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LBSC 796/INFM 718R: Week 3
Boolean and Vector Space Models

Jimmy Lin
College of Information Studies
University of Maryland

Monday, February 13, 2006

Muddy Points

Statistics, significance tests

Precision-recall curve, interpolation

MAP

Math, math, and more math!

Reading the book

The Information Retrieval Cycle
Source

Selection

Search

Query

Selection

Ranked List

Examination

Documents

Delivery

Documents

Query
Formulation

Resource

source reselection

System discovery
Vocabulary discovery
Concept discovery
Document discovery

What is a model?

A model is a construct designed help us 
understand a complex system

A particular way of “looking at things”

Models inevitably make simplifying assumptions
What are the limitations of the model?

Different types of models:
Conceptual models
Physical analog models
Mathematical models
…

The Central Problem in IR
Information Seeker Authors

Concepts Concepts

Query Terms Document Terms

Do these represent the same concepts?

The IR Black Box

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index
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Today’s Topics

Boolean model
Based on the notion of sets
Documents are retrieved only if they satisfy Boolean 
conditions specified in the query
Does not impose a ranking on retrieved documents
Exact match

Vector space model
Based on geometry, the notion of vectors in high 
dimensional space
Documents are ranked based on their similarity to the 
query (ranked retrieval)
Best/partial match

Next Time…

Language models
Based on the notion of probabilities and processes for 
generating text
Documents are ranked based on the probability that 
they generated the query
Best/partial match

Representing Text

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

How do we represent text?

How do we represent the complexities of 
language?

Keeping in mind that computers don’t “understand”
documents or queries

Simple, yet effective approach: “bag of words”
Treat all the words in a document as index terms for 
that document
Assign a “weight” to each term based on its 
“importance”
Disregard order, structure, meaning, etc. of the words

What’s a “word”?  We’ll return to this in a few lectures…

Sample Document
McDonald's slims down spuds
Fast-food chain to reduce certain types of 
fat in its french fries with new cooking oil.
NEW YORK (CNN/Money) - McDonald's Corp. is 
cutting the amount of "bad" fat in its french fries 
nearly in half, the fast-food chain said Tuesday as 
it moves to make all its fried menu items 
healthier.

But does that mean the popular shoestring fries 
won't taste the same? The company says no. "It's 
a win-win for our customers because they are 
getting the same great french-fry taste along with 
an even healthier nutrition profile," said Mike 
Roberts, president of McDonald's USA.

But others are not so sure. McDonald's will not 
specifically discuss the kind of oil it plans to use, 
but at least one nutrition expert says playing with 
the formula could mean a different taste.

Shares of Oak Brook, Ill.-based McDonald's 
(MCD: down $0.54 to $23.22, Research, 
Estimates) were lower Tuesday afternoon. It was 
unclear Tuesday whether competitors Burger 
King and Wendy's International (WEN: down 
$0.80 to $34.91, Research, Estimates) would 
follow suit. Neither company could immediately 
be reached for comment.

…

16 × said 

14 × McDonalds

12 × fat

11 × fries

8 × new

6 × company french nutrition

5 × food oil percent reduce 
taste Tuesday

…

“Bag of Words”

What’s the point?

Retrieving relevant information is hard!
Evolving, ambiguous user needs, context, etc.
Complexities of language

To operationalize information retrieval, we must 
vastly simplify the picture

Bag-of-words approach:
Information retrieval is all (and only) about matching 
words in documents with words in queries
Obviously, not true…
But it works pretty well!
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Why does “bag of words” work?

Words alone tell us a lot about content

It is relatively easy to come up with words that 
describe an information need

Random: beating takes points falling another Dow 355

Alphabetical: 355 another beating Dow falling points

“Interesting”: Dow points beating falling 355 another

Actual: Dow takes another beating, falling 355 points

Vector Representation

“Bags of words” can be represented as vectors
Why? Computational efficiency, ease of manipulation
Geometric metaphor: “arrows”

A vector is a set of values recorded in any 
consistent order

“The quick brown fox jumped over the lazy dog’s back”

→ [ 1 1 1 1 1 1 1 1 2 ]

1st position corresponds to “back”
2nd position corresponds to “brown”
3rd position corresponds to “dog”
4th position corresponds to “fox”
5th position corresponds to “jump”
6th position corresponds to “lazy”
7th position corresponds to “over”
8th position corresponds to “quick”
9th position corresponds to “the”

Representing Documents

The quick brown 
fox jumped over 
the lazy dog’s 
back. 

Document 1

Document 2

Now is the time 
for all good men 
to come to the 
aid of their party.
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Boolean Retrieval

Weights assigned to terms are either “0” or “1”
“0” represents “absence”: term isn’t in the document
“1” represents “presence”: term is in the document

Build queries by combining terms with Boolean 
operators

AND, OR, NOT

The system returns all documents that satisfy the 
query

Why do we say that Boolean retrieval is “set-based”?

AND/OR/NOT

A B

All documents

C

Logic Tables

A  OR  B

A  AND  B A  NOT  B

NOT  B

0 1

1 1

0 1

0

1

A
B

(= A  AND NOT  B)

0 0

0 1

0 1

0

1

A
B

0 0

1 0

0 1

0

1

A
B

1 0

0 1B



4

Boolean View of a Collection
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Each column represents the view of 
a particular document: What terms 
are contained in this document?

Each row represents the view of a 
particular term: What documents 
contain this term?

To execute a query, pick out rows 
corresponding to query terms and 
then apply logic table of 
corresponding Boolean operator

Sample Queries

fox
dog 0

0
0
0

1
1
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dog ∧ fox 0 0 1 0 1 0 0 0

dog ∨ fox 0 0 1 0 1 0 1 0

dog ¬ fox 0 0 0 0 0 0 0 0

fox ¬ dog 0 0 0 0 0 0 1 0

dog AND fox → Doc 3, Doc 5

dog OR fox → Doc 3, Doc 5, Doc 7

dog NOT fox → empty

fox NOT dog → Doc 7
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good AND party → Doc 6, Doc 8
over 1 0 1 0 1 0 1 1

good AND party NOT over → Doc 6
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Proximity Operators

More “precise” versions of AND
“NEAR n” allows at most n-1 intervening terms
“WITH” requires terms to be adjacent and in order
Other extensions: within n sentences, within n
paragraphs, etc.

Relatively easy to implement, but less efficient
Store position information for each word in the 
document vectors
Perform normal Boolean computations, but treat WITH 
and NEAR as extra constraints

Proximity Operator Example
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time AND come → Doc 2

time (NEAR 2) come → empty

quick (NEAR 2) fox → Doc 1

quick WITH fox → empty

Other Extensions

Ability to search on fields
Leverage document structure: title, headings, etc.

Wildcards
lov* = love, loving, loves, loved, etc.

Special treatment of dates, names, companies, 
etc.

WESTLAW® Query Examples
What is the statute of limitations in cases involving the federal tort claims 
act?

LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

What factors are important in determining what constitutes a vessel for 
purposes of determining liability of a vessel owner for injuries to a seaman 
under the “Jones Act” (46 USC 688)?

(741 +3 824) FACTOR ELEMENT STATUS FACT /P VESSEL SHIP BOAT /P 
(46 +3 688) “JONES ACT” /P INJUR! /S SEAMAN CREWMAN WORKER

Are there any cases which discuss negligent maintenance or failure to 
maintain aids to navigation such as lights, buoys, or channel markers?

NOT NEGLECT! FAIL! NEGLIG! /5 MAINT! REPAIR! /P NAVIGAT! /5 AID 
EQUIP! LIGHT BUOY “CHANNEL MARKER”

What cases have discussed the concept of excusable delay in the 
application of statutes of limitations or the doctrine of laches involving 
actions in admiralty or under the “Jones Act” or the “Death on the High 
Seas Act”?

EXCUS! /3 DELAY /P (LIMIT! /3 STATUTE ACTION) LACHES /P “JONES ACT”
“DEATH ON THE HIGH SEAS ACT” (46 +3 761)
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Why Boolean Retrieval Works

Boolean operators approximate natural language
Find documents about a good party that is not over

AND can discover relationships between 
concepts

good party

OR can discover alternate terminology
excellent party, wild party, etc.

NOT can discover alternate meanings
Democratic party

The Perfect Query Paradox

Every information need has a perfect set of 
documents

If not, there would be no sense doing retrieval

Every document set has a perfect query
AND every word in a document to get a query for it
Repeat for each document in the set
OR every document query to get the set query

But can users realistically be expected to 
formulate this perfect query?

Boolean query formulation is hard!

Why Boolean Retrieval Fails

Natural language is way more complex

AND “discovers” nonexistent relationships
Terms in different sentences, paragraphs, …

Guessing terminology for OR is hard
good, nice, excellent, outstanding, awesome, …

Guessing terms to exclude is even harder!
Democratic party, party to a lawsuit, …

Strengths and Weaknesses

Strengths
Precise, if you know the right strategies
Precise, if you have an idea of what you’re looking for
Efficient for the computer

Weaknesses
Users must learn Boolean logic
Boolean logic insufficient to capture the richness of 
language
No control over size of result set: either too many 
documents or none
When do you stop reading? All documents in the result 
set are considered “equally good”
What about partial matches? Documents that “don’t 
quite match” the query may be useful also

Ranked Retrieval

Order documents by how likely they are to be 
relevant to the information need

Present hits one screen at a time
At any point, users can continue browsing through 
ranked list or reformulate query

Attempts to retrieve relevant documents directly, 
not merely provide tools for doing so

Why Ranked Retrieval?

Arranging documents by relevance is
Closer to how humans think: some documents are 
“better” than others
Closer to user behavior: users can decide when to stop 
reading

Best (partial) match: documents need not have all 
query terms

Although documents with more query terms should be 
“better”

Easier said than done!
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A First Try

Form several result sets from one long query
Query for the first set is the AND of all the terms
Then all but the first term, all but the second term, …
Then all but the first two terms, …
And so on until each single term query is tried

Remove duplicates from subsequent sets

Display the sets in the order they were made

Is there a more principled way to do this?

Similarity-Based Queries

Let’s replace relevance with “similarity”
Rank documents by their similarity with the query

Treat the query as if it were a document
Create a query bag-of-words

Find its similarity to each document

Rank order the documents by similarity

Surprisingly, this works pretty well!

Vector Space Model

Postulate: Documents that are “close together” in vector 
space “talk about” the same things

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

Therefore, retrieve documents based on how close the 
document is to the query (i.e., similarity ~ “closeness”)

Similarity Metric

How about |d1 – d2|?
This is the Euclidean distance between the vectors

Instead of distance, use “angle” between the 
vectors:

Why is this not a good idea?
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The “inner product” (aka dot product) is the key to 
the similarity function

The denominator handles document length 
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How do we weight doc terms?

Here’s the intuition:
Terms that appear often in a document should get high 
weights

Terms that appear in many documents should get low 
weights

How do we capture this mathematically?
Term frequency
Inverse document frequency

The more often a document contains the term “dog”, the 
more likely that the document is “about” dogs.

Words like “the”, “a”, “of” appear in (nearly) all documents.

TF.IDF Term Weighting

Simple, yet effective!

i
jiji n

Nw logtf ,, ⋅=

jiw , 

ji,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

TF.IDF Example
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Normalizing Document Vectors

Recall our similarity function:

Normalize document vectors in advance
Use the “cosine normalization” method: divide each 
term weight through by length of vector
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Query: contaminated retrieval

1

query
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0.29 0.9 0.19 0.57similarity score

Ranked list:
Doc 2
Doc 4
Doc 1
Doc 3

Do we need to normalize the query vector?
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Weighted Retrieval

Query: contaminated(3) retrieval
Weight query terms by assigning different term weights to query vector

nuclear
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information
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0.87 1.16 0.47 0.57similarity score

Ranked list:
Doc 2
Doc 1
Doc 4
Doc 3
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0.44
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What’s the point?

Information seeking behavior is incredibly 
complex

In order to build actual systems, we must make 
many simplifications

Absolutely unrealistic assumptions!
But the resulting systems are nevertheless useful

Know what these limitations are!

Summary

Boolean retrieval is powerful in the hands of a 
trained searcher

Ranked retrieval is preferred in other 
circumstances

Key ideas in the vector space model
Goal: find documents most similar to the query
Geometric interpretation: measure similarity in terms of 
angles between vectors in high dimensional space
Documents weights are some combinations of TF, DF, 
and Length
Length normalization is critical
Similarity is calculated via the inner product

One Minute Paper

What was the muddiest point in today’s class?


