

Take-Away Messages

- Databases are suitable for storing structured information
- Databases are important tools to organize, manipulate, and access structured information
- Databases are integral components of modern Web applications

What's structured information? It's what you put in a database

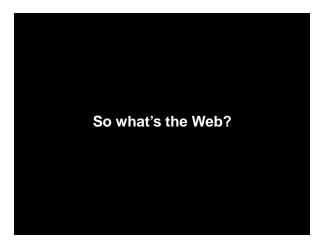
The iSch University of Marvla

What's a database? It's what you store structured information in

So what's a database?

An integrated collection of data organized according to some model...

So what's a relational database?

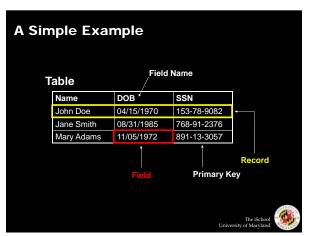

An integrated collection of data organized according to a relational model

Database Management System (DBMS)

Software system designed to store, manage, and facilitate access to databases

Databases (try to) model reality...

- Entities: things in the world
 - Example: airlines, tickets, passengers
- Relationships: how different things are related
- Example: the tickets each passenger bought"Business Logic": rules about the world
 - Example: fare rules



The iSchool University of Maryland

Components of a Relational Database

The iSchool University of Maryland

- Field: an "atomic" unit of data
- Record: a collection of related fields
- Table: a collection of related records
 - Each record is a row in the tableEach field is a column in the table
- Database: a collection of tables

Why "Relational"?

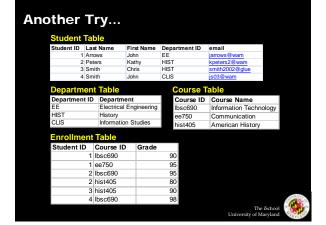
- View of the world in terms of entities and relations between them:
 - Tables represent "relations"
 - Each row in the table is sometimes called a "tuple"
 - Each tuple is "about" an entity
 - Fields can be interpreted as "attributes" or "properties" of the entity
- Data is manipulated by "relational algebra":
 - Defines things you can do with tuples
 - Expressed in SQL

The Registrar Example

• What do we need to know?

- Something about the students
- (e.g., first name, last name, email, department)Something about the courses
- e.g., course ID, description, enrolled students, grades)
 Which students are in which courses

The iSchoo University of Maryland


The iSchool University of Maryland

- How do we capture these things?

Goals of "Normalization"

- Save space
- Save each fact only once
- More rapid updates
- Every fact only needs to be updated once
- More rapid search
- Finding something once is good enough
- Avoid inconsistency
- Changing data once changes it everywhere

Keys

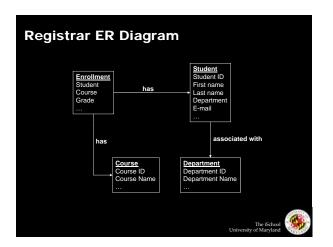
- "Primary Key" uniquely identifies a record
- e.g., student ID in the student table
- "Foreign Key" is primary key in the other table
 - It need not be unique in this table

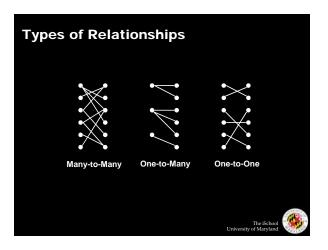
Approaches to Normalization

- For simple problems (like the homework):
 - Start with the entities you're trying to model
 - Group together fields that "belong together"
 - Add keys where necessary to connect entities in different tables

The iSchool sity of Maryland

The iSchool University of Maryland


Univer


• For more complicated problems:

• Entity-relationship modeling (LBSC 670)

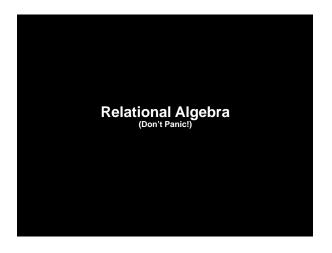
The Data Model

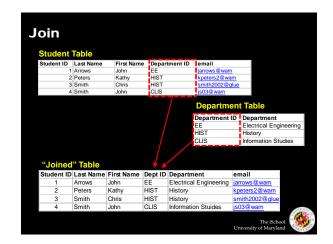
Student	Ta	ble						
Student ID	Last Name		First Name	Dep	partment ID	email		
1	Arrows		John	EE		jarrows@wam		
	Peters		Kathy	HIS		kpeters2@wam		
	Smith		Chris	HIS		smith2002@glue		
4	Smith		John	n CLIS		js03@wam		
Departm	en	t Table			Course T	able		
Departmen	t ID	Departme	ent		Course ID	Course Name		
EE			Engineering		lbsc690	Information Techno	ology	
HIST	History			_	ee750	Communication		
CLIS	IS Informatio		n Studies		hist405	American History		
Enrolime	ent	Table						
Student II	2	Course ID	Grade					
	1	lbsc690		9	90			
	1	ee750		9	95			
	2	lbsc690		9	95			
	2	hist405		8	30			
	3	hist405		9	90			
	4	lbsc690		9	98			AP.
						The University of Ma	iSchool aryland	

Database Integrity

• Registrar database must be internally consistent

- All enrolled students must have an entry in the student table
- All courses must have a name
- •
- What happens:
 - When a student withdraws from the university?
 - When a course is taken off the books?

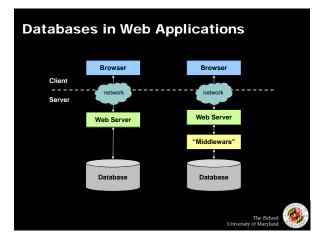

Integrity Constraints


• Conditions that must be true of the database at any time

- Specified when the database is designed
- Checked when the database is modified
- RDBMS ensures that integrity constraints are always kept
 - So that database contents remain faithful to the real world

The iScho University of Maryla

- Helps avoid data entry errors
- Where do integrity constraints come from?



Project									
Student ID	Last Name	First Na	me D	Dept ID	Department		email		
1	Arrows John		E	Ē	Electrical Engineering		jarrows@wam	-	
2	Peters	Kathy		HIST	History		kpeters2@wam		
3	Smith	Chris		HIST	History		smith2002@glu	e	
4	Smith	John	C	CLIS	Information St	uides	js03@wam		
		Ļ			Student II	D, Dej	partment		
	Student ID			Department					
	1			Electrical Engineering					
	2			History					
	3			ry					
	4	F	Information Stuides						
						Univ	The iSchool versity of Maryland	-	

Statent ID Last Name First Name Dept ID Department email 1 Arrows John EE Electrical Engineering emails 2 Smith 3 Smith John CLIS Information Studies \$S03@wam • VERER Department ID = "HIST" 1 Peters Xathy HIST HIST History \$S03@wam Information Studies • VERER Department ID = "HIST" • Peters Xathy HIST 1 Smith • Information Studies • Information Studies • Peters Kathy HIST HIST History • Smith • Information Studies • Information Studies • Information Studies

Performant of the provided and the provided and

So how's a database more than a spreadsheet?

Database in the "Real World"

• Typical database applications:

- Banking (e.g., saving/checking accounts)
- Trading (e.g., stocks)
- Traveling (e.g., airline reservations)
- Networking (e.g., Facebook)
- ...

• Characteristics:

- Lots of data
- Lots of concurrent operations
- Must be fast
- "Mission critical" (well... sometimes)

Operational Requirements

- Must hold a lot of data
- Must be reliable
- Must be fast
- Must support concurrent operations

Must hold a lot of data Solution: Use lots of machines (Each machine holds a small slice)

So which machine has your copy?

The iSch University of Marvl

Must be reliable

Solution: Use lots of machines (Store multiple copies)

But which copy is the right one? How do you keep the copies in sync?

The iSchool University of Maryland

> Must be fast Solution: Use lots of machines

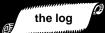
(Share the load)

How do you spread the load?

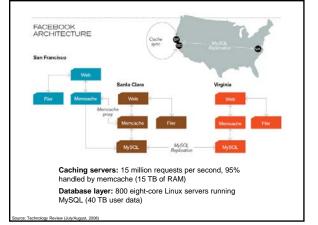
Must support concurrent operations

Solution: this is hard! (But fortunately doesn't matter for many applications)

Database Transactions


- Transaction = sequence of database actions grouped together
 - e.g., transfer \$500 from checking to savings
- ACID properties:
 - Atomicity: all-or-nothing
 - Consistency: each transaction must take the DB between consistent states
 - Isolation: concurrent transactions must appear to run in isolation
 - Durability: results of transactions must survive even if systems crash

The iS of Mar


Univ

Making Transactions

- Idea: keep a log (history) of all actions carried out while executing transactions
 - Before a change is made to the database, the corresponding log entry is forced to a safe location

- Recovering from a crash:
 - Effects of partially executed transactions are undone
 - · Effects of committed transactions are redone
 - Trickier than it sounds!

RideFinder Exercise

- Design a database to match drivers with passengers (e.g., for road trips):
 - Drivers post available seats; they want to know about interested passengers
 - Passengers call up looking for rides: they want to know about available rides (they don't get to post "rides wanted" ads)
 - These things happen in no particular order

• Design the tables you will need

- First decide what information you need to keep track of
- Then design tables to capture this information
- Design queries (using join, project, and restrict)
 - What happens when a passenger comes looking for a ride?What happens when a driver comes to find out who his
- passengers are? • Role play!

The iSch University of Maryla

Univer

The iSchool University of Maryland