
1

LBSC 690: Session 10

Programming, JavaScript

Jimmy Lin
College of Information Studies

University of Maryland

Monday, November 12, 2007

Software

Software “does something”

Tells the machine how to operate on some data

Software models aspects of reality

Input and output represent the state of the world

Software describes how the two are related

Examples:

Ballistic computations

Visa’s credit card verification system

Google

Microsoft Word

Types of Software

Application programs (e.g., PowerPoint)

What you normally think of as a “software’’

Compilers and interpreters

Programs used to write other programs

Operating system (e.g., Windows XP)

Manages computing resources

Embedded software (e.g., TiVO)

Programs permanently embedded inside some physical

device

Programming Languages

Software “does something”

Programming languages tell the machine “what to do”

Special purpose: geared towards specific tasks

Complex math (e.g., Matlab)

Databases (e.g., SQL)

General purpose: able to accomplish anything

Examples: Java, JavaScript, Perl, C, C++, ...

Types of Programming

Machine language

Language that the machine can directly understand

Assembly language

Directly specifies actions of the machine

Assembler changes instructions to machine code

High-level languages

Specifies machine instructions at a more abstract level

Compiler/interpreter translates to machine language

Examples: C/C++, Java, JavaScript

Visual programming languages

Visually arrange interface components

Example: Visual Basic

Types of Languages

Hardware

Machine Language

Assembly Language

C Java Pascal COBOL …

2

Machine Language

Everything is a binary number

Operations

Data

Memory locations

For instance

00001000 ADD

00010101 first number (21)

01010110 second number (86)

0010 register 2

00001000 00010101 01010110 0010

Assembly Language

One level up from machine language

Symbolic instructions

Symbols representing memory locations

For instance

Assembly code is directly translatable into

machine language

ADD 21, 86, R2

High-Level Languages

Instructions represent higher-level constructs

Closer to how humans approach problems

Must be converted into machine code by a compiler or

interpreter

Programming: Overview

A program consists of a sequence of instructions

Basic concepts:

Data types

Variables

Basic operations

Instructions

Structures for controlling how instructions are
executed:

Sequential

Conditional

Repetition

Programming: Foundations

Data types = things that you can operate on

Boolean: true, false

Number: 5, 9, 3.1415926

String: “Hello World”

Variables hold values of a particular data type

Represented as symbols (e.g., x)

Operations = things that you can do

-x reverse the sign of x (negation)

6+5 Add 6 and 5 (numeric)

“Hello” + “World” Concatenate two strings

2.1 * 3 Multiply two values

x++ increase value of x by 1

Basic Instructions

Assignment = store the result of an operation

x = 5 set the value of x to be 5

x += y x = x + y

x *= 5 x = x * 5

In JavaScript, var declares a variable

var b = true; create a boolean b and set it to true

var n = 1; create a number n and set it to 1

var s = “hello”; create a string s and set it to “hello”

In JavaScript, all instructions end with a

semicolon (;)

3

Basic Control Structures

Sequential

Perform instructions one after another

Conditional

Perform instructions contingent on something else

being true

Repetition

Repeat instructions until a condition is met

Not much different from cooking recipes!

Sequential Control Structure

var a = 2;

var b = 3;

var c = a * b;

Conditional Control Structure

if (gender == “male”) {

 greeting = “Hello, Sir”;

} else {

 greeting = “Hello, Madam”;

}

Test Conditions

x == y true if x and y are equal

x != y true if x and y are not equal

x > y true if x is greater than y

x <= y true if x is smaller than or equal to y

x && y true if both x and y are true

x || y true if either x or y is true

!x true if x is false

Repetition Control Structure

Program Example 1:

n = 1;
while (n <= 10) {

 document.writeln(n);

 n++;

}

Program Example 2:

For (n = 1; n <= 10; n++) {

 document.writeln(n);

}

Arrays

A set of elements grouped together

For example, the number of days in each month

Each element is assigned an index

A number used to refer to that element

• For example, x[4] is the fifth element (count from zero!)

Arrays and repetitions work naturally together

4

Functions

Reusable code for doing a single task

A function takes in one or more parameters and

returns one value

function convertToCelsius(f) {

 var celsius = 5/9 * (f-32);

 return celsius;
}

function weirdAddition(a, b) {

 var result = a + b - 0.5;

 return result;

}

Calling Functions

When you “call” a function, you invoke the set of

instructions it represents

c = convertToCelsius(60);

function convertToCelsius(f) {

 var celsius = 5/9 * (f-32);

 return celsius;

}

More Examples

var f = 60;

c = convertToCelsius(f);

r = weirdAddition(2, 4);

var a = 2;

var b = 3;

r = weirdAddition(a, b);

Programming Paradigms

Procedural Programming

Group instructions into meaningful functions

Examples: C, Pascal, Perl

Object oriented programming

Group “data” and “methods” into “objects”

Naturally represents the world around us

Examples: C++, Java

Algorithms

Derived from the name of the Persian

mathematician Al-Khwarizmi

A sequence of well-defined instructions designed

to accomplish a certain task

Programming for the Web

Common Gateway Interface (CGI) [Server-side]

User inputs information into a form

Form values passed to the sever via CGI

Program on the server generates a Web page as a
response

JavaScript [Client-side, interpreted]

Human-readable “source code” sent to the browser

Web browser runs the program

Java applets [Client-side, compiled]

Machine-readable “bytecode” sent to browser

Web browser runs the program

Not related to JavaScript (other than similarities in
syntax)

5

Where is the JavaScript?

JavaScript is usually kept in the <head> section

of an HTML document

…

<head>

<script language="JavaScript" type="text/javascript">

<!--

function calculate() {

 var num = eval(document.input.number.value);

…

 document.output.number.value = total;

}

//-->

</script>

</head>

…

Handling Events

When does code actually get executed?

Events:

User actions trigger “events”

Embedded in all modern GUIs

Event handlers are used to respond to events

Examples of event handlers in JavaScript

onMouseover: the mouse moved over an object

onMouseout: the mouse moved off an object

onClick: the user clicked on an object

Input and Output

How do you get information to/from the user?

Forms provide a method for accepting input and
displaying output

In HTML

<form name="input" action="">

Please enter a number:

<input size="10" value=" " name="number"/>

</form>

<form name="output" action="">

The sum of all numbers up to the number above is

<input size="10" value=" " name="number" readonly="true"/>

</form>

JavaScript code

var num = eval(document.input.number.value);

document.output.number.value = 10;

Reads in a value

eval function turns it into a number

Changes the value in the textbox

JavaScript Resources

Google “javascript”

Tutorials: to learn to write programs

Code: to do things you want to do (“borrow”)

Books

Programming Tips

Details are everything!

Careful where you place that comma, semi-colon, etc.

Write a little bit of code at a time

Add a small new functionality, make sure it works, then

move on

Don’t try to write a large program all at once

Debug by outputting the state of the program

Print out the value of variables using document.write

Is the value what you expected?

