INFM 603: Information Technology and Organizational Context

#### Session II: Information Retrieval



Jimmy Lin
The iSchool
University of Maryland

Wednesday, April 16, 2014

## **Information Retrieval**

What you search for!

Satisfying an information need "Scratching an information itch"

User
Process
System
Information

# What types of information?

- Text (documents and portions thereof)
- XML and structured documents
- Images
- Audio (sound effects, songs, etc.)
- Video
- Source code
- Applications/web services

Our focus today is on textual information...

# **Types of Information Needs**

#### Retrospective

- "Searching the past"
- Different queries posed against a static collection
- Time invariant

#### Prospective

- "Searching the future"
- Static query posed against a dynamic collection
- Time dependent

# Retrospective Searches (I)

#### Topical search

Identify positive accomplishments of the Hubble telescope since it was launched in 1991.

Compile a list of mammals that are considered to be endangered, identify their habitat and, if possible, specify what threatens them.

#### Open-ended exploration

Who makes the best chocolates?

What technologies are available for digital reference desk services?

# Retrospective Searches (II)

Known item search

Find Jimmy Lin's homepage.

What's the ISBN number of "Modern Information Retrieval"?

#### Question answering

Who discovered Oxygen?

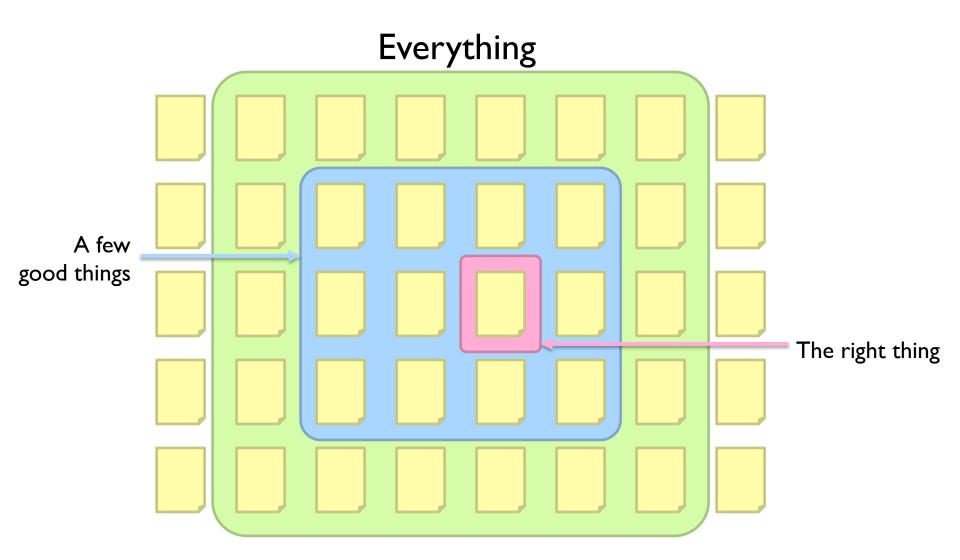
"Factoid" When did Hawaii become a state?

Where is Ayer's Rock located?

What team won the World Series in 1992?

"List" What countries export oil?

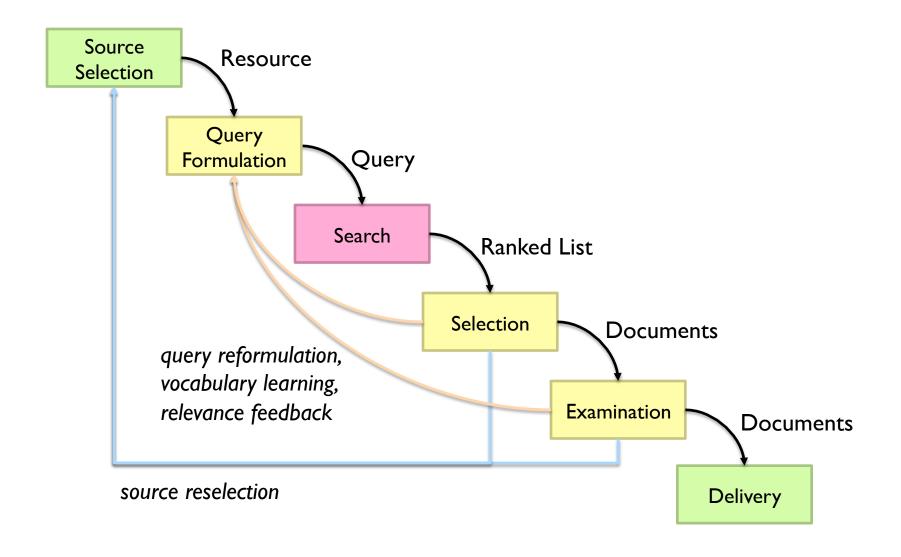
Name U.S. cities that have a "Shubert" theater.


"Definition" Who is Aaron Copland?

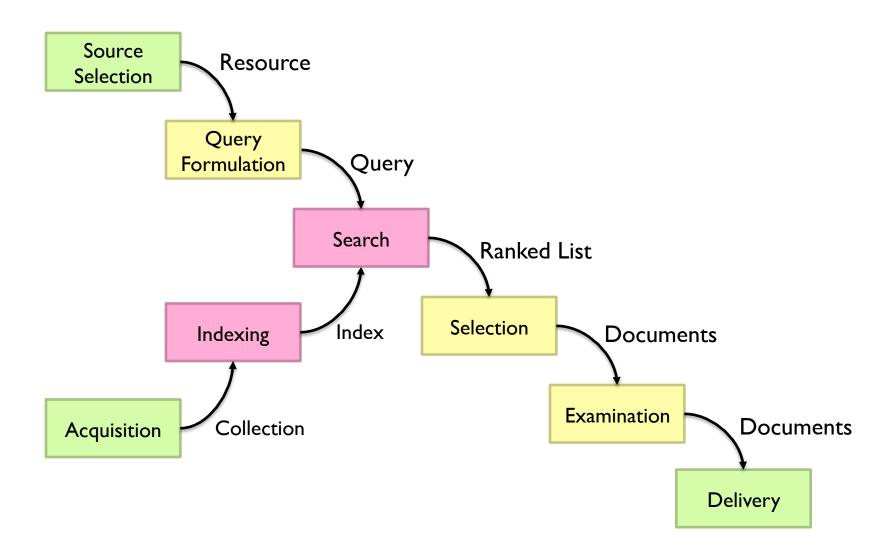
What is a quasar?

## Prospective "Searches"

- Filtering
  - Make a binary decision about each incoming document
- Routing
  - Sort incoming documents into different bins

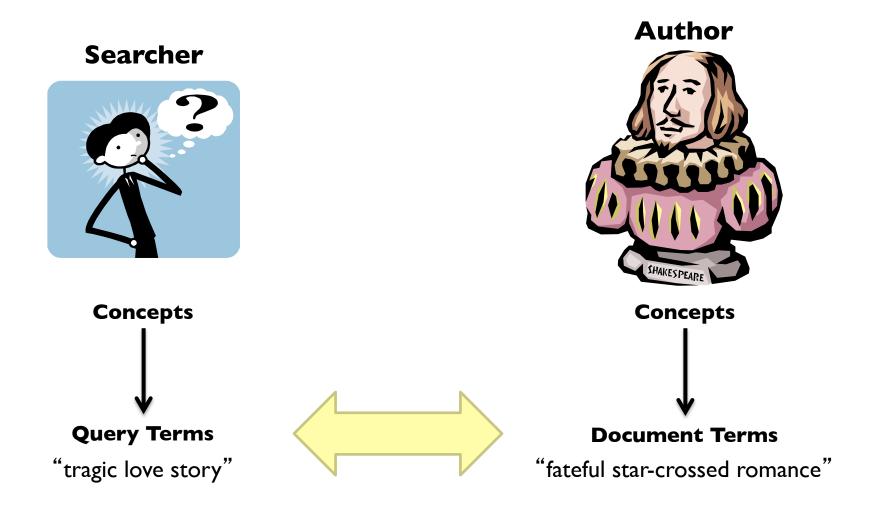

# **Scope of Information Needs**




#### Relevance

- How well information addresses your needs
  - Harder to pin down than you think!
  - Complex function of user, task, and context
- Types of relevance:
  - Topical relevance: is it about the right thing?
  - Situational relevance: is it useful?

# The Information Retrieval Cycle




# **Supporting the Search Process**



# Spiders, Crawlers, and Robots: Oh My!

#### **The Central Problem in Search**



Do these represent the same concepts?

**Ambiguity** Synonymy **Polysemy** Morphology Paraphrase Anaphora **Pragmatics** 

# How do we represent documents?

- Remember: computers don't "understand" anything!
- "Bag of words" representation:
  - Break a document into words
  - Disregard order, structure, meaning, etc. of the words
  - Simple, yet effective!

#### **Boolean Text Retrieval**

- Keep track of which documents have which terms
- Queries specify constraints on search results
  - a AND b: document must have both terms "a" and "b"
  - a OR b: document must have either term "a" or "b"
  - NOT a: document must not have term "a"
  - Boolean operators can be arbitrarily combined
- Results are not ordered!

#### **Index Structure**

#### Document I

The quick brown fox jumped over the lazy dog's back.

#### Document 2

Now is the time for all good men to come to the aid of their party.

#### Stopword List

| for |
|-----|
| is  |
| of  |
| the |
| to  |

# Term

| Term         | Document I | Document 2 |
|--------------|------------|------------|
| aid          | 0          |            |
| all          | 0          | ı          |
| back         |            | 0          |
| brown        |            | 0          |
| come         | 0          | 0          |
| dog          |            | 0          |
| dog<br>fox   |            | 0          |
| good         | 0          |            |
| jump         |            | 0          |
| jump<br>lazy |            | 0          |
| men          | 0          | I          |
| now          | 0          | I          |
| over         | Ι          | 0          |
| party        | 0          | I          |
| quick        | I          | 0          |
| their        | 0          | ı          |
| time         | 0          | ı          |

## **Boolean Searching**

# Term Document

| aid   | 0 | 0 | 0 | 1 | 0 | 0 | 0 |   |
|-------|---|---|---|---|---|---|---|---|
| all   | 0 |   | 0 |   | 0 |   | 0 | 0 |
| back  |   | 0 |   | 0 | 0 | 0 |   | 0 |
| brown |   | 0 |   | 0 |   | 0 |   | 0 |
| come  | 0 |   | 0 |   | 0 |   | 0 |   |
| dog   | 0 | 0 |   | 0 |   | 0 | 0 | 0 |
| fox   | 0 | 0 |   | 0 |   | 0 |   | 0 |
| good  | 0 |   | 0 |   | 0 |   | 0 |   |
| jump  | 0 | 0 |   | 0 | 0 | 0 | 0 | 0 |
| lazy  |   | 0 |   | 0 |   | 0 |   | 0 |
| men   | 0 |   | 0 |   | 0 | 0 | 0 |   |
| now   | 0 |   | 0 | 0 | 0 |   | 0 |   |
| over  |   | 0 |   | 0 |   | 0 |   |   |
| party | 0 | 0 | 0 | 0 | 0 |   | 0 |   |
| quick |   | 0 |   | 0 | 0 | 0 | 0 | 0 |
| their |   | 0 | 0 | 0 |   | 0 |   | 0 |
| time  | 0 |   | 0 |   | 0 |   | 0 | 0 |

- dog AND fox
  - Doc 3, Doc 5
- dog NOT fox
  - Empty
- fox NOT dog
  - Doc 7
- dog OR fox
  - Doc 3, Doc 5, Doc 7
- good AND party
  - Doc 6, Doc 8
- good AND party NOT over
  - Doc 6

#### **Extensions**

- Stemming ("truncation")
  - Technique to handle morphological variations
  - Store word stems: love, loving, loves ... → lov
- Proximity operators
  - More precise versions of AND
  - Store a list of positions for each word in each document

# Why Boolean Retrieval Works

- Boolean operators approximate natural language
- AND can specify relationships between concepts
  - good party
- OR can specify alternate terminology
  - excellent party
- NOT can suppress alternate meanings
  - Democratic party

# Why Boolean Retrieval Fails

- Natural language is way more complex
- AND "discovers" nonexistent relationships
  - Terms in different paragraphs, chapters, ...
- Guessing terminology for OR is hard
  - good, nice, excellent, outstanding, awesome, ...
- Guessing terms to exclude is even harder!
  - Democratic party, party to a lawsuit, ...

## Strengths and Weaknesses

#### Strengths

- Precise, if you know the right strategies
- Precise, if you have an idea of what you're looking for
- Implementations are fast and efficient

#### Weaknesses

- Users must learn Boolean logic
- Boolean logic insufficient to capture the richness of language
- No control over size of result set: either too many hits or none
- When do you stop reading? All documents in the result set are considered "equally good"
- What about partial matches? Documents that "don't quite match" the query may be useful also

## Ranked Retrieval Paradigm

- Pure Boolean systems provide no ordering of results
  - ... but some documents are more relevant than others!
- "Best-first" ranking can be superior
  - Select n documents
  - Put them in order, with the "best" ones first
  - Display them one screen at a time
  - Users can decided when they want to stop reading

"Best-first"? Easier said than done!

#### Extending Boolean retrieval:

Order results based on number of matching terms

a AND b AND c

What if multiple documents have the same number of matching terms? What if no single document matches the query?

# Similarity-Based Queries

- Treat both documents and queries as "bags of words"
  - Assign a weight to each word
- Find the similarity between the query and each document
  - Compute similarity based on weights of the words
- Rank order the documents by similarity
  - Display documents most similar to the query first

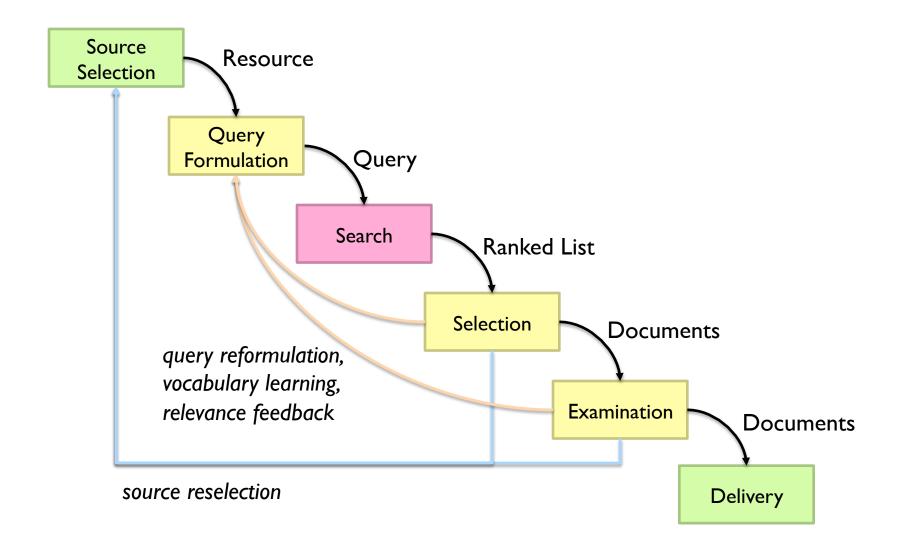
Surprisingly, this works pretty well!

# **Term Weighting**

- Term weights consist of two components
  - Local: how important is the term in this doc?
  - Global: how important is the term in the collection?
- O Here's the intuition:
  - Terms that appear often in a document should get high weights
  - Terms that appear in many documents should get low weights
- O How do we capture this mathematically?
  - Term frequency (local)
  - Inverse document frequency (global)

# **TF.IDF Term Weighting**

$$w_{i,j} = \mathrm{tf}_{i,j} \cdot \log \frac{N}{n_i}$$


 $W_{i,j}$  weight assigned to term i in document j

 $\operatorname{tf}_{i,j}$  number of occurrence of term i in document j

N number of documents in entire collection

 $n_i$  number of documents with term i

# The Information Retrieval Cycle



# **Search Output**

- What now?
  - User identifies relevant documents for "delivery"
  - User issues new query based on content of result set
- What can the system do?
  - Assist the user to identify relevant documents
  - Assist the user to identify potentially useful query terms

#### **Selection Interfaces**

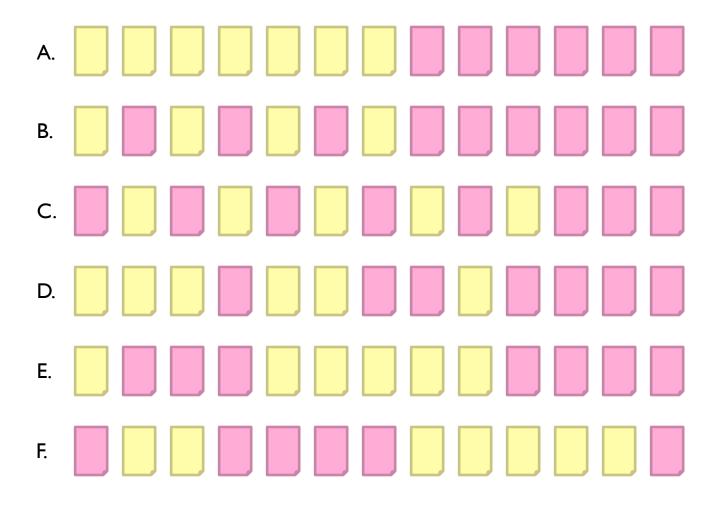
- One dimensional lists
  - What to display? title, source, date, summary, ratings, ...
  - What order to display? similarity score, date, alphabetic, ...
  - How much to display? number of hits
  - Other aids? related terms, suggested queries, ...
- Two+ dimensional displays
  - Clustering, projection, contour maps, VR
  - Navigation: jump, pan, zoom

# **Query Enrichment**

- Relevance feedback
  - User designates "more like this" documents
  - System adds terms from those documents to the query
- Manual reformulation
  - Initial result set leads to better understanding of the problem domain
  - New query better approximates information need
- Automatic query suggestion

# **Example Interfaces**

- Google
- Amazon
- Yippy
- PubMed


# **Evaluating IR Systems**

- User-centered strategy
  - Recruit several users
  - Observe each user working with one or more retrieval systems
  - Measure which system works the "best"
- System-centered strategy
  - Given documents, queries, and relevance judgments
  - Try several variant of the retrieval method
  - Measure which variant is more effective

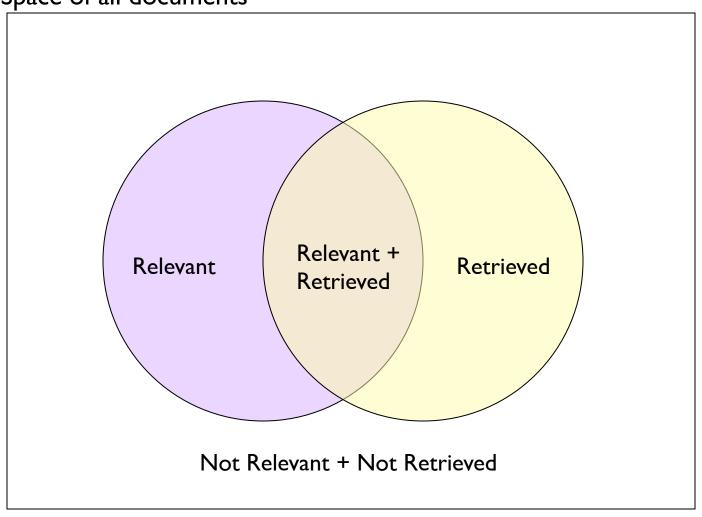
#### **Good Effectiveness Measures**

- Capture some aspect of what the user wants
- Have predictive value for other situations
- Easily replicated by other researchers
- Easily compared

#### Which is the Best Rank Order?



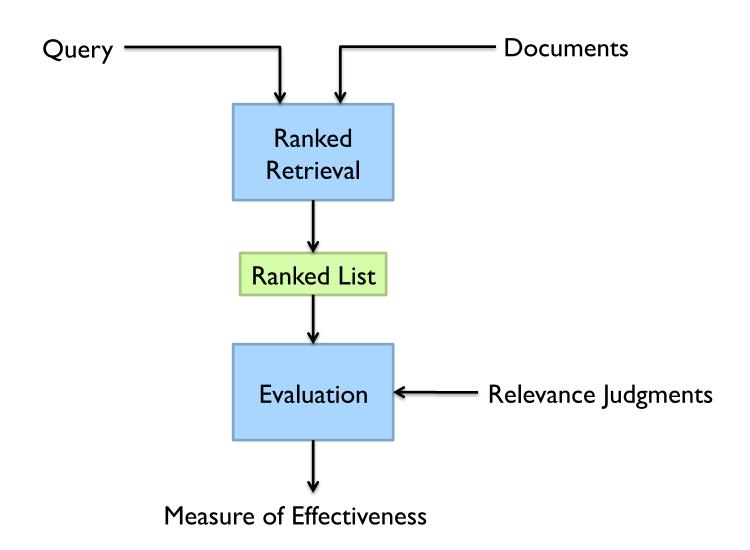
#### **Precision and Recall**


|               | Relevant | Not relevant |
|---------------|----------|--------------|
| Retrieved     | Α        | В            |
| Not retrieved | С        | D            |

Precision = 
$$A / (A+B)$$
  
Recall =  $A / (A+C)$ 

When is precision important? When is recall important?

#### **Another View**


Space of all documents



#### **Precision and Recall**

- Precision
  - How much of what was found is relevant?
  - Often of interest, particularly for interactive searching
- Recall
  - How much of what is relevant was found?
  - Particularly important for law, patents, and medicine

#### **Abstract Evaluation Model**



#### **User Studies**

- Goal is to account for interface issues
  - By studying the interface component
  - By studying the complete system
- Formative evaluation
  - Provide a basis for system development
- Summative evaluation
  - Designed to assess effectiveness

#### **Qualitative User Studies**

- Direct observation
- Think-aloud protocols

#### **Quantitative User Studies**

- Select independent variable(s)
  - E.g., what info to display in selection interface
- Select dependent variable(s)
  - E.g., time to find a known relevant document
- Run subjects in different orders
  - Average out learning and fatigue effects
- Compute statistical significance
  - Null hypothesis: independent variable has no effect

#### Objective vs. Subjective Data

- Subjective self-assessment
  - Which did they think was more effective?
- Preference
  - Which interface did they prefer? Why?

Often at odds with objective measures!

# **Take-Away Messages**

- Search engines provide access to unstructured textual information
- Searching is fundamentally about bridging the gap between words and meaning
- Information seeking is an iterative process in which the search engine plays an important role