
INFM 603: Information Technology and Organizational Context	

Jimmy Lin	

The iSchool ���
University of Maryland���
	

Wednesday, March 5, 2014	

Session 6: Relational Databases	

Databases Yesterday…	

Databases Today…	

What’s structured information?	

It’s what you put in a database	

What’s a database?	

It’s what you store structured

information in	

So what’s a database?	

An integrated collection of data
organized according to some model…	

So what’s a relational database?	

An integrated collection of data organized
according to a relational model	

Database Management System (DBMS)	

Software system designed to store,
manage, and facilitate access to databases	

Databases (try to) model reality…	

¢  Entities: things in the world	

l  Example: airlines, tickets, passengers	

¢  Relationships: how different things are related	

l  Example: the tickets each passenger bought	

¢  “Business Logic”: rules about the world	

l  Example: fare rules	

Source: Microsoft Office Clip Art

Relational Databases	

Components of a Relational Database	

¢  Field: an “atomic” unit of data	

¢  Record: a collection of related fields	

l  Sometimes called a “tuple”	

¢  Table: a collection of related records	

l  Each record is a row in the table	

l  Each field is a column in the table	

¢  Database: a collection of tables	

A Simple Example	

Name	
 DOB	
 SSN	

John Doe	
 04/15/1970	
 153-78-9082	

Jane Smith	
 08/31/1985	
 768-91-2376	

Mary Adams	
 11/05/1972	
 891-13-3057	

Field	

Field Name	

Record	

Primary Key	

Table	

Why “Relational”?	

¢  View of the world in terms of entities and relations:	

l  Tables represent “relations”	

l  Each row (record, tuple) is “about” an entity	

l  Fields can be interpreted as “attributes” or “properties” of the entity	

¢  Data is manipulated by “relational algebra”:	

l  Defines things you can do with tuples	

l  Expressed in SQL	

The Registrar Example	

¢  What do we need to know?	

l  Something about the students ���
(e.g., first name, last name, email, department)	

l  Something about the courses ���
(e.g., course ID, description, enrolled students, grades)	

l  Which students are in which courses	

¢  How do we capture these things?	

A First Try	

Student ID Last Name First Name Dept ID Dept Course ID Course name Grade email
1 Arrows John EE EE lbsc690 Information Technology 90 jarrows@wam
1 Arrows John EE Elec Engin ee750 Communication 95 ja_2002@yahoo
2 Peters Kathy HIST HIST lbsc690 Informatino Technology 95 kpeters2@wam
2 Peters Kathy HIST history hist405 American History 80 kpeters2@wma
3 Smith Chris HIST history hist405 American History 90 smith2002@glue
4 Smith John CLIS Info Sci lbsc690 Information Technology 98 js03@wam

Put everything in a big table…

Why is this a bad idea?	

Goals of “Normalization”	

¢  Save space	

l  Save each fact only once 	

¢  More rapid updates	

l  Every fact only needs to be updated once	

¢  More rapid search	

l  Finding something once is good enough	

¢  Avoid inconsistency	

l  Changing data once changes it everywhere	

Another Try...	

Department ID Department
EE Electrical Engineering
HIST History
CLIS Information Studies

Course ID Course Name
lbsc690 Information Technology
ee750 Communication
hist405 American History

Student ID Course ID Grade
1 lbsc690 90
1 ee750 95
2 lbsc690 95
2 hist405 80
3 hist405 90
4 lbsc690 98

Student ID Last Name First Name Department ID email
1 Arrows John EE jarrows@wam
2 Peters Kathy HIST kpeters2@wam
3 Smith Chris HIST smith2002@glue
4 Smith John CLIS js03@wam

Student Table	

Department Table	
 Course Table	

Enrollment Table	

Keys	

¢  “Primary Key” uniquely identifies a record	

l  e.g., student ID in the student table	

¢  “Foreign Key” is primary key in the other table	

l  It need not be unique in this table	

Approaches to Normalization	

¢  For simple problems:	

l  Start with the entities you’re trying to model	

l  Group together fields that “belong together”	

l  Add keys where necessary to connect entities in different tables	

¢  For more complicated problems:	

l  Entity-relationship modeling	

The Data Model	

Department ID Department
EE Electrical Engineering
HIST History
CLIS Information Studies

Course ID Course Name
lbsc690 Information Technology
ee750 Communication
hist405 American History

Student ID Course ID Grade
1 lbsc690 90
1 ee750 95
2 lbsc690 95
2 hist405 80
3 hist405 90
4 lbsc690 98

Student ID Last Name First Name Department ID email
1 Arrows John EE jarrows@wam
2 Peters Kathy HIST kpeters2@wam
3 Smith Chris HIST smith2002@glue
4 Smith John CLIS js03@wam

Student Table	

Department Table	
 Course Table	

Enrollment Table	

Registrar ER Diagram	

Enrollment
Student
Course
Grade
…

Student
Student ID
First name
Last name
Department
E-mail
…

Course
Course ID
Course Name
…

Department
Department ID
Department Name
…

has

has associated with

A Real Example	

Types of Relationships	

One-to-One	
One-to-Many	
Many-to-Many	

Database Integrity	

¢  Registrar database must be internally consistent	

l  All enrolled students must have an entry in the student table	

l  All courses must have a name	

l  …	

¢  What happens:	

l  When a student withdraws from the university?	

l  When a course is taken off the books?	

Integrity Constraints	

¢  Conditions that must be true of the database at any time	

l  Specified when the database is designed	

l  Checked when the database is modified	

¢  RDBMS ensures that integrity constraints are always kept	

l  So that database contents remain faithful to the real world	

l  Helps avoid data entry errors	

¢  Where do integrity constraints come from?	

SQL	

(Don’t Panic!)	

Select	

select Student ID, Department	

Student ID Last Name First Name Dept ID Department email
1 Arrows John EE Electrical Engineering jarrows@wam
2 Peters Kathy HIST History kpeters2@wam
3 Smith Chris HIST History smith2002@glue
4 Smith John CLIS Information Stuides js03@wam

Student ID Department
1 Electrical Engineering
2 History
3 History
4 Information Stuides

Where	

Student ID Last Name First Name Dept ID Department email
1 Arrows John EE Electrical Engineering jarrows@wam
2 Peters Kathy HIST History kpeters2@wam
3 Smith Chris HIST History smith2002@glue
4 Smith John CLIS Information Stuides js03@wam

Student ID Last Name First Name Department ID Department email
2 Peters Kathy HIST History kpeters2@wam
3 Smith Chris HIST History smith2002@glue

where Department ID = “HIST”	

Simple SQL Statements	

¢  Choosing columns: SELECT	

l  Based on their labels (field names)	

l  * is a shorthand for saying “all fields”	

¢  Choosing rows: WHERE	

l  Based on their contents	

¢  These can be specified together	

department ID = “HIST”	

Simple SQL Template	

select [columns in the table]	

from [table name]	

where [selection criteria]	

SQL Tips and Tricks	

¢  Referring to fields (in SELECT statements)	

l  Use TableName.FieldName	

l  Can drop TableName if FieldName is unambiguous	

¢  Selection criteria	

l  Use = instead of ==	

¢  Note, different dialects of SQL!	

Join	

Student ID Last Name First Name Dept ID Department email
1 Arrows John EE Electrical Engineering jarrows@wam
2 Peters Kathy HIST History kpeters2@wam
3 Smith Chris HIST History smith2002@glue
4 Smith John CLIS Information Stuides js03@wam

“Joined” Table	

Student ID Last Name First Name Department ID email
1 Arrows John EE jarrows@wam
2 Peters Kathy HIST kpeters2@wam
3 Smith Chris HIST smith2002@glue
4 Smith John CLIS js03@wam

Student Table	

Department Table	

Department ID Department
EE Electrical Engineering
HIST History
CLIS Information Studies

SQL Template for Joins	

select [columns in the table]	

from [table name]	

join [another tablename] on [join criterion]	

join [another tablename] on [join criterion]	

…	

where [selection criteria]	

Join criterion: usually, based on primary/foreign key relationships���
	
e.g., Table1.PrimaryKey = Table2.ForeignKey	

Aggregations	

¢  SQL aggregation functions	

l  Examples: count, min, max, sum, avg	

l  Use in select statements	

l  Tip: when trying to write SQL query with aggregation, do it first without	

¢  Group by [field]	

l  Often used in conjunction with aggregation	

l  Conceptually, breaks table apart based on the [field]	

select count(*)…	

select min(price)…	

select sum(length)…	

How do you want your results served?	

¢  Order by [field name]	

l  Does exactly what you think it does!	

l  Either “asc” or “desc”	

¢  Limit n	

l  Returns only n records	

l  Useful to retrieving the top n or bottom n	

So how’s a database more than a spreadsheet?	

Database in the “Real World”	

¢  Typical database applications:	

l  Banking (e.g., saving/checking accounts)	

l  Trading (e.g., stocks)	

l  Traveling (e.g., airline reservations)	

l  Social media (e.g., Facebook)	

l  …	

¢  Characteristics:	

l  Lots of data	

l  Lots of concurrent operations	

l  Must be fast	

l  “Mission critical” (well… sometimes)	

Operational Requirements	

¢  Must hold a lot of data	

¢  Must be reliable	

¢  Must be fast	

¢  Must support concurrent operations	

Must hold a lot of data	

Solution: Use lots of machines	

(Each machine holds a small slice) 	

So which machine has your copy?	

Must be reliable	

Solution: Use lots of machines	

(Store multiple copies) 	

How do you keep the copies in sync?	

But which copy is the right one? 	

Must be fast	

Solution: Use lots of machines	

(Share the load) 	

How do you spread the load?	

Must support concurrent operations	

Solution: this is hard!	

(But fortunately doesn’t matter ���
for many applications)	

Database Transactions	

¢  Transaction = sequence of database actions grouped together	

l  e.g., transfer $500 from checking to savings	

¢  ACID properties:	

l  Atomicity: all-or-nothing	

l  Consistency: each transaction yield a consistent state	

l  Isolation: concurrent transactions must appear to run in isolation	

l  Durability: results of transactions must survive even if systems crash	

Making Transactions	

¢  Idea: keep a log (history) of all actions carried out while

executing transactions	

l  Before a change is made to the database, the corresponding log entry is

forced to a safe location	

¢  Recovering from a crash:	

l  Effects of partially executed transactions are undone	

l  Effects of committed transactions are redone	

l  Trickier than it sounds!	

the log	

Source: Technology Review (July/August, 2008)

Database layer: 800 eight-core Linux servers running
MySQL (40 TB user data)	

Caching servers: 15 million requests per second, 95%
handled by memcache (15 TB of RAM)	

Now you know…	

Wait, but these are websites?	

