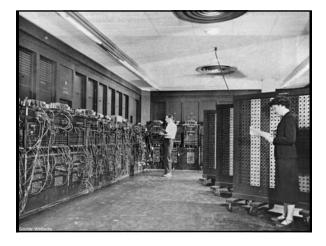


This work is licensed under a Creative Commons Attribution-Noncom See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Jimmy Lin The iSchool University of Maryland

Wednesday, September 3, 2008

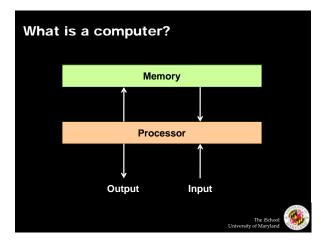
ial-Share Alike 3.0 United States

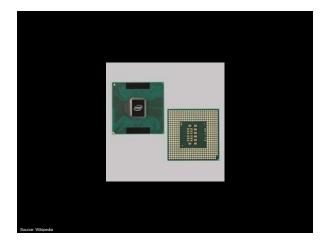

A COMPUTER WANTED, WASHINGTON, May 1.-A civil service exmmination will be held May 18 in Washington, and, if necessar; in other civiles, to secure eligibles for the position of computer in the Nautical Almanac Office, where two vacancies oxist-one at \$1,400, the other at \$1,400. The examination will include the audjects of algebra, geometry, trigonometry, and of the United States Civil Service Commission.

> Ehe New York Eimes Published: May 2, 1892 Copyright © The New York Times

History

(how we got here in computing)




Computing

The Processing Cycle

• Input comes from somewhere

- Keyboard, mouse, microphone, camera, ...
- Fetch data from memory
- The computer does something with it
 - Add, subtract, multiply, etc.
- Output goes somewhere
 - Monitor, speaker, printer, robot controls, ...
 - Store data back into memory

The iSchool University of Maryland

Networking

Why Networking?

- Sharing data
- Sharing hardware
- Sharing software
- Increasing robustness
- Facilitating communications
- Facilitating commerce

The iSchool University of Maryland

The iSch v of Marvla

Unive

How did it all start? How did it evolve? How did we get here?

Packet vs. Circuit Networks

- Telephone system ("circuit-switched")
 - Fixed connection between caller and called • High network load results in busy signals
- Internet ("packet-switched")
 - Each transmission is broken up into pieces and routed separately
 - High network load results in long delays

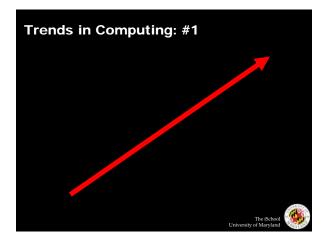
Packet Switching

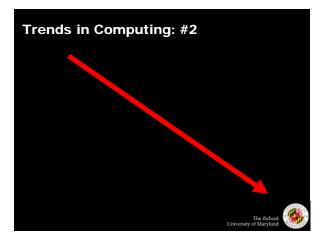
- Break long messages into short "packets" • Keeps one user from hogging a line
- Each packet is tagged with where it's going
- Route each packet separately
 - Each packet often takes a different route
 - Packets often arrive out of order
 - Receiver must reconstruct original message
 - How do packet-switched networks deal with continuous data?What happens when packets are lost?

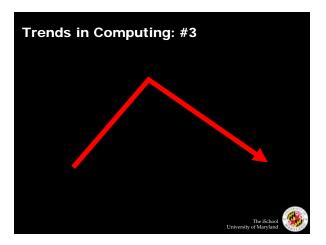
The iSchool University of Maryland

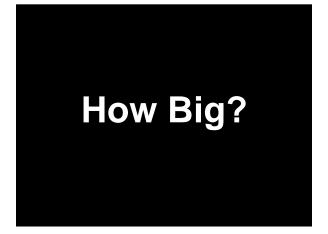
The iSc University of Marv

Different Networks Types

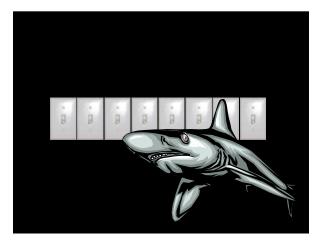

Local Area Networks (LANs)


- · Connections within a building or a small area
- Wireless or wired
- Metropolitan Area Networks (MANs)
- Connections across a city or a larger geographic area
- Wide Area Networks (WANs)
 - Connections between multiple LANs/MANs May cover thousands of square miles
- The Internet
 - Collection of WANs across multiple organizations




- o Global collection of public networks
- Private networks are often called "intranets"
- Use of shared protocols
 - TCP/IP (Transmission Control Protocol/Internet Protocol): basis for communication
 - nain Name Sei DNS (Dor
 - basis for naming computers on the network
 - HTTP (HyperText Transfer Protocol): World Wide Web
- Next week: how does all of this work?

How Big? How Fast?



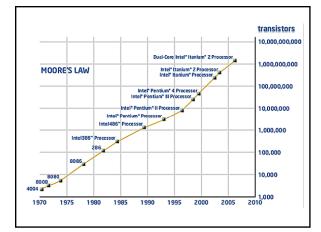
How many states can *n* bits represent? (or the story of 18,446,744,073,709,551,615 grains of rice) How do you count? In binary? Octal? Hexadecimal?

American Standard Code for Information Interchange (ASCII) = standard byte encoding used in PC's 01000001 = A 01100001 = a 01000010 = B 01100010 = b 01000011 = C 01100011 = c 01000100 = D 01100100 = d 01000110 = F 01100110 = f 01000111 = G 01100111 = g 01001001 = I 0110100 = h 01001001 = I 01101010 = i 01001010 = J 01101010 = i 01001011 = K 0110101 = i 01001011 = K 0110101 = k 01001101 = K 01101101 = m 01001101 = N 01101101 = m 01001111 = N 01101101 = n 01001111 = 0 01101111 = o 010101000 = P 01110000 = p	Data is represent	ed via an encoding
$\begin{array}{c} 01000010 = B \\ 01100010 = C \\ 01100010 = D \\ 0110010 = D \\ 0110010 = D \\ 0110010 = D \\ 0100110 = E \\ 01000110 = F \\ 01100111 = F \\ 01000111 = G \\ 01000100 = H \\ 01101000 = H \\ 01101000 = H \\ 01001000 = H \\ 01001010 = J \\ 01001010 = J \\ 01001011 = K \\ 01001011 = K \\ 01001101 = H \\ 01001100 = H \\ 01001110 = H \\ 01001110 = H \\ 01001110 = H \\ 01001110 = H \\ 01001111 = O \\ 01101111 = O \\ 01001111 = O \\ 01101111 = O \\ 01001000 = P \\ 01101000 = P \\ 01100000 = P \\ 0110000 = P \\ 011$		
The School (01000010 = B 01000011 = C 0100010 = D 01000100 = D 01000101 = F 01000110 = F 01000110 = F 01001000 = I 01001010 = I 01001101 = K 01001101 = N 01001110 = N 01001111 = N 01001111 = N	01100010 = b 01100010 = d 01100100 = d 01100100 = d 01100110 = f 01100110 = f 01100101 = i 01101010 = i 01101010 = i 01101101 = n 01101110 = n 01101111 = o 011110000 = p 01110000 = p 01110001 = q The Echecol

Units of Size

Unit	Abbreviation	Size (bytes)
bit	b	1/8
byte	В	1
kilobyte	KB	2 ¹⁰ = 1,024
megabyte	MB	2 ²⁰ = 1,048,576
gigabyte	GB	2 ³⁰ = 1,073,741,824
terabyte	ТВ	2 ⁴⁰ = 1,099,511,627,776
petabyte	PB	2 ⁵⁰ = 1,125,899,906,842,624

The iSchool University of Maryland

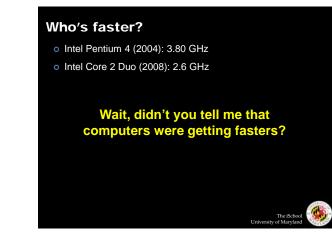

The iSchool University of Maryland

How Fast?

Moore's Law

• What is it?

- Gordon E. Moore, co-founder of Intel: number of components on an integrated circuit will double every 18 months (1965)
- Why is it important?


Thinking About Speed

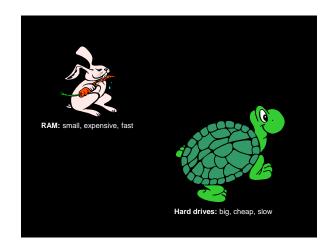
- Speed can be expressed in two ways:
 - How many things can you do in one second?
 - How long to do something once?
- Convenient units are typically used
 - 1 GHz instead of 1,000,000,000 Hz
 - 10 microseconds rather than 0.00001 seconds
 - When comparing mesurements, convert units first!

Units of Frequency

Unit	Abbreviation	Cycles per second
hertz	Hz	1
kilohertz	KHz	$10^3 = 1,000$
megahertz	MHz	$10^6 = 1,000,000$
gigahertz	GHz	10 ⁹ = 1,000,000,000

Units of Time

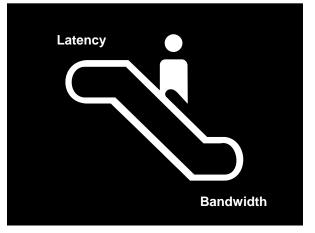
Unit	Abbreviation	Duration (seconds)
second	sec/s	1
millisecond	ms	10 ⁻³ = 1/1,000
microsecond	μS	$10^{-6} = 1/1,000,000$
nanosecond	ns	10 ⁻⁹ = 1/1,000,000,000
picosecond	ps	$10^{-12} = 1/1,000,000,000,000$
femtosecond	fs	$10^{-15} = 1/1,000,000,000,000,000$


How far does light travel in one nanosecond? 0.3048 m

The iSchool University of Maryland

Caching

- Idea: move data you're going to use from slow memory into fast memory
 - Slow memory is cheap so you can buy lots of it
 - Caching gives you the illusion of having lots of fast memory
- How do we know what data to cache?
 - Spatial locality: If the system fetched x, it is likely to fetch data located near x (Why?)
 - Temporal locality: If the system fetched x, it is likely to fetch x again (Why?)


The iSchool University of Maryland

The Complete Picture

- Two parts of moving data from here to there:
 - Getting the first bit there
 - Getting everything there
- Fundamentally, there's no difference:
 - Moving data from the processor to RAM
 - Saving a file to disk
 - Downloading pirated music from a server in China

1

The iSchool University of Maryland

Discussion Point

- What's more important: latency or bandwidth?
 - Streaming audio (e.g., NPR broadcast over Web)
 - Streaming video (e.g., CNN broadcast over Web)
 - Audio chat
 - Video conferencing

Now you know....

- History of computing
- Computers and networks
- Concepts of Space (how big?) and Time (how fast?)

