
1

LBSC 690 Session #12
Building and Deploying Technology

Jimmy Lin
The iSchool
University of Maryland

Wednesday, November 19, 2008

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Today’s Topics
The system life cycle

The open source model

Cloud computing

The iSchool
University of Maryland

Take-Away Messages
Not “what are the right answers”, but “what are the right
questions”

There is no right answer
It all depends on the exact circumstances
It’s all about tradeoffs

The iSchool
University of Maryland

The System Life Cycle
Analysis and Design

How do we know what to build?

Implementation
How do we actually build it?

Maintenance

The iSchool
University of Maryland

How do we keep it running?

User-Centered Design
As opposed to what?

Understanding user needs
Who are the present and future users?
How can you understand their needs?

Understanding the use context

The iSchool
University of Maryland

How does the particular need relate to broader user activities?
How does software fit into the picture?

Some Library Activities
Acquisition

Cataloging

Reference

Circulation, interlibrary loan, reserves

R ll fi

The iSchool
University of Maryland

Recall, fines, …

Budget, facilities schedules, payroll, ...

2

Important Questions
Where does information originate?

Beware of “chicken and egg” problems

What components already exist?
Sometimes it’s easier to start with a clean slate

Which components should be automated?

The iSchool
University of Maryland

Some things are easier to do without computers

Important Questions
Which components should be integrated?

Pick your poison: centralization vs. decentralization
Implications for privacy, security, etc.

How will technology impact human processes?
Technology is not neutral

H t k d t f th it ?

The iSchool
University of Maryland

How can we take advantage of the community?
Web 2.0, Library 2.0, etc.

Requirements
Availability

Mean Time Between Failures (MTBF)
Mean Time To Repair (MTTR)

Capacity
Number of users (typical and maximum)
Response time

The iSchool
University of Maryland

Response time

Flexibility
Upgrade path
Interoperability with other applications

It’s all about tradeoffs…

Decisions, Decisions…
Off-the-shelf applications vs. custom-developed

“Best-of-breed” vs. integrated system

The iSchool
University of Maryland

More Decisions: Architectures
Desktop applications

What we normally think of as software

Batch processing (e.g., recall notices)
Save it up and do it all at once

Client-Server (e.g., Web)

The iSchool
University of Maryland

Some functions done centrally, others locally

Peer-to-Peer (e.g., Kazaa)
All data and computation is distributed

The Waterfall Model
Key insight: upfront investment in design

An hour of design can save a week of debugging!

Five stages:
Requirements: figure out what the software is supposed to do
Design: figure out how the software will accomplish the tasks
Implementation: actually build the software

The iSchool
University of Maryland

Implementation: actually build the software
Verification: makes sure that it works
Maintenance: makes sure that it keeps working

3

The Waterfall Model

Requirements

Design

Implementation

The iSchool
University of Maryland

Implementation

Verification

Maintenance

The Spiral Model
Build what you think you need

Perhaps using the waterfall model

Get a few users to help you debug it
First an “alpha” release, then a “beta” release

Release it as a product (version 1.0)

The iSchool
University of Maryland

Make small changes as needed (1.1, 1.2, ….)

Save big changes for a major new release
Often based on a total redesign (2.0, 3.0, …)

The Spiral Model

1.2
2.3

The iSchool
University of Maryland

1.0

0.5

2.0

3.0

1.1

2.1

2.2

Unpleasant Realities
The waterfall model doesn’t work well

Requirements usually incomplete or incorrect

The spiral model is expensive
Redesign leads to recoding and retesting

The iSchool
University of Maryland

A Hybrid Model
Goal: explore requirements

Without building the complete product

Start with part of the functionality
That will (hopefully) yield significant insight

Build a prototype

The iSchool
University of Maryland

Focus on core functionality

Use the prototype to refine the requirements

Repeat the process, expanding functionality

A Hybrid Model

Update
Requirements

ChooseInitial

Write
Specification

The iSchool
University of Maryland

Functionality

Build
Prototype

Requirements Create
Software

Write
Test Plan

4

Management Issues
Operating costs

Staff time
Physical resources (space, cooling, power)
Periodic maintenance
Equipment replacement

Retrospective conversion

The iSchool
University of Maryland

p
Moving from “legacy systems”
Even converting electronic information is expensive!

Incremental improvements
No piece of software is perfect

Management Issues
Management information

Usage logs, audit trails, etc.
Often easy to collect, difficult to analyze

Training
Staff
Users

The iSchool
University of Maryland

Users

Privacy, security, access control

Backup and disaster recovery
Periodicity, storage location

Remember Murphy’s Law!

TCO
TCO = “Total cost of ownership”

Hardware and software isn’t the only cost!

Other (hidden) costs:
Planning, installation, integration
Disruption and migration

The iSchool
University of Maryland

Ongoing support and maintenance
Training (of staff and end users)

What is open source?
Proprietary vs. open source software

Open source used to be a crackpot idea:
Bill Gates on Linux (3/24/1999): “I don’t really think in the
commercial market, we’ll see it in any significant way.”
MS 10-Q quarterly filing (1/31/2004): “The popularization of the
open source movement continues to pose a significant challenge

The iSchool
University of Maryland

to the company’s business model”

Open source…
For tree hugging hippies?
Make love, not war?

Basic Definitions
What is a program?

What is source code?

An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner. Like a
recipe.

The iSchool
University of Maryland

What is object/executable code (binaries)?

Program instructions in their original, human-readable form.

Program instructions in a form that can be directly executed
by a computer. A compiler takes source code and generates
executable code.

Proprietary Software
Distribution in machine-readable binaries only

Payment for a license
Grants certain usage rights
Restrictions on copying, further distribution, modification

Analogy: buying a car…

The iSchool
University of Maryland

With the hood welded shut
That only you can drive
That you can’t change the rims on

5

Open Source Principles
Free distribution and redistribution

“Free as in speech, not as in beer”

Source code availability

“The license may not restrict any party from selling or giving away
the software as a component of an aggregate software distribution
containing programs from several different sources. The license
may not require royalty or other fee for such sale.”

The iSchool
University of Maryland

y

Provisions for derived works

“The program must include source code, and must allow
distribution in source code as well as compiled form”.

“The license must allow modifications and derived works, and must
allow them to be distributed under the same terms as the license of
the original software.”

Open Source vs. Proprietary
Who gets the idea to develop the software?

Who actually develops the software?

How much does it cost?

Who can make changes?

The iSchool
University of Maryland

Examples of Open Source Software

Proprietary Open Source
Operating system Windows XP Linux
Office suite Microsoft Office OpenOffice
Image editor Photoshop GIMP

The iSchool
University of Maryland

Image editor Photoshop GIMP
Web browser Internet Explorer Mozilla
Web server IIS Apache
Database Oracle MySQL

Open Source: Pros
Peer-reviewed code

Dynamic community

Iterative releases, rapid bug fixes

Released by engineers, not marketing people

Hi h lit

The iSchool
University of Maryland

High quality

No vendor lock-in

Simplified licensed management

Pros in Detail
Peer-reviewed code

Everyone gets to inspect the code
More eyes, fewer bugs

Dynamic community
Community consists of coders, testers, debuggers, users, etc.
Any person can have multiple roles

The iSchool
University of Maryland

Any person can have multiple roles
Both volunteers and paid by companies
Volunteers are highly-motivated to work on something that
interests them

Pros in Detail
Iterative releases, rapid bug fixes

Anyone can fix bugs
Bugs rapidly fixed when found
Distribution of “patches”

Released by engineers, not marketing people
Stable versions ready only when they really are ready

The iSchool
University of Maryland

Stable versions ready only when they really are ready
Not dictated by marketing deadlines

High quality

6

Pros in Detail
No vendor lock-in

Lock in: dependence on a specific program from a specific vendor
Putting content in MS Word ties you to Microsoft forever
Open formats: can use a variety of systems

Simplified licensed management
Can install any number of copies

The iSchool
University of Maryland

Can install any number of copies
No risk of illegal copies or license audits
No anti-piracy measures (e.g. CD keys, product activation)
No need to pay for perpetual upgrades
Doesn't eliminate software management, of course

Cons of Open Source
Dead-end software

Fragmentation

Developed by engineers, often for engineers

Community development model

I bilit t i t fi

The iSchool
University of Maryland

Inability to point fingers

Cons in Detail
Dead-end software

Development depends on community dynamics: What happens
when the community loses interest?
How is this different from the vendor dropping support for a
product? At least the source code is available

Fragmentation

The iSchool
University of Maryland

Code might “fork” into multiple versions: incompatibilities develop
In practice, rarely happens

Cons in Detail
Developed by engineers, often for engineers

My favorite “pet feature”
Engineers are not your typical users!

Community development model
Cannot simply dictate the development process
Must build consensus and support within the community

The iSchool
University of Maryland

Must build consensus and support within the community

Inability to point fingers
Who do you call up and yell at when things go wrong?
Buy a support contract from a vendor!

Open Source Business Models
Support Sellers

Loss Leader

Wid t F ti

Give away the software, but sell distribution, branding, and
after-sale service.

Give away the software as a loss-leader and market positioner
for closed software.

The iSchool
University of Maryland

Widget Frosting

Accessorizing

If you’re in the hardware business, giving away software doesn’t
hurt you and has it’s advantages. What are they?

Sell accessories: books, compatible hardware, complete
systems with open-source software pre-installed. (open-source
T-shirts, coffee mugs, Linux penguin dolls, etc.)

It comes down to cost…

The iSchool
University of Maryland

7

The TCO Debate

The iSchool
University of Maryland

Is open source right for you?
Do you have access to the necessary expertise?

Do you have buy-in from the stakeholders?

Are you willing to retool your processes?

Are you willing to retrain staff and users?

A d f i d f di ti ?

The iSchool
University of Maryland

Are you prepared for a period of disruption?

Have you thought through these issues?

Source: http://www.free-pictures-photos.com/

What is Cloud Computing?
1. Web-scale problems

2. Large data centers

3. Different models of computing

4. Highly-interactive Web applications

The iSchool
University of Maryland

1. Web-Scale Problems
Characteristics:

Definitely data-intensive
May also be processing intensive

Examples:
Crawling, indexing, searching, mining the Web
“Post-genomics” life sciences research

The iSchool
University of Maryland

Post-genomics life sciences research
Other scientific data (physics, astronomers, etc.)
Sensor networks
Web 2.0 applications
…

How much data?
Wayback Machine has 2 PB + 20 TB/month (2006)

Google processes 20 PB a day (2008)

“all words ever spoken by human beings” ~ 5 EB

NOAA has ~1 PB climate data (2007)

CERN’ LHC ill t 15 PB (2008)

The iSchool
University of Maryland

CERN’s LHC will generate 15 PB a year (2008)

640K ought to be
enough for anybody.

8

Maximilien Brice, © CERN Maximilien Brice, © CERN

2. Large Data Centers
Web-scale problems? Throw more machines at it!

Clear trend: centralization of computing resources in large
data centers

Necessary ingredients: fiber, juice, and space
What do Oregon, Iceland, and abandoned mines have in
common?

The iSchool
University of Maryland

common?

Important Issues:
Redundancy
Efficiency
Utilization
Management

Source: Harper’s (Feb, 2008)

Maximilien Brice, © CERN

Key Technology: Virtualization

Operating System

App App App OS

App App App

Hypervisor

OS OS

The iSchool
University of Maryland

Hardware

p g y

Traditional Stack

Hardware

yp

Virtualized Stack

9

3. Different Computing Models

Utility computing
Why buy machines when you can rent cycles?
Examples: Amazon’s EC2, GoGrid, AppNexus

Platform as a Service (PaaS)

“Why do it yourself if you can pay someone to do it for you?”

The iSchool
University of Maryland

Give me nice API and take care of the implementation
Example: Google App Engine

Software as a Service (SaaS)
Just run it for me!
Example: Gmail

4. Web Applications
What is the nature of software applications?

From the desktop to the browser
Rise of Web-based applications
Examples: Google Maps, Facebook

How do we deliver highly-interactive Web-based
applications?

The iSchool
University of Maryland

pp
Ajax (Asynchronous JavaScript and XML)

The Grand Plan

Databases Search Programming Multimedia

Building and Deploying Systems

The iSchool
University of Maryland

Computers, Networks, the Web

Interacting with Computers

Metadata and XML

