
INFM 603: Information Technology and Organizational Context	

Jimmy Lin	

The iSchool ���
University of Maryland���
	

Wednesday, April 30, 2014	

Session 13: Developing and
Managing Technology	

The Technology Lifecycle	

¢  How do you know what to build?	

¢  How do you actually build it?	

¢  How do you keep it running?	

It’s about asking the right questions!	

First Things First	

¢  What’s already there?	

¢  Do users actually want it?	

¢  Is technology even the right answer?	

¢  What’s the use context?	

Technology is for solving problems!	

How do you know what to build?	

¢  Ask your users	

¢  Watch them	

So you’re going to build technology…	

Major Decisions	

¢  Build vs. buy	

¢  In-house vs. out-source	

¢  Open source vs. proprietary	

¢  Best of breed vs. integrated solution	

Pick your poison	

Architecture Choices	

¢  Desktop software	

¢  Web app	

l  Hosted in the cloud?	

l  In-house datacenter?	

¢  Mobile app	

Advantages and disadvantages to each!	

Requirements	

¢  Functionality	

¢  Latency and throughput	

¢  Capacity	

¢  Reliability and resiliency	

¢  Flexibility	

¢  Development cost and time	

There’s no free meal!	

Source: Wikipedia (ENIAC)

Software Development	

The Waterfall Model	

¢  Key idea: upfront investment in design	

l  An hour of design can save a week of debugging!	

¢  Five stages:	

l  Requirements: figure out what the software is supposed to do	

l  Design: figure out how the software will accomplish the tasks	

l  Implementation: actually build the software	

l  Verification: makes sure that it works	

l  Maintenance: makes sure that it keeps working	

The Waterfall Model	

Requirements	

Design	

Implementation	

Verification	

Maintenance	

The Spiral Model	

¢  Build what you think you need	

l  Perhaps using the waterfall model	

¢  Get a few users to help you debug it	

l  First an “alpha” release, then a “beta” release	

¢  Release it as a product (version 1.0)	

l  Make small changes as needed (1.1, 1.2, ….)	

¢  Save big changes for a major new release	

l  Often based on a total redesign (2.0, 3.0, …)	

The Spiral Model	

1.0

0.5

2.0

3.0

1.1

1.2

2.1

2.2

2.3

Unpleasant Realities	

¢  The waterfall model doesn’t work well	

l  Requirements usually incomplete or incorrect	

¢  The spiral model is expensive	

l  Redesign leads to wasted effort	

Prototyping	

¢  What’s the purpose of the prototype?	

l  Meant to explore requirements, then be thrown away	

l  An initial version of the software to be subsequently refined	

¢  Both are fine, as long as the goal is clear	

¢  Be aware, interfaces can be deceiving	

SCRUM	

¢  An agile development methodology: the “fashion” today	

¢  As with any methodology…	

l  Don’t blindly follow processes	

l  Understand the rationale behind them	

l  Adapt them to your context	

Key Concepts	

¢  Roles:	

l  Product owner: voice of the customer	

l  Development team: small team software engineers	

l  Scrum master: primary role as facilitator	

¢  User stories: short non-technical description of desired user
functionality	

l  “As a user, I want to be able to search for customers by their first and

last names”	

l  “As a site administrator, I should be able to subscribe multiple people to
the mailing list at once”	

Basic SCRUM Cycle	

¢  The sprint:	

l  Basic unit of development	

l  Fixed duration (typically one month)	

l  End target is a working system (not a prototype)	

¢  Sprint planning meeting	

l  Discussion between product owner and development team on what can

be accomplished in the sprint	

l  Sprint goals are owned by the development team	

Standup Meetings	

¢  Short, periodic status meetings (often daily)	

¢  Three questions:	

l  What have you been working on (since the last standup)?	

l  What are you planning to work on next?	

l  Any blockers?	

SCRUM	

Advantages of SCRUM	

¢  Fundamentally iterative, recognizes that requirements change	

¢  Development team in charge of the sprint backlog	

l  Favors self-organization rather than top-down control	

l  Reprioritize in response to changing requirements and progress	

¢  Time-limited sprints ensure periodic delivery of new product
increments	

l  Allows opportunities to receive user feedback, change directions, etc.	

¢  Buzzword = velocity	

Disadvantages	

¢  Can be chaotic	

¢  Dependent on a good SCRUM master to reconcile priorities	

¢  Requires dedication of team members	

¢  Slicing by “user stories” isn’t always feasible 	

Keeping Technology Running	

Management Issues	

¢  Operating costs	

l  Staff time	

l  Physical resources (space, cooling, power) or the cloud	

l  Periodic maintenance	

l  Equipment replacement	

¢  Retrospective conversion	

l  Moving from “legacy systems”	

l  Even converting electronic information is expensive!	

¢  Incremental improvements	

l  Upgrade path?	

Management Issues	

¢  Usage information	

l  Usage logs, audit trails, etc.	

l  Collection, storage, as well as analysis	

¢  Training	

l  Staff	

l  Users	

¢  Privacy, security, access control	

¢  Backup and disaster recovery	

l  Periodicity, storage location	

l  The cloud doesn’t necessarily solve all the issues	

Remember Murphy’s Law!	

TCO	

¢  “Total cost of ownership”	

¢  Hardware and software aren’t the only costs!	

¢  Other (hidden) costs: all the issues discussed above	

What is open source?	

¢  Proprietary vs. open source software	

¢  Open source used to be a crackpot idea:	

l  Bill Gates on Linux (3/24/1999): “I don’t really think in the commercial
market, we’ll see it in any significant way.”	

l  MS 10-Q quarterly filing (1/31/2004): “The popularization of the open
source movement continues to pose a significant challenge to the
company’s business model”	

¢  Open source…	

l  For tree hugging hippies?	

l  Make love, not war?	

Basic Definitions	

¢  What is a program?	

¢  What is source code?	

¢  What is object/executable code (binaries)? 	

An organized list of instructions that, when executed, causes the
computer to behave in a predetermined manner. Like a recipe. 	

Program instructions in their original, human-readable form. 	

Program instructions in a form that can be directly executed by a
computer. A compiler takes source code and generates
executable code. 	

Proprietary Software	

¢  Distribution in machine-readable binaries only	

¢  Payment for a license	

l  Grants certain usage rights	

l  Restrictions on copying, further distribution, modification	

¢  Analogy: buying a car…	

l  With the hood welded shut	

l  That only you can drive	

l  That you can’t change the rims on	

Open Source Principles	

¢  Free distribution and redistribution	

l  “Free as in speech, not as in beer”	

¢  Source code availability	

¢  Provisions for derived works	

“The license may not restrict any party from selling or giving away the
software as a component of an aggregate software distribution containing
programs from several different sources. The license may not require
royalty or other fee for such sale.” 	

“The program must include source code, and must allow distribution in
source code as well as compiled form”.	

“The license must allow modifications and derived works, and must allow
them to be distributed under the same terms as the license of the
original software.”	

Open Source vs. Proprietary	

¢  Who gets the idea to develop the software?	

¢  Who actually develops the software?	

¢  How much does it cost?	

¢  Who can make changes?	

Examples of Open Source Software

Proprietary	
 Open Source	

Operating system	
 Windows	
 Linux	

Office suite	
 Microsoft Office	
 OpenOffice	

Image editor	
 Photoshop	
 GIMP	

Web browser	
 Internet Explorer	
 Mozilla	

Web server	
 IIS	
 Apache	

Database	
 Oracle	
 MySQL	

Open Source: Pros	

¢  Peer-reviewed code	

¢  Dynamic community	

¢  Iterative releases, rapid bug fixes 	

¢  Released by engineers, not marketing people	

¢  No vendor lock-in	

¢  Simplified licensed management	

Pros in Detail	

¢  Peer-reviewed code	

l  Everyone gets to inspect the code	

l  More eyes, fewer bugs	

¢  Dynamic community	

l  Community consists of coders, testers, debuggers, users, etc.	

l  Any person can have multiple roles	

l  Both volunteers and paid by companies	

l  Volunteers are highly-motivated	

Pros in Detail	

¢  Iterative releases, rapid bug fixes	

l  Anyone can fix bugs	

l  Bugs rapidly fixed when found	

l  Distribution of “patches” 	

¢  Released by engineers, not marketing people	

l  Stable versions ready only when they really are ready	

l  Not dictated by marketing deadlines	

Pros in Detail	

¢  No vendor lock-in	

l  Lock in: dependence on a specific program from a specific vendor	

l  Putting content in MS Word ties you to Microsoft forever	

l  Open formats: can use a variety of systems	

¢  Simplified licensed management	

l  Can install any number of copies	

l  No risk of illegal copies or license audits	

l  No anti-piracy measures (e.g. CD keys, product activation)	

l  No need to pay for perpetual upgrades	

l  Doesn’t eliminate software management, of course	

Cons of Open Source	

¢  Dead-end software	

¢  Fragmentation	

¢  Developed by engineers, often for engineers	

¢  Community development model	

¢  Inability to point fingers	

Cons in Detail	

¢  Dead-end software	

l  Development depends on community dynamics: What happens when the
community loses interest?	

l  How is this different from the vendor dropping support for a product?
At least the source code is available	

¢  Fragmentation	

l  Code might “fork” into multiple versions: incompatibilities develop	

l  In practice, rarely happens	

Cons in Detail	

¢  Developed by engineers, often for engineers 	

l  My favorite “pet feature”	

l  Engineers are not your typical users!	

¢  Community development model	

l  Cannot simply dictate the development process	

l  Must build consensus and support within the community	

¢  Inability to point fingers	

l  Who do you call up and yell at when things go wrong?	

l  Buy a support contract from a vendor!	

Open Source Business Models	

¢  Support Sellers	

¢  Loss Leader	

¢  Widget Frosting	

¢  Accessorizing 	

Give away the software, but sell distribution, branding, and after-
sale service. 	

Give away the software as a loss-leader and market positioner for
closed software.	

If you’re in the hardware business, giving away software doesn’t hurt
you and has it’s advantages. What are they?	

Sell accessories: books, compatible hardware, complete systems
with open-source software pre-installed, and merchandise (open-
source T-shirts, coffee mugs, Linux penguin dolls, etc.).	

The TCO Debate	

Is open source right for you?	

¢  Depends	

Questions?	

