
1

LBSC 690: Week 13

Building and Deploying Systems

Jimmy Lin
College of Information Studies

University of Maryland

Monday, April 30, 2007

Agenda

Building and deploying systems

The open source model

Issues in intellectual property management

The System Life Cycle

Systems analysis

How do we know what kind of system to build?

How do we discern and satisfy user needs?

Development models

How do we build it?

Management

How do we use it?

system analysis

development models

management Systems Analysis

Understand the problem

What’s the user task?

What’s the environment?

Evaluate available technology

Only then can you design a solution

system analysis

development models

management

User-Centered Design

As opposed to what?

Understanding user needs

Who are the present and future users?

How can you understand their needs?

Understanding the use context

How does the particular need relate to broader user

activities?

How does software fit into the picture?

system analysis

development models

management Information Flows

Where does information originate?

Might come from multiple sources

Feedback loops may have no identifiable source

Which parts should be automated?

Some things are easier to do without computers

Which automated parts should be integrated?

What other systems are involved?

And what information do they contain?

What are the impacts?

e.g., serials use impacts cancellation policy

e.g., circulation policy impacts fines

system analysis

development models

management

2

Formal Analysis

Process Modeling

Structured analysis and design

Entity-relationship diagrams

Data-flow diagrams

Object Modeling

Object-oriented analysis and design

Unified Modeling Language (UML)

system analysis

development models

management Some Library Activities

Acquisition

Cataloging

Reference

Online Public Access Catalog (OPAC)

Circulation, interlibrary loan, reserves

Recall, fines, …

Budget, facilities schedules, payroll, ...

system analysis

development models

management

Discussion Point

Integrated Library System

What functions should be integrated?

What are the key data flows?

Which of those should be automated?

system analysis

development models

management The Waterfall Model

Key insight: upfront investment in design

An hour of design can save a week of debugging!

Five stages:

Requirements: figure out what the software is supposed

to do

Design: figure out how the software will accomplish the

tasks

Implementation: actually build the software

Verification: makes sure that it works

Maintenance: makes sure that it keeps working

system analysis

development models

management

The Waterfall Model

Requirements

Design

Implementation

Verification

Maintenance

system analysis

development models

management The Spiral Model

Build what you think you need

Perhaps using the waterfall model

Get a few users to help you debug it

First an “alpha” release, then a “beta” release

Release it as a product (version 1.0)

Make small changes as needed (1.1, 1.2, ….)

Save big changes for a major new release

Often based on a total redesign (2.0, 3.0, …)

system analysis

development models

management

3

The Spiral Model

1.0

0.5

2.0

3.0

1.1

1.2

2.1

2.2

2.3

system analysis

development models

management Unpleasant Realities

The waterfall model doesn’t work well

Requirements usually incomplete or incorrect

The spiral model is expensive

Redesign leads to recoding and retesting

system analysis

development models

management

A Hybrid Model

Goal: explore requirements

Without building the complete product

Start with part of the functionality

That will (hopefully) yield significant insight

Build a prototype

Focus on core functionality, not in efficiency

Use the prototype to refine the requirements

Repeat the process, expanding functionality

system analysis

development models

management A Hybrid Model

Update

Requirements

Choose

Functionality

Build

Prototype

Initial

Requirements

Write

Specification

Create

Software

Write

Test Plan

system analysis

development models

management

Requirements

Availability

Mean Time Between Failures (MTBF)

Mean Time To Repair (MTTR)

Capacity

Number of users (typical and maximum)

Response time

Flexibility

Upgrade path

Interoperability with other applications

system analysis

development models

management Different Components

Off-the-shelf applications vs. custom-developed

“Best-of-breed” vs. integrated system

system analysis

development models

management

4

Different Architectures

Desktop applications

What we normally think of as software

Batch processing (e.g., recall notices)

Save it up and do it all at once

Timesharing (e.g., OPAC)

Everyone uses the same machine

Client-Server (e.g., Web)

Some functions done centrally, others locally

Peer-to-Peer (e.g., Kazaa)

All data and computation is distributed

system analysis

development models

management Management Issues

Retrospective conversion

Moving from “legacy systems”

Even converting electronic information is expensive!

Management information

Peak capacity evaluation, audit trails, etc.

Sometimes costs more to collect than it is worth!

Sometimes easy to collect, difficult to analyze

Training

Staff, end users

Privacy

system analysis

development models

management

Things will go wrong…

No software is defect-free. Why?

Sheer size: e.g., Windows XP (in 2002) was ~40M lines
of code

Almost impossible to predict all possible use contexts

Concurrency

The importance of disaster recovery

Backups (periodicity, storage location)

system analysis

development models

management TCO

TCO = “Total cost of ownership”

Buying/developing software isn’t the only cost!

Other (hidden) costs:

Planning, installation, integration

Disruption and migration

Ongoing support and maintenance

Training (of staff and end users)

system analysis

development models

management

What is open source?

Proprietary vs. open source software

Open source used to be a crackpot idea:

Bill Gates on Linux (3/24/1999): “I don’t really think in

the commercial market, we’ll see it in any significant

way.”

MS 10-Q quarterly filing (1/31/2004): “The

popularization of the open source movement continues

to pose a significant challenge to the company’s

business model”

Open source…

For tree hugging hippies?

Make love, not war?

The open source model

Basic Definitions

What is a program?

What is source code?

What is object/executable code (binaries)?

An organized list of instructions that, when executed, causes

the computer to behave in a predetermined manner. Like a

recipe.

Program instructions in their original, human-readable form.

Program instructions in a form that can be directly executed

by a computer. A compiler takes source code and generates

executable code.

The open source model

5

Proprietary Software

Distribution in machine-readable binaries only

Payment for a license

Grants certain usage rights

Restrictions on copying, further distribution, modification

Analogy: buying a car…

With the hood welded shut

That only you can drive

That you can’t change the rims on

The open source model

Open Source Principles

Free distribution and redistribution

“Free as in speech, not as in beer”

Source code availability

Provisions for derived works

“The license may not restrict any party from selling or giving away

the software as a component of an aggregate software distribution

containing programs from several different sources. The license

may not require royalty or other fee for such sale.”

“The program must include source code, and must allow

distribution in source code as well as compiled form”.

“The license must allow modifications and derived works, and must

allow them to be distributed under the same terms as the license of

the original software.”

The open source model

Open Source vs. Proprietary

Who gets the idea to develop the software?

Who actually develops the software?

How much does it cost?

Who can make changes?

The open source model

Open Source is already here…

Apache web server has ~70% market share of

the public Internet (Nov., 2005)

Sendmail mail server has ~50% market share

Linux is a very popular OS for servers

Sales figures unreliable

Lots more…

The open source model

Examples

MySQLOracleDatabase

ApacheIISWeb server

MozillaInternet ExplorerWeb browser

GIMPPhotoshopImage editor

OpenOfficeMicrosoft OfficeOffice suite

LinuxWindows XPOperating system

Open SourceProprietary

The open source model

Server vs. Desktop

Open source has made significant inroads in the

server market

The next big challenge: the desktop market

The open source model

6

Open Source: Pros

Peer-reviewed code

Dynamic community

Iterative releases, rapid bug fixes

Released by engineers, not marketing people

High quality

No vendor lock-in

Simplified licensed management

The open source model

Pros in Detail

Peer-reviewed code

Everyone gets to inspect the code

More eyes, fewer bugs

Dynamic community

Community consists of coders, testers, debuggers,

users, etc.

Any person can have multiple roles

Both volunteers and paid by companies

Volunteers are highly-motivated to work on something
that interests them

The open source model

Pros in Detail

Iterative releases, rapid bug fixes

Anyone can fix bugs

Bugs rapidly fixed when found

Distribution of “patches”

Released by engineers, not marketing people

Stable versions ready only when they really are ready

Not dictated by marketing deadlines

High quality

The open source model

Pros in Detail

No vendor lock-in

Lock in: dependence on a specific program from a
specific vendor

Putting content in MS Word ties you to Microsoft forever

Open formats: can use a variety of systems

Simplified licensed management

Can install any number of copies

No risk of illegal copies or license audits

No anti-piracy measures (e.g. CD keys, product
activation)

No need to pay for perpetual upgrades

Doesn't eliminate software management, of course

The open source model

Cons of Open Source

Dead-end software

Fragmentation

Developed by engineers, often for engineers

Community development model

Inability to point fingers

The open source model

Cons in Detail

Dead-end software

Development depends on community dynamics: What
happens when the community loses interest?

How is this different from the vendor dropping support

for a product? At least the source code is available

Fragmentation

Code might “fork” into multiple versions:

incompatibilities develop

In practice, rarely happens

The open source model

7

Cons in Detail

Developed by engineers, often for engineers

My favorite “pet feature”

Engineers are not your typical users!

Community development model

Cannot simply dictate the development process

Must build consensus and support within the community

Inability to point fingers

Who do you call up and yell at when things go wrong?

Buy a support contract from a vendor!

The open source model

Open Source Business Models

Support Sellers (“Give Away the Recipe, Open A

Restaurant”)

Loss Leader

Widget Frosting

Accessorizing

Give away the software, but sell distribution, branding, and

after-sale service.

Give away the software as a loss-leader and market positioner for

closed software.

If you’re in the hardware business, giving away software doesn’t

hurt you and has it’s advantages. What are they?

Sell accessories: books, compatible hardware, complete

systems with open-source software pre-installed. (open-source

T-shirts, coffee mugs, Linux penguin dolls, etc.)

The open source model

Mature enough? Yes

Some open source software have been around

for 15+ years

Lots of servers already running open source

software

The open source model

Sustainable? Yes

Businesses and governments are choosing open

source

Software companies are creating are supporting

open source (e.g. IBM, Sun, HP)

Many schools are considering or adopting open

source software

The open source model

Open Source in Government

Freedom of Information Act – free, open access

to public records

What are the implications of using a proprietary format?

Proposal in Massachusetts – all government

documents must be created and saved in open

source programs.

U.S. Office of Management and Budget – On July
1, 2004, officially recognized Open Source

software as a viable option for civilian agencies of

the federal government

Open source gaining traction internationally

The open source model

It comes down to cost…

The open source model

8

The TCO Debate

The open source model

Is open source right for you?

Do you have access to the necessary expertise?

Do you have buy-in from the stakeholders?

Are you willing to retool your processes?

Are you willing to retrain staff and users?

Are you prepared for a period of disruption?

Do you have a well-thought out plan for rolling out

open source software?

The open source model

DRM and DMCA

DRM = Digital Rights Management

Access control

Copy control

DMCA = Digital Millennium Copyright Act

A prohibition on circumventing access controls

An access control circumvention device ban

(sometimes called the "trafficking" ban)

A copyright protection circumvention device ban

A prohibition on the removal of copyright management
information

Issues in IP management

“Chilling Effect”

Rights negotiation replaced with terms dictated

unilaterally

Exceptions are very narrow

Libraries, archives, and educational institutions can

circumvent access controls to make a determination of

whether or not to acquire the work

Impinging on fair use rights?

First sale doctrine?

Issues in IP management

Case Study: DeCSS

Content-Scrambling System (CSS) = encryption
used for DVD

DeCSS = program capable of decrypting CSS

Released in 1999 by Norwegian teenager Jon
Johansen

What are legitimate uses of DeCSS?

Illegal to distribute under DMCA

Creative ways of distribution:

T-shirts

Dramatic readings

Haiku poems

“Illegal prime number”

Issues in IP management

Case Study: Music Sharing

In the beginning…

Along came the Internet

Rise and fall of Napster

P2P out of the ashes

The media companies strike back

Sony rootkit: the latest saga

Issues in IP management

9

In the works…

Broadcast flags

“Trusted computing”

Issues in IP management

Why is this important?

ALA has traditionally been a defender of civil

liberties

Social responsibility of information professionals

Issues in IP management

Agenda

Building and deploying systems

The open source model

Issues in intellectual property management

Questions?

The Grand Plan

Computers, Networks, the Web

Interacting with computers

XML: substrate for managing and communicating content

Databases Multimedia Programming Search

Building and deploying systems

Intellectual property, security, privacy, and social issues

final review

Computer and Networks

Computers and networks as devices for

transferring, storing, and manipulating data

Concepts of speed, time, and size

Computer hardware

Managing time: storage hierarchy and caching

Computer networks

Packet-switched networks: routers, routing tables, etc.

final review

The Web

HTML, HTTP, URLs

How does a Web page get from the server to

your Web browser?

final review

10

Interacting with Computers

User Interfaces: arguably the most important

component of software!

Interface design principles

Consistency, alignment, flow, etc.

User’s mental model of software

final review

XML

Substrate for storing, managing, and

communicating content

What XML is and what XML isn’t

Cutting through the hype

Future promise and potential of XML

Semantic Web

Interoperability

final review

Relational Databases

Tables and relations

Primary keys, foreign keys

Normalization

Database operations

Join (select x, y)

Project (select…)

Restrict (where...)

ACID Properties

Web sites that are really databases

Deep vs. surface Web

final review

Multimedia

Tricking the human senses

Pixels to images

Images to movies

Sampling for audio

Compressions, compression, compression

Streaming delivery

final review

Programming

Like cooking!

Built from individual instructions grouped into

three types of control structures:

Sequential

Conditional

Iteration

Functions “bundle together” common operations

Javascript

final review

Search and IR

Why is IR hard?

The interaction cycle

Boolean queries and index structure

Evaluating systems: precision vs. recall

final review

11

System Life Cycle

Building and deploying systems

System analysis

Software development models

Managing complex systems

Open Source

The “chilling effects” of DRM, DMCA, etc.

final review

The Grand Plan

Computers, Networks, the Web

Interacting with computers

XML: substrate for managing and communicating content

Databases Multimedia Programming Search

Building and deploying systems

Intellectual property, security, privacy, and social issues

final review

