

Extracting Named Entities

•••

Person: Mr. Hubert J. Smith, Adm. McInnes, Grace Chan Title: Chairman, Vice President of Technology, Secretary of State Country: USSR, France, Haiti, Haitian Republic City: New York, Rome, Paris, Birmingham, Seneca Falls Province: Kansas, Yorkshire, Uttar Pradesh Business: GTE Corporation, FreeMarkets Inc., Acme University: Bryn Mawr College, University of Iowa Organization: Red Cross, Boys and Girls Club

More Named Entities Currency: 400 yen, \$100, DM 450,000 Linear: 10 feet, 100 miles, 15 centimeters Area: a square foot, 15 acres Volume: 6 cubic feet, 100 gallons Weight: 10 pounds, half a ton, 100 kilos Duration: 10 day, five minutes, 3 years, a millennium Frequency: daily, biannually, 5 times, 3 times a day Speed: 6 miles per hour, 15 feet per second, 5 kph Age: 3 weeks old, 10-year-old, 50 years of age

•••	Leveraging Data Redundancy
	 Take advantage of different reformulations
	 The expressiveness of natural language allows us to say the same thing in multiple ways
	 This poses a problem for question answering
	Question asked in one way How do we bridge these two? in another way "Colorado was admitted to
	"When did Colorado the Union on August 1, 15/6". become a state?" "Colorado became a state on August 1, 15/6"
	 With data redundancy, it is likely that answers will be stated in the same way the question was asked
	 Cope with poor document quality
	 When many documents are analyzed, wrong answers become "noise"

Question Reformulation

- Anticipate common ways of answering questions
- Translate questions into surface patterns
 - When did the Mesozoic period end? → The Mesozoic period ended ?x
 - Apply simple pattern matching rules
 wh-word did ... verb → ... verb+ed
- Default to "bag of words" query if no reformulation can be found

•••	Pattern L	earning	
	Example: DISCO	/ERER questions (Who discovered X?)	
	1.0	when <answer> discovered <name></name></answer>	
	1.0	<answer>'s discovery of <name></name></answer>	
	1.0	<answer>, the discoverer of <name></name></answer>	
	1.0	<answer> discovers <name></name></answer>	
	1.0	<answer> discover <name></name></answer>	
	1.0	<answer> discovered <name>, the</name></answer>	
	1.0	discovery of <name> by <answer></answer></name>	
	0.95	<name> was discovered by <answer></answer></name>	
	0.91	of <answer>'s <name></name></answer>	
	0.9	<name> was discovered by <answer> in</answer></name>	
	 Observations Surface pat TREC corp Surface pat constituence 	S terns perform better on the Web than on th us terns could benefit from notion of y, e.g., match not words but NPs, VPs, etc	he c.

•••	"Zipf's Law of QA" Observation: a few "question types" account for a large portion of all question instances
	Similar questions can be parameterized and grouped into question classes, e.g.,
	When was When was Gandhi born?
	What is the state flower of Alabama Alaska Arizona ?
	Where is the Eiffel Tower the Statue of Liberty Taj Mahal

Beyond Counting Words... Information retrieval is based on counting words Different ways of "bookkeeping": Vector space Probabilistic Language modeling Words alone aren't enough to capture meaning Retrieval of information: Should be performed at the conceptual level Should be performed at the information seeking process

•••	Ехр	erime	ntal R	esults	•	
	 We created a test collection comprised of 50 realistic clinical questions 					
	o Pei	formance	e on held-	out blind t	est set:	
		Therapy	Diagnosis	Prognosis	Etiology	All
	Precision at 10 (P@10)					
	PubMed	.350	.150	.200	.320	.281
	EBM	.792 (+126%)	.567 (+278%)	.433 (+117%)	.640 (+100%)	.669 (+97%)
	Mean Average Precision (MAP)					
	PubMed	.421	.279	.235	.364	.356
	EBM	.775 (+84%)	.657 (+135%)	.715 (+204%)	.681 (+87%)	.723 (+103%)
		Jimmy Li	in and Dina Demner-Fu	shman. The Role of Kr Domain c	owledge in Conceptual (Clinical Medicine, Pro	Retrieval: A Study in th ceedings of SIGIR 2006

•••	Multiple Approaches to QA
	 Employ answer type ontologies (IR+IE)
	 Leverage Web redundancy
	 Leverage semi-structured data sources
	 Semantically model restricted domains for "conceptual retrieval"