INFM 603: Information Technology and Organizational Context

Session 2: HTML and CSS

(And Networking, Computing Tradeoffs)

Jimmy Lin The iSchool University of Maryland

Thursday, September 13, 2012

Ways to characterize computing

- How big?
- How fast?
- How reliable?

Computing is fundamentally about tradeoffs!

Example I: Multi-Core

Microprocessor Transistor Counts 1971-2011 & Moore's Law

● ○ ○ About This Mac				
OS X				
Version 10.8.1				
Software Update				
Processor 2.7 GHz Intel Core i7				
Memory 16 GB 1600 MHz DDR3				
More Info				
TM and © 1983-2012 Apple Inc. All Rights Reserved. License Agreement				

INTEL®©'03 PENTIUM©4 3.48GHZ/1M/890 SL7J8 COSTA RICA 3429A551

3. 886HZ/1M/888 SL88M COSTA RICA 3429A551T

Trends in Computing: #I

3.4 GHz in 2003

ransistor Counts 1971-2011 & Moore's Law

What's big shift?

- From single to multiple cores:
 - Increasing speed of single processor reached point of diminishing returns
 - Solution: put more cores on a processor!
- Important issues:
 - Power
 - Cool
 - Parallelism

Example 2: Caching

Typical Access Time: 100 ns

2222 - 2225 - 2222

PPT TTTTTTT

100

Source: Wikipedia

Colitit

0542 MIDE

Typical Access Time: 10 ms

(10,000x slower than RAM!!!)

V

Source: Wikipedia

Pick two

- Speed
- Capacity
- Cost

RAM: small, expensive, fast

Hard drives: big, cheap, slow

Best of both worlds? cheap, fast, and big

Caching

- Idea: move data you're going to use from slow memory into fast memory
 - Slow memory is cheap so you can buy lots of it
 - Caching gives you the illusion of having lots of fast memory
- Physical analogy?
- How do we know what data to cache?
 - Spatial locality: If the system fetched x, it is likely to fetch data located near x (Why?)
 - Temporal locality: If the system fetched x, it is likely to fetch x again (Why?)

Example 3: Replication

Characterizing Reliability

"Nines"	Availability	Downtime (per year)			
One nine	90%	36.5 d			
Two nines	99 %	3.65 d			
Three nines	99.9%	8.76 h			
Four nines	99.99%	52.56 m			
Five nines	99.999%	5.256 m			
Six nines	99.9999%	31.536 s			

How do you ensure reliability?

- Keep multiple copies:
 - On different machines
 - On different machines far apart
- What are the challenges with this?
 - Synchronous vs. Asynchronous
 - Active-Active vs. Active-Passive

• ...

Facebook architecture (circa 2008)

Networking

Source: http://www.flickr.com/photos/fusedforces/4324320625

Internet ≠ Web

- Internet = collection of global networks
- Web = particular way of accessing information on the Internet
 - Uses the HTTP protocol
- Other ways of using the Internet
 - Usenet
 - FTP
 - email (SMTP, POP, IMAP, etc.)
 - Internet Relay Chat

Intranets

Why can't you do certain things behind firewalls?

Intranets

Problem: How do you securely connect separate networks?

VPN = Virtual Private Network

a secure private network over the public Internet

Source: http://www.extremetech.com/computing/96827-the-secret-world-of-submarine-cables

Foundations

- Basic protocols for the Internet:
 - TCP/IP (Transmission Control Protocol/Internet Protocol): basis for communication
 - DNS (Domain Name Service): basis for naming computers on the network
- Protocol for the Web:
 - HTTP (HyperText Transfer Protocol): protocol for transferring Web pages

IP Address

- Every computer on the Internet is identified by a address
- IP address = 32 bit number, divided into four "octets"
 - Example: go in your browser and type "http://74.125.131.147/"

Are there enough IP addresses to go around? What is the difference between static and dynamic IP?

Packet Routing (TCP/IP)

(Much simplified) Routing table for 4.8.15.2

Destination	Next Hop			
52.55.*.*	63.6.9.12			
18.1.*.*	192.28.2.5/63.6.9.12			
4.*.*.*	225.2.55.1			

Domain Name Service (DNS)

- Domain names improve usability
 - Easier to remember than IP addresses
 - DNS provides a lookup service
- Each name server knows one level of names
 - "Top level" name server knows .edu, .com, .mil, ...
 - .edu name server knows umd, mit, stanford, ...
 - .umd.edu name server knows ischool, wam, ...

Demo

• Play with various utilities at

- http://network-tools.com/
- http://www.yougetsignal.com/tools/visual-tracert/
- http://en.dnstools.ch/visual-traceroute.html

HyperText Transfer Protocol

• Send request

GET /path/file.html HTTP/1.0 From: someuser@somedomain.com User-Agent: HTTPTool/1.0

• Server response

HTTP/I.0 200 OK Date: Fri, 31 Dec 1999 23:59:59 GMT Content-Type: text/html Content-Length: 1354 <html><body> <h1>Happy New Millennium!</h1> ... </body> </html>

Tell me what happens...

- From the moment you click on "check messages" to the moment you start reading your email
- From the moment you click "send" to the moment the other party receives the email
- From the moment you type a URL and hit "enter" to the moment you see the Web page

Tables

Source: Wikipedia (Table)

Tables

>	eenie	>	mennie	>	miney	
>	mo	>	catch	>	a tiger	
>	by	>	the	>	toe	

What's a Document?

- Content
- Structure
- Appearance
- Behavior

CSS: Cascading Style Sheets

- Separating content and structure from appearance
- Rules for defining styles "cascade" from broad to narrow:
 - Browser default
 - External style sheet
 - Internal style sheet
 - Inline style

Basics of CSS

• Basic syntax:

• Example:

p { text-align: center; color: black; font-family: arial }

Causes

- Font to be center-aligned
- Font to be Arial and black

Different Ways for Using CSS

- Inline style:
 - Causes only the tag to have the desired properties
 ...
- Internal stylesheet:
 - Causes all tags to have the desired properties

```
<head>...
<style type="text/css">
p { font-family:arial; color:blue}
</style>
</head>
<body>
...
```

Customizing Classes

. . .

• Ability to define customized styles for standard HTML tags:

...
<head>...
<style type="text/css">
p.style type="text/css">
p.

External Style Sheets

• Store formatting metadata in a separate file

Why Use CSS?

- What are the advantages of CSS?
- Why have three separate ways of using styles?