets from one long query
Query for the first set is the AND of all the terms
Then all but the first term, all but the second term, …
Then all but the first two terms, …
And so on until each single term query is tried

Remove duplicates from subsequent sets

Display the sets in the order they were made

Is there a more principled way to do this?

Similarity-Based Queries

Let’s replace relevance with “similarity”
Rank documents by their similarity with the query

Treat the query as if it were a document
Create a query bag-of-words

Find its similarity to each document

Rank order the documents by similarity

Surprisingly, this works pretty well!

Vector Space Model

Postulate: Documents that are “close together” in vector
space “talk about” the same things

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~ “closeness”)

Similarity Metric

How about |d1 – d2|?
This is the Euclidean distance between the vectors

Instead of distance, use “angle” between the
vectors:

Why is this not a good idea?

∑∑
∑

==

==
⋅

=
n

i ki
n

i ji

n

i kiji

kj

kj
kj

ww

ww

dd

dd
ddsim

1
2
,1

2
,

1 ,,),(rr

rr

kj

kj

dd

dd
rr

rr
⋅

=)cos(θ

Components of Similarity

The “inner product” (aka dot product) is the key to
the similarity function

The denominator handles document length
normalization

∑ =
=⋅

n

i kijikj wwdd
1 ,,

rr

∑ =
=

n

i kij wd
1

2
,

r

[]
24.41840941

 20321

≈=++++=

[] []
92200130221

2010220321
=×+×+×+×+×=

⋅Example:

Example:

Reexamining Similarity

∑∑
∑

==

==
⋅

=
n

i ki
n

i ji

n

i kiji

kj

kj
kj

ww

ww

dd

dd
ddsim

1
2
,1

2
,

1 ,,),(rr

rr

Document Vector

Query Vector

Inner Product

Length
Normalization

7

How do we weight doc terms?

Here’s the intuition:
Terms that appear often in a document should get high
weights

Terms that appear in many documents should get low
weights

How do we capture this mathematically?
Term frequency
Inverse document frequency

The more often a document contains the term “dog”, the
more likely that the document is “about” dogs.

Words like “the”, “a”, “of” appear in (nearly) all documents.

TF.IDF Term Weighting

Simple, yet effective!

i
jiji n

Nw logtf ,, ⋅=

jiw ,

ji,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

TF.IDF Example

4

5

6

3

1

3

1

6

5

3

4

3

7

1

nuclear

fallout

siberia

contaminated

interesting

complicated

information

retrieval

2

1 2 3

2

3

2

4

4

0.50

0.63

0.90

0.13

0.60

0.75

1.51

0.38

0.50

2.11

0.13

1.20

1 2 3

0.60

0.38

0.50

4

0.301

0.125

0.125

0.125

0.602

0.301

0.000

0.602

tf Wi,j

idf

Normalizing Document Vectors

Recall our similarity function:

Normalize document vectors in advance
Use the “cosine normalization” method: divide each
term weight through by length of vector

∑∑
∑

==

==
⋅

=
n

i ki
n

i ji

n

i kiji

kj

kj
kj

ww

ww

dd

dd
ddsim

1
2
,1

2
,

1 ,,),(rr

rr

Normalization Example

nuclear

fallout

siberia

contaminated

interesting

complicated

information

retrieval

0.301

0.125

0.125

0.125

0.602

0.301

0.000

0.602

4

5

6

3

1

3

1

6

5

3

4

3

7

1
2

1 2 3

2

3

2

4

4

tf

0.50

0.63

0.90

0.13

0.60

0.75

1.51

0.38

0.50

2.11

0.13

1.20

1 2 3

0.60

0.38

0.50

4

Wi,j

idf

1.70 0.97 2.67 0.87Length

0.29

0.37

0.53

0.13

0.62

0.77

0.57

0.14

0.19

0.79

0.05

0.71

1 2 3

0.69

0.44

0.57

4

W'i,j

Retrieval Example

nuclear

fallout

siberia

contaminated

interesting

complicated

information

retrieval

Query: contaminated retrieval

1

query

W'i,j

1

0.29 0.9 0.19 0.57similarity score

Ranked list:
Doc 2
Doc 4
Doc 1
Doc 3

Do we need to normalize the query vector?

0.29

0.37

0.53

0.13

0.62

0.77

0.57

0.14

0.19

0.79

0.05

0.71

1 2 3

0.69

0.44

0.57

4

W'i,j

8

Weighted Retrieval

Query: contaminated(3) retrieval
Weight query terms by assigning different term weights to query vector

nuclear

fallout

siberia

contaminated

interesting

complicated

information

retrieval

3

query

W'i,j

1

0.87 1.16 0.47 0.57similarity score

Ranked list:
Doc 2
Doc 1
Doc 4
Doc 3

0.29

0.37

0.53

0.13

0.62

0.77

0.57

0.14

0.19

0.79

0.05

0.71

1 2 3

0.69

0.44

0.57

4

W'i,j

What’s the point?

Information seeking behavior is incredibly
complex

In order to build actual systems, we must make
many simplifications

Absolutely unrealistic assumptions!
But the resulting systems are nevertheless useful

Know what these limitations are!

Summary

Boolean retrieval is powerful in the hands of a
trained searcher

Ranked retrieval is preferred in other
circumstances

Key ideas in the vector space model
Goal: find documents most similar to the query
Geometric interpretation: measure similarity in terms of
angles between vectors in high dimensional space
Documents weights are some combinations of TF, DF,
and Length
Length normalization is critical
Similarity is calculated via the inner product

One Minute Paper

What was the muddiest point in today’s class?

