CMSC 723: Computational Linguistics | — Session #9

N-Gram Language Models

Jimmy Lin
The iSchool
University of Maryland

Wednesday, October 28, 2009



N-Gram Language Models
o What?

e LMs assign probabilities to sequences of tokens
o Why?

e Statistical machine translation
e Speech recognition

e Handwriting recognition

e Predictive text input

o How?

e Based on previous word histories
e n-gram = consecutive sequences of tokens



Huh?

Noam Chomsky

But it must be recognized that the notion
“probability of a sentence” is an entirely
useless one, under any known interpretation
of this term. (1969, p. 57)

[ ;,
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Fred Jelinek

Anytime a linguist leaves the group
the recognition rate goes up. (1988)

Every time | fire a linguist...



N-Gram Language Models

N=1 (unigrams)

(This|is|(asentence)

Unigrams:
This,
S,
a,
sentence

Sentence of length s, how many unigrams?



N-Gram Language Models
N=2 (bigrams)

(This (is|a) sentence)

Bigrams:
This Is,
IS a,

a sentence

Sentence of length s, how many bigrams?



N-Gram Language Models
N=3 (trigrams)

(This(is aJsentence]

Trigrams:
This iIs a,
IS a sentence

Sentence of length s, how many trigrams?



Computing Probabilities

Plwy,ws,...,wr)
= P(‘E.Ul)P(‘LU2I‘LU1)P(‘E.U3I‘!.U1,‘EU2) .o P(‘E.UTI‘E.Ul, "o :‘wT—l)

[chain rule]

Is this practical?

No! Can’t keep track of all possible histories of all words!



Approximating Probabilities

Basic idea: limit history to fixed number of words N
(Markov Assumption)

Plwg|wy,... ,wr—1) & Plwg|wrk—n+1,...,Wk—1)

N=1: Unigram Language Model
Pwg|lwy,..., wg—1) = P(wg)

= P(w),wa,...,wr) ~ P(w)P(ws)... Plwr)

Relation to HMMs?



Approximating Probabilities

Basic idea: limit history to fixed number of words N
(Markov Assumption)

Plwg|wy,... ,wr—1) & Plwg|wrk—n+1,...,Wk—1)

N=2: Bigram Language Model
P('wklwl, - ,'w;,,_l) Y P(w;,,]*w;,,_l)

= P(w),wa,...,wr) & Plw,|< 8 >)P(wz|w1) ... Plwr|wr_1)

Relation to HMMs?



Approximating Probabilities

Basic idea: limit history to fixed number of words N
(Markov Assumption)

Plwg|wy,... ,wr—1) & Plwg|wrk—n+1,...,Wk—1)

N=3: Trigram Language Model
Plwg|w1,..., wr—1) & Pwg|wg—2, wr—1)

= P(wl,w2, . ,wT) A P(w1|< 5> S }) e P(lewT_ng_l)

Relation to HMMs?



Building N-Gram Language Models

o Use existing sentences to compute n-gram probability
estimates (training)

o Terminology:

N = total number of words in training data (tokens)

V = vocabulary size or number of unique words (types)
C(wy,...,w,) = frequency of n-gram w., ..., w, in training data
P(w,, ..., w,) = probability estimate for n-gram w;, ... w,

P(w,w,, ..., w,_,) = conditional probability of producing w, given the
history w,, ... w,_,

What’s the vocabulary size?



VVocabulary Size: Heaps’ Law

b M is vocabulary size
I\/I —_— kT T is collection size (humber of documents)
o k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

o Heaps’ Law: linear in log-log space

o Vocabulary size grows unbounded!



Heaps’ Law for RCV1

k =44
b =0.49

log10 M

- - First 1,000,020 terms:
Predicted = 38,323
o Actual = 38,365

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Manning, Raghavan, Schitze, Introduction to Information Retrieval (2008)



Building N-Gram Models

o Start with what's easiest!

o Compute maximum likelihood estimates for individual
n-gram probabilities
G(Tﬂi)

.N
o Why not just substitute P(wi;)

o Bigram: Plw;,w;) = N
P(w;, wy) _ Clw;,wy) Clw;, wy)

Plwj|uy) — P(w;) > Clws, w) Cw;)

e Unigram: Pw;) =

o Uses relative frequencies as estimates

o Maximizes the likelihood of the data given the model
P(DIM)



Example: Bigram Language Model

<s> | am Sam </s>
<s> Sam | am </s>
<s> | do not like green eggs and ham </s>

Training Corpus

P(l|<s>)=2/3=0.67 P(Sam | <s>)=1/3=0.33
P(am|1)=2/3=0.67 P(do|1)=1/3=0.33
P(</s>|Sam )=1/2=0.50 P(Sam |am)=1/2=0.50

Bigram Probability Estimates
Note: We don’t ever cross sentence boundaries



Building N-Gram Models

o Start with what's easiest!

o Compute maximum likelihood estimates for individual
n-gram probabilities

. _ C{nuy)
e Unigram: Plw;) = N Let’s revisit this issue...
Why not just substitute P(wi) ?
C'(uq,w_-;) y J (wi)

o Bigram: Plw;,w;) = N
P(w;, wy) _ Clw;,wy) Clw;, wy)

Plwj|uy) — P(w;) > Clws, w) Cw;)

o Uses relative frequencies as estimates

o Maximizes the likelihood of the data given the model
P(DIM)



More Context, More Work

o Larger N = more context

e Lexical co-occurrences
e Local syntactic relations

o More context is better?

o Larger N = more complex model

e For example, assume a vocabulary of 100,000
e How many parameters for unigram LM? Bigram? Trigram?

o Larger N has another more serious and familiar problem!



Data Sparsity

P(l]<s>)=2/3=0.67 P(Sam|<s>)=1/3=0.33
P(am|1)=2/3=0.67 P(do|1)=1/3=0.33
P(</s>|Sam )=1/2=0.50 P(Sam |am)=1/2=0.50

Bigram Probability Estimates

P(l like ham)

=P(1]|<s>)P(like|l)P(ham |like)P(</s>|ham)
=0

Why?
Why is this bad?



Data Sparsity

o Serious problem in language modeling!

o Becomes more severe as N increases
e \What's the tradeoff?

o Solution 1: Use larger training corpora

e Can’t always work... Blame Zipf's Law (Looong tail)

o Solution 2: Assign non-zero probability to unseen n-grams

e Known as smoothing



Smoothing

o Zeros are bad for any statistical estimator

e Need better estimators because MLEs give us a lot of zeros
e A distribution without zeros is “smoother”

o The Robin Hood Philosophy: Take from the rich (seen n-
grams) and give to the poor (unseen n-grams)

e And thus also called discounting
e Critical: make sure you still have a valid probability distribution!

o Language modeling: theory vs. practice



Laplace’s Law

o Simplest and oldest smoothing technique
o Just add 1 to all n-gram counts including the unseen ones

o So, what do the revised estimates look like?



Laplace’s Law: Probabilities

Unigrams
Ppyre(w;) = thvui) —>  Prap(w;) = G’I(:ruﬁ ; =
Bigrams
Pyroe(w;,w;) = G(W;wj) —> Prap(w;,w;) = C(iﬁ’f:{z: -

Careful, don’t confuse the N’s!
-PLAP(W'E: wL) — C(wi:wj) + 1
.PLAP('IU{) G'('wi) +V

Prap(w;lw;) =

What if we don’t know V?



Laplace’s Law: Frequencies

Expected Frequency Estimates

Crap(wi) = FPrap(wi))N
Crap(w;, w;) Prap(w;, w;)N

Relative Discount
P Crap(w;)
! C’(fw,-)
GLAP(wi:wj)
G(‘W—;,'lﬂ;j)

do =



Laplace’s Law

o Bayesian estimator with uniform priors
o Moves too much mass over to unseen n-grams

o What if we added a fraction of 1 instead?



Lidstone’s Law of Succession

o Add 0 <y < 1 to each count instead

o The smallery is, the lower the mass moved to the unseen
n-grams (0=no smoothing)

o The case of y = 0.5 is known as Jeffery-Perks Law or
Expected Likelihood Estimation

o How to find the right value of y?



Good-Turing Estimator

o Intuition: Use n-grams seen once to estimate n-grams
never seen and so on

o Compute N, (frequency of frequency r)

N= ) 1

wywy:Clwywy )
e N, is the number of items with count O
e N, is the number of items with count 1



Good-Turing Estimator

o For each r, compute an expected frequency estimate
(smoothed count)

Nyy1
N..

¥ = Corlwiwz) = (r +1)

o Replace MLE counts of seen bigrams with the expected
frequency estimates and use those for probabilities

C iy 2 C; il
Por(wi,w;) = GT(K; ;) Por(wilus) = Fg(;fu.)wﬂ




Good-Turing Estimator

o What about an unseen bigram?

Ny

¥ =Cq +1)— = —

cr =0+ )N(} A
Car
Fer = =~

o Do we know N,? Can we compute it for bigrams?

Ny = V? — bigrams we have seen



Good-Turing Estimator:. Example

r Nr
1 | 138741 N, = (14585)? - 199252
2 25413 — —
; Y Cnseen = N,/ N,= 0.00065
4 5997 Punseen=N1/( NON)= 1.06 x 10°°
3 3565 Note: Assumes mass is uniformly distributed
6
V = 14585

Seen bigrams =199252

C(person she) =2 Car(person she) = (2+1)(10531/25413) = 1.243
C(person) = 223 P(she|person) =Cct(person she)/223 = 0.0056



Good-Turing Estimator

o For each r, compute an expected frequency estimate
(smoothed count)

Nyy1
N..

¥ = Corlwiwz) = (r +1)

o Replace MLE counts of seen bigrams with the expected
frequency estimates and use those for probabilities

C iy 2 C; il
Por(wi,w;) = GT(K; ;) Por(wilus) = Fg(;fu.)wﬂ

What if w; isn’t observed?



Good-Turing Estimator

o Can'’t replace all MLE counts

o What aboutr,...7?

max -

e N,,=0forr=r,_,

o Solution 1: Only replace counts for r < k (~10)

o Solution 2: Fit a curve S through the observed (r, N,)
values and use S(r) instead

o For both solutions, remember to do what?

o Bottom line: the Good-Turing estimator is not used by itself
but in combination with other techniques



Combining Estimators

o Better models come from:
e Combining n-gram probability estimates from different models
e Leveraging different sources of information for prediction

o Three major combination techniques:

e Simple Linear Interpolation of MLEs
e Katz Backoff
e Kneser-Ney Smoothing



Linear MLE Interpolation

o Mix a trigram model with bigram and unigram models to
offset sparsity

o Mix = Weighted Linear Combination

Pwg|wg—owe—1) =

AlP(wkl'wk_gwk_l) + AgP(wk|wk_1) + Az P(wg)

D<= <=1 Zf\i=1



Linear MLE Interpolation

o A are estimated on some held-out data set (not training,
not test)

o Estimation is usually done via an EM variant or other
numerical algorithms (e.g. Powell)



Backoff Models

o Consult different models in order depending on specificity
(instead of all at the same time)

o The most detailed model for current context first and, if
that doesn’t work, back off to a lower model

o Continue backing off until you reach a model that has
some counts



Backoff Models

o Important: need to incorporate discounting as an integral
part of the algorithm... Why?

o MLE estimates are well-formed...

o But, if we back off to a lower order model without taking
something from the higher order MLEs, we are adding

extra mass!

o Katz backoff

e Starting point: GT estimator assumes uniform distribution over
unseen events... can we do better?

e Use lower order models!



Katz Backoff

Given a trigram “x y z”

B Par(z|z,y), if C(z,y,2) >0
Pkﬂt#(zlml y) — { a(m, 'y)Pka.ts(zly): otherwise

_ P B ): if ¢ ! >0
Pratz(2|y) = { a(y)cgagég) : Ltheg?:?iz)e



Katz Backoff (from textbook)

Given a trigram “x y z”

_ P B ): if ¢ ! >0
Pratz(2|y) = { a(y)cgagég) : Ltheg?:?iz)e



Katz Backoff

o Why use Ps and not Py, ¢ directly ?

e If we use Py, g then we are adding extra probability mass when
backing off!

e Another way: Can’t save any probability mass for lower order
models without discounting

o Why the a’s?

e To ensure that total mass from all lower order models sums exactly
to what we got from the discounting



Kneser-Ney Smoothing

o Observation:

e Average Good-Turing discount for r 2 3 is largely constant over r

e So, why not simply subtract a fixed discount D (<1) from non-zero
counts?

o Absolute Discounting: discounted bigram model, back off
to MLE unigram model

o Kneser-Ney: Interpolate discounted model with a special
“continuation” unigram model



Kneser-Ney Smoothing

O Intuition
e Lower order model important only when higher order model is
sparse
e Should be optimized to perform in such situations

o Example

e C(Los Angeles) = C(Angeles) = M; M is very large
e “Angeles” always and only occurs after “Los”

e Unigram MLE for “Angeles” will be high and a normal backoff
algorithm will likely pick it in any context

e |t shouldn’t, because “Angeles” occurs with only a single context in
the entire training data



Kneser-Ney Smoothing

o Kneser-Ney: Interpolate discounted model with a special
“continuation” unigram model

e Based on appearance of unigrams in different contexts
e Excellent performance, state of the art

Clwg—wg) — D
C(wg—1)

Pecont(w;) = ZN(I:I :izu;)

Py (wgwg—1) = + B(we) Poony (wg)

N (e w;) = number of different contexts w; has appeared in

o Why interpolation, not backoff?



Explicitly Modeling OOV

o Fix vocabulary at some reasonable number of words

o During training:
e Consider any words that don’t occur in this list as unknown or out
of vocabulary (OOV) words
e Replace all OOVs with the special word <UNK>

e Treat <UNK> as any other word and count and estimate
probabilities

o During testing:

e Replace unknown words with <UNK> and use LM
e Test set characterized by OOV rate (percentage of OOVs)



Evaluating Language Models

o Information theoretic criteria used

o Most common: Perplexity assigned by the trained LM to a
test set

o Perplexity: How surprised are you on average by what
comes next ?

e Ifthe LM is good at knowing what comes next in a sentence =
Low perplexity (lower is better)

e Relation to weighted average branching factor



Computing Perplexity
o Given testset W with words w., ...,w,

o Treat entire test set as one word sequence

o Perplexity is defined as the probability of the entire test set
normalized by the number of words

PP(T) = P(wy,...,wy)" V¥

o Using the probability chain rule and (say) a bigram LM, we
can write this as

PP(T) = \JH P(w‘lw,_l)

i=1

o A lot easer to do with log probs!



Practical Evaluation

o Use <s> and </s> both in probability computation

o Count </s> but not <s>in N

o Typical range of perplexities on English text is 50-1000
o Closed vocabulary testing yields much lower perplexities
o Testing across genres yields higher perplexities

o

Can only compare perplexities if the LMs use the same
vocabulary

Order | Unigram | Bigram | Trigram

PP 962 170 109

Training: N=38 million, V~20000, open vocabulary, Katz backoff where applicable
Test: 1.5 million words, same genre as training



Typical “State of the Art” LMs

o Training

e N =10 billion words, V = 300k words

e 4-gram model with Kneser-Ney smoothing
o Testing

e 25 million words, OOV rate 3.8%
e Perplexity ~50



Take-Away Messages

o LMs assign probabilities to sequences of tokens
o N-gram language models: consider only limited histories

o Data sparsity is an issue: smoothing to the rescue

e Variations on a theme: different techniques for redistributing
probability mass

e Important: make sure you still have a valid probability distribution!



