Question Answering

Think of Question

Answer

Retrieval

Answer

Deliver

Information Retrieval Cycle

- Source
- Selection
- Query
- Search
- Ranked List
- Selection
- Documents

- Source reselection
- System discovery
- Vocabulary discovery
- Concept discovery
- Document discovery

- Information Seeking Behavior

- Potentially difficult or time-consuming steps of the information seeking process:
 - Query formulation
 - Query refinement
 - Document examination and selection

- What if a system can directly satisfy information needs phrased in natural language?
 - Question asking is intuitive for humans
 - Compromised query = formalized query

This is a goal of question answering...

When is QA a good idea?

- Question asking is effective when:
 - The user knows exactly what he or she wants
 - The desired information is short, fact-based, and (generally) context-free
 - Who discovered Oxygen?
 - When did Hawaii become a state?
 - Where is Ayer’s Rock located?
 - What team won the World Series in 1992?

- Question asking is less effective when:
 - The information need is vague or broad
 - The information request is exploratory in nature

Contrasting Information Needs

- Ad hoc retrieval: find me documents “like this”
 - Identify positive accomplishments of the Hubble telescope since it was launched in 1991.
 - Compile a list of mammals that are considered to be endangered, identify their habitat and, if possible, specify what threatens them.

- Question answering
 - Who discovered Oxygen?
 - “Factoid” Who did Hawaii become a state?
 - Where is Ayer’s Rock located?
 - What team won the World Series in 1992?
 - What countries export oil?
 - “List” Name U.S. cities that have a “Shubert” theater.
 - “Definition” Who is Aaron Copland?
 - What is a quasar?
From this...

Where is Portuguese spoken?

To this...

http://start.csail.mit.edu/

Why is this better than Google?

- Keywords cannot capture semantic constraints between query terms:
 - “home run records”
 - Who holds the record for most home runs hit in a season?
 - Where is the home page for Run Records?
 - “Boston sublet”
 - I am looking for a room to sublet in Boston.
 - I have a room to sublet in Boston.
 - “Russia invade”
 - What countries have invaded Russia in the past?
 - What countries has Russia invaded in the past?
- Document retrieval systems cannot fuse together information from multiple documents

Who would benefit?

- Sample target users of a QA system
 - Journalists checking facts:
 - When did Mount Vesuvius last erupt?
 - Who was the president of Vichy France?
 - Analysts seeking specific information:
 - What is the maximum diving depth of a Kilo sub?
 - What’s the range of China’s newest ballistic missile?
 - School children doing homework:
 - What is the capital of Zimbabwe?
 - Where was John Wilkes Booth captured?
- Question answering fills an important niche in the broader information seeking environment

Roots of Question Answering

- Information Retrieval (IR)
- Information Extraction (IE)

Information Retrieval (IR)

- Can substitute “document” for “information”
- IR systems
 - Use statistical methods
 - Rely on frequency of words in query, document, collection
 - Retrieve complete documents
 - Return ranked lists of “hits” based on relevance
- Limitations
 - Answers questions indirectly
 - Does not attempt to understand the “meaning” of user’s query or documents in the collection
Information Extraction (IE)

- **IE systems**
 - Identify documents of a specific type
 - Extract information according to pre-defined templates
 - Place the information into frame-like database records

- Templates = pre-defined questions
- Extracted information = answers
- Limitations
 - Templates are domain dependent and not easily portable
 - One size does not fit all!

Basic Strategy for Factoid QA

- **Determine the semantic type of the expected answer**
 - "Who won the Nobel Peace Prize in 1991?" is looking for a PERSON

- **Retrieve documents that have keywords from the question**
 - Retrieve documents that have the keywords "won", "Nobel Peace Prize", and "1991"

- **Look for named-entities of the proper type near keywords**
 - Look for a PERSON near the keywords "won", "Nobel Peace Prize", and "1991"

An Example

Who won the Nobel Peace Prize in 1991?

But many foreign investors remain sceptical, and western governments are withholding aid because of the State's dismal human rights record and the continued detention of Ms Aung San Suu Kyi, the opposition leader who won the Nobel Peace Prize in 1991.

The military junta took power in 1988 as pro-democracy demonstrations were sweeping the country. It held elections in 1990, but has ignored their result. It has kept the 1991 Nobel peace prize winner, Aung San Suu Kyi - leader of the opposition party which won a landslide victory in the poll - under house arrest since July 1989.

The regime, which is also engaged in a battle with insurgents near its eastern border with Thailand, ignored a 1990 election victory by an opposition party and is detaining its leader, Ms Aung San Suu Kyi, who was awarded the 1991 Nobel Peace Prize. According to the British Red Cross, 5,000 or more refugees, mainly the elderly and women and children, are crossing into Bangladesh each day.

Question analysis

- **Question word cues**
 - Who → person, organization, location (e.g., city)
 - When → date
 - Where → location
 - What/Why/How → ??

- **Head noun cues**
 - What city, which country, what year...
 - Which astronaut, what blues band, ...

- **Scalar adjective cues**
 - How long, how fast, how far, how old, ...

- **Cues from verbs**
 - For example, win implies person or organization

Generic QA Architecture

Using WordNet

- **What is the service ceiling of an U-2?**
- length, wingspan, diameter, radius, altitude, ceiling, NUMBER
- length, wingspan, diameter, radius, altitude, ceiling
Extracting Named Entities

Person: Mr. Hubert J. Smith, Adm. McInnes, Grace Chan
Title: Chairman, Vice President of Technology, Secretary of State
Country: USSR, France, Haiti, Haitian Republic
City: New York, Rome, Paris, Birmingham, Seneca Falls
Province: Kansas, Yorkshire, Uttar Pradesh
Business: GTE Corporation, FreeMarkets Inc., Acme
University: Bryn Mawr College, University of Iowa
Organization: Red Cross, Boys and Girls Club

More Named Entities

Currency: 400 yen, $100, DM 450,000
Linear: 10 feet, 100 miles, 15 centimeters
Area: a square foot, 15 acres
Volume: 6 cubic feet, 100 gallons
Weight: 10 pounds, half a ton, 100 kilos
Duration: 10 day, five minutes, 3 years, a millennium
Frequency: daily, biannually, 5 times, 3 times a day
Speed: 6 miles per hour, 15 feet per second, 5 kph
Age: 3 weeks old, 10-year-old, 50 years of age

How do we extract NEs?

- Heuristics and patterns
- Fixed-lists (gazetteers)
- Machine learning approaches

Indexing Named Entities

- Why would we want to index named entities?
- Index named entities as special tokens
- In reality, at the time of Edison’s 1879 patent, the light bulb
 had been in existence for some five decades ….
- And treat special tokens like query terms
 - Who patented the light bulb? patent light bulb PERSON
 - When was the light bulb patented? patent light bulb DATE
- Works pretty well for question answering

Answer Type Hierarchy

When things go awry...

- Where do lobsters like to live?
 - on a Canadian airline
- Where do hyenas live?
 - in Saudi Arabia
 - in the back of pick-up trucks
- Where are zebras most likely found?
 - near dumps
 - in the dictionary
- Why can't ostriches fly?
 - Because of American economic sanctions
- What’s the population of Maryland?
 - three
Question Answering... 2001
 - Formal evaluation of QA sponsored by NIST
 - Answer unseen questions using a newspaper corpus
- Question answering systems consisted of
 - A named-entity detector
 - Tacked on to a traditional document retrieval system
- General architecture:
 - Identify question type: person, location, date, etc.
 - Get candidate documents from off-the-shelf IR engines
 - Find named-entities of the correct type

Elaborate Ontologies
- Falcon: SMU’s 2000 system in TREC:
 - 27 named entity categories
 - 15 top level nodes in answer type hierarchy
 - Complex many-to-many mapping between entity types and answer type hierarchy
- Webclopedia: ISI’s 2000 system TREC:
 - Manually analyzed 17,384 questions
 - QA typology with 94 total nodes, 47 leaf nodes
 - As conceived, question answering was an incredibly labor-intensive endeavor...
 - Is there a way to shortcut the knowledge engineering effort?

Just Another Corpus?
- Is the Web just another corpus?
- Can we simply apply traditional IR+NE-based question answering techniques on the Web?

Not Just Another Corpus...
- The Web is qualitatively different from a closed corpus
- Many IR+NE-based question answering techniques are still effective
- But we need a different set of techniques to capitalize on the Web as a document collection

Using the Web for QA
- How big is the Web?
 - Tens of terabytes? No agreed upon methodology on how to measure it
 - Google indexes over 8 billion Web pages
- How do we access the Web?
 - Leverage existing search engines
- Size gives rise to data redundancy
 - Knowledge stated multiple times...
 - in multiple documents
 - in multiple formulations

Other Considerations
- Poor quality of many individual pages
 - Documents contain misspellings, incorrect grammar, wrong information, etc.
 - Some Web pages aren’t even “documents” (tables, lists of items, etc.): not amenable to named-entity extraction or parsing
- Heterogeneity
 - Range in genre: encyclopedia articles vs. weblogs
 - Range in objectivity: CNN articles vs. cult websites
 - Range in document complexity: research journal papers vs. elementary school book reports
Leveraging Data Redundancy

- Take advantage of different reformulations
 - The expressiveness of natural language allows us to say the same thing in multiple ways
 - This poses a problem for question answering
 - Question asked: "How do we bridge these two?"
 - Answer stated: "Colorado became a state on August 1, 1876.
 "
 - With data redundancy, it is likely that answers will be stated in the same way the question was asked
 - Cope with poor document quality
 - When many documents are analyzed, wrong answers become "noise"

Effects of Data Redundancy

[Breck et al. 2001; Light et al. 2001]

Are questions with more answer occurrences "easier"?
Examined the effect of answer occurrences on question answering performance (on TREC-8 results)

![Graph showing MRR as a function of number of snippets returned from the search engine. (TREC-8, q01-700)](image)

Effects of Data Redundancy

[Clarke et al. 2001a]

How does corpus size affect performance?
Selected 87 "people" questions from TREC-9; Tested effect of corpus size on passage retrieval algorithm (using 100GB TREC Web Corpus)

![Graph showing MRR as a function of number of snippets returned from the search engine. (TREC-8, q01-700)](image)

Effects of Data Redundancy

[Dumais et al. 2002]

How many search engine results should be used?
Plootted performance of a question answering system against the number of search engine snippets used

Capitalizing on Search Engines

- Leverage existing information retrieval infrastructure
 - The engineering task of indexing and retrieving terabyte-sized document collections has been solved
 - Existing search engines are "good enough"
- Build systems on top of commercial search engines, e.g., Google, FAST, AltaVista, Teoma, etc.
Redundancy-Based QA
- Reformulate questions into surface patterns likely to contain the answer
- Harvest “snippets” from Google
- Generate n-grams from snippets
- Compute candidate scores
- “Compact” duplicate candidates
- Apply appropriate type filters

Question Reformulation
- Anticipate common ways of answering questions
- Translate questions into surface patterns
 - When did the Mesozoic period end?
 - The Mesozoic period ended ?x
 - Apply simple pattern matching rules
 - wh-word did ... verb ... verb+ed
- Default to “bag of words” query if no reformulation can be found

N-Gram Mining
- Apply reformulated patterns to harvest snippets

Refining Answer Candidates
- Score candidates by frequency of occurrence and idf-values
- Eliminate candidates that are substrings of longer candidates
- Filter candidates by known question type
 - What state ... answer must be a state
 - What language ... answer must be a state
 - How {fast, tall, far, ...} → answer must be a number

What IS the answer?
- Who is Bill Gates married to?
 - Melinda French
 - Microsoft
 - Mary Maxwell

Evaluation Metrics
- Mean Reciprocal Rank (MRR)
 - Reciprocal rank = inverse of rank at which first correct answer was found: \([1, 0.5, 0.33, 0.25, 0.2, 0]\)
 - MRR = average over all questions
- Judgments: correct, unsupported, incorrect
 - Correct: answer string answers the question in a “responsive” fashion and is supported by the document
 - Unsupported: answer string is correct but the document does not support the answer
 - Incorrect: answer string does not answer the question
- Percentage wrong
 - Fraction of questions judged incorrect
How well did it work?

TREC 2001 QA Track Results (Lenient)

Pattern Learning

Automatically learn surface patterns for answering questions from the World Wide Web

- BIRTHYEAR questions: When was <NAME> born?
 - <NAME> was born on <BIRTHYEAR>.
 - <NAME> (<BIRTHYEAR>-born in <BIRTHYEAR>), <NAME>…

1. Start with a "seed", e.g. (Mozart, 1756)
2. Download Web documents using a search engine
3. Retain sentences that contain both question and answer terms
4. Extract the longest matching substring that spans <QUESTION> and <ANSWER>
5. Calculate precision of patterns
 - Precision for each pattern = # of patterns with correct answer / # of total patterns

Example: DISCOVERER questions (Who discovered X?)

- <ANSWER> discovered <NAME> in <BIRTHYEAR>
- <NAME> was discovered by <ANSWER> in <BIRTHYEAR>.
- Discovery of <NAME> by <ANSWER>.
- <ANSWER> discovered <NAME>, the Sets
- <ANSWER> discovers <NAME>.
- <ANSWER>, the discoverer of <NAME>.
- <ANSWER>'s discovery of <NAME>.
- When <ANSWER> discovered <NAME>.

Pattern Learning

Observations
- Surface patterns perform better on the Web than on the TREC corpus
- Surface patterns could benefit from notion of constituency, e.g., match not words but NPs, VPs, etc.

Zipf’s Law in TREC

Cumulative distribution of question types in the TREC test collections

- Ten question types alone account for ~20% of questions from TREC-9 and ~35% of questions from TREC-2001

The Big Picture

- Start with structured or semistructured resources on the Web
- Organize them to provide convenient methods for access
- Connected these resources to a natural language front end

Sample Resources

- Internet Movie Database
 - Content: cast, crew, and other movie-related information
 - Size: hundreds of thousands of movies; tens of thousands of actors/actresses
- CIA World Factbook
 - Content: geographic, political, demographic, and economic information
 - Size: approximately two hundred countries/territories in the world
- Biography.com
 - Content: short biographies of famous people
 - Size: tens of thousands of entries
“Zipf’s Law of QA”

Observation: A few “question types” account for a large portion of all question instances.

Similar questions can be parameterized and grouped into question classes, e.g.,

- When was [Mozart, Einstein, Gandhi] born?
- What is the state bird of [Alabama, Alaska, Arizona]?
- Where is [the Eiffel Tower, the Statue of Liberty, Taj Mahal] located?

Applying Zipf’s Law of QA

Observation: Frequently occurring questions translate naturally into database queries.

- What is the population of [x ∈ country]?
- When was [x ∈ famous_person] born?

How can we organize Web data so that such “database queries” can be easily executed?

Slurp or Wrap?

- Two general ways for accessing structured and semistructured Web resources

Wrap
- Also called “screen scraping”
- Provide programmatic access to Web resources (in essence, an API)
- Retrieve results dynamically by
 - Imitating a CGI script
 - Fetching a live HTML page

Slurp
- “Vacuum” out information from Web sources
- Restructure information in a local database

Tradeoffs: Wrapping

Advantages:
- Information is always up-to-date (even when the content of the original source changes)
- Dynamic information (e.g., stock quotes and weather reports) is easy to access

Disadvantages:
- Queries are limited in expressiveness
- Queries limited by the CGI facilities offered by the website
- Aggregate operations (e.g., sum) are often impractical
- Reliability issues: what if source goes down?
- Wrapper maintenance: what if source changes layout/format?

Tradeoffs: Slurping

Advantages:
- Queries can be arbitrarily expressive
- Allows retrieval of records based on different keys
- Aggregate operations (e.g., max) are easy
- Information is always available (high reliability)

Disadvantages:
- State data problem: what if the original source changes or is updated?
- Dynamic data problem: what if the information changes frequently? (e.g., stock quotes and weather reports)
- Resource limitations: what if there is simply too much data to store locally?

Putting it together

Connecting natural language questions to structured and semistructured data

- Natural Language System
- Structured Data
- Semi-structured Database (slurp or wrap)

What is the population of [x ∈ country]?
- Get population of [x] from CIA Factbook

When was [x ∈ famous_person] born?
- Get birthdate of [x] from Biography.com
START and Omnibase

The first question answering system for the World Wide Web — online since 1993

Omnibase: Overview

- A "virtual" database that integrates structured and semistructured data sources
- An abstraction layer over heterogeneous sources

Omnibase: OPV Model

- The Object-Property-Value (OPV) data model
 - Relational data model adopted for natural language
 - Simple, yet pervasive
 - Sources contain objects
 - Objects have properties
 - Properties have values
 - Many natural language questions can be analyzed as requests for the value of a property of an object
- The "get" command:
 \[(\text{get source object property}) \rightarrow \text{value}\]

Omnibase: OPV Coverage

10 Web sources mapped into the Object-Property-Value data model cover 27% of the TREC-9 and 47% of the TREC-2001 QA Track questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Object</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who wrote the music for the Titanic?</td>
<td>Titanic</td>
<td>composer</td>
<td>John Williams</td>
</tr>
<tr>
<td>Who invented dynamite?</td>
<td>dynamite</td>
<td>inventor</td>
<td>Alfred Nobel</td>
</tr>
<tr>
<td>What languages are spoken in Guernsey?</td>
<td>Guernsey</td>
<td>languages</td>
<td>English, French</td>
</tr>
<tr>
<td>Show me paintings by Monet.</td>
<td>Monet</td>
<td>works</td>
<td></td>
</tr>
</tbody>
</table>

Omnibase: Wrappers

Omnibase Query:

\[(\text{get IPL "Abraham Lincoln" spouse})\]

Mary Todd (1818–1862), on November 4, 1842
Omnibase: Wrapper Operation

1. Generate URL
 - Map symbols onto URL
 - Sometimes URLs can be computed directly from symbols
 - Sometimes the mapping must be stored locally

 "Abraham Lincoln"
 "Abe Lincoln"
 "Lincoln"

 http://www.ipl.org/div/potus/alincoln.html

2. Fetch Web page

3. Extract relevant information
 - Search for textual landmarks that delimit desired information (usually with regular expressions)

 Married: (.*)

Sometimes URLs can be computed directly from symbols.

Sometimes the mapping must be stored locally.

Connecting the Pieces

Advanced Question Answering

- Move form “factoid” questions to more realistic question answering environments
- My current direction of research: clinical question answering

Beyond Counting Words...

- Information retrieval is based on counting words
- Different ways of “bookkeeping”:
 - Vector space
 - Probabilistic
 - Language modeling

- Words alone aren’t enough to capture meaning

- Retrieval of information:
 - Should be performed at the conceptual level
 - Should leverage knowledge about the information seeking process

Knowledge: User Tasks

- Clinical tasks
 - Therapy: Selecting effective treatments, taking into account other factors such as risk and cost
 - Diagnosis: Selecting and interpreting diagnostic tests, while considering their precision, safety, cost, etc
 - Prognosis: Estimating the patient’s likely course over time and anticipating likely complications
 - Etiology: Identifying the causes for diseases

- Considerations for strength of evidence
 - Strength of Recommendations Taxonomy (SORT): three evidence grades
Question: In children with an acute febrile illness, what is the efficacy of single-medication therapy with acetaminophen or ibuprofen in reducing fever?

Task: Antipyretic efficacy of ibuprofen vs acetaminophen.

Population/Problem: children/acute febrile illness

Intervention: acetaminophen, ibuprofen

Comparison: ibuprofen

Outcome: reducing fever

MEDLINE

Answer: Ibuprofen provided greater temperature decrement and longer duration of antipyresis than acetaminophen when the two drugs were administered in approximately equal doses.
Overall Architecture

- MetaMap/SemRep
- UMLS
- Evidence-Based Medicine
- Semantic Matcher
- Knowledge Extractor (for abstracts)
- Knowledge Extractor (for questions)
- Clinical task and PICO elements

Citation Reranking Experiment

Question: What is the best treatment for analgesic rebound headaches?

- MEDLINE
- Knowledge Extractor
- Semantic Matcher

Experimental Results

- We created a test collection comprised of 50 realistic clinical questions
- Performance on held-out blind test set:

<table>
<thead>
<tr>
<th></th>
<th>Therapy</th>
<th>Diagnosis</th>
<th>Prognosis</th>
<th>Etiology</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision at 10 (P@10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PubMed</td>
<td>362</td>
<td>279</td>
<td>226</td>
<td>331</td>
<td>291</td>
</tr>
<tr>
<td>EBM</td>
<td>742 (+125%)</td>
<td>567 (+27%)</td>
<td>432 (+117%)</td>
<td>340 (+100%)</td>
<td>660 (+97%)</td>
</tr>
</tbody>
</table>

Mean Average Precision (MAP)

<table>
<thead>
<tr>
<th></th>
<th>Therapy</th>
<th>Diagnosis</th>
<th>Prognosis</th>
<th>Etiology</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>PubMed</td>
<td>421</td>
<td>279</td>
<td>226</td>
<td>331</td>
<td>291</td>
</tr>
<tr>
<td>EBM</td>
<td>713 (+66%)</td>
<td>607 (+130%)</td>
<td>715 (+204%)</td>
<td>651 (+187%)</td>
<td>722 (+182%)</td>
</tr>
</tbody>
</table>

Multiple Approaches to QA

- Employ answer type ontologies (IR+IE)
- Leverage Web redundancy
- Leverage semi-structured data sources
- Semantically model restricted domains for "conceptual retrieval"