
INFM 603: Information Technology and Organizational Context	

Jimmy Lin	

The iSchool ���
University of Maryland���
	

Wednesday, March 26, 2014	

Session 8: Ajax and Asynchronous
Programming	

RideShare Exercise	

¢  Design a database to match drivers with passengers for ride

sharing on long car trips:	

l  Drivers post available seats; they want to know about interested

passengers	

l  Passengers come looking for rides: they want to know about available

rides and can make reservations	

l  These things happen in no particular order	

l  To simplify, passengers don’t get to post “rides wanted” ads 	

¢  Build a web application to accomplish the above	

RideShare Exercise: Tasks	

¢  Design the tables you will need	

l  First decide what information you need to keep track of	

l  Then design tables to capture this information	

¢  Design SQL queries	

l  What happens when a passenger comes looking for a ride?	

l  What happens when a driver comes to find out who the passengers are?	

¢  Role play!	

Tables	

¢  Ride: Ride ID, Driver ID, Origin, Destination, Date, Time,

Available Seats	

¢  Passenger: Passenger ID, Name, Address, Phone Number	

¢  Driver: Driver ID, Name, Address, Phone Number	

¢  Booking: Ride ID, Passenger ID	

Queries	

¢  Passenger searches for a ride:	

l  Join: Ride, Driver	

l  Where: Origin and Destination match request, Available Seats > 0	

l  Select: Name, Phone Number	

¢  Passenger “books” a ride:	

l  Assuming successful search above: decrease Available Seats by one	

l  Insert row into Booking table with Ride ID and Passenger ID	

¢  Driver ready to go: Who are my passengers?	

l  Join: Ride, Passenger, Booking	

l  Where: (Driver) Name, Origin, and Date match	

l  Select: (Passenger) Name, Phone Number	

Demo	

¢  We’re going to build the RideShare web app…	

¢  Like, right now!	

Slight Simplification	

¢  Ride table:	

l  RideId	

l  Driver (name)	

l  Phone	

l  Origin	

l  Destination	

l  Date	

l  Seats	

¢  Booking table:	

l  RideId	

l  Passenger (name)	

l  Phone	

Today	

¢  More JavaScript!	

¢  Ajax	

¢  JSON	

¢  More PHP!	

Synchronous vs. Asynchronous	

¢  Definitions	

l  Synchronous: happening, existing, or arising at precisely the same time	

l  Asynchronous: not synchronous	

¢  Communications	

l  Synchronous	

l  Asynchronous 	

¢  Programming	

l  Synchronous	

l  Asynchronous 	

Ajax	

What’s Ajax?	

¢  Asynchronous JavaScript and XML	

¢  The only thing you need to learn:	

 var url = "...";	

 var request = new XMLHttpRequest();	

 request.open("GET", url);	

 request.onload = function() {	

 if (request.status == 200) {	

 // Your code here	

 }	

 };	

 request.send(null);	

Callback function	

Get this URL	

What’s at the URL?	

¢  A static file (e.g., JSON)	

{	

 name: "Fido", 	

 weight: 40, ���
 breed: "Mixed", ���
 loves: ["walks", "fetching balls"] 	

}	

What’s at the URL?	

¢  An application programming interface (API)	

¢  How do we write APIs?	

http://download.finance.yahoo.com/d/quotes.csv?s=GOOG&f=nsl1op	

Think of this as a function call!	

argument1=value&argument2=value...	

Source: The Matrix

Got it?	

