N-Gram Language Models

Jimmy Lin
The iSchool
University of Maryland

Wednesday, October 28, 2009
N-Gram Language Models

- What?
 - LMs assign probabilities to sequences of tokens

- Why?
 - Statistical machine translation
 - Speech recognition
 - Handwriting recognition
 - Predictive text input

- How?
 - Based on previous word histories
 - n-gram = consecutive sequences of tokens
Huh?

But it must be recognized that the notion “probability of a sentence” is an entirely useless one, under any known interpretation of this term. (1969, p. 57)

Anytime a linguist leaves the group the recognition rate goes up. (1988)

Every time I fire a linguist…
N-Gram Language Models

N=1 (unigrams)

This is a sentence

Unigrams:
This,
is,
a,
sentence

Sentence of length s, how many unigrams?
N-Gram Language Models

N=2 (bigrams)

This is a sentence

Bigrams:
This is,
 is a,
a sentence

Sentence of length s, how many bigrams?
N-Gram Language Models

N=3 (trigrams)

This is a sentence

Trigrams:
This is a,
is a sentence

Sentence of length s, how many trigrams?
Computing Probabilities

\[P(w_1, w_2, \ldots, w_T) \]
\[= P(w_1)P(w_2|w_1)P(w_3|w_1, w_2) \cdots P(w_T|w_1, \ldots, w_{T-1}) \]
[chain rule]

Is this practical?

No! Can’t keep track of all possible histories of all words!
Approximating Probabilities

Basic idea: limit history to fixed number of words N (Markov Assumption)

\[P(w_k|w_1, \ldots, w_{k-1}) \approx P(w_k|w_{k-N+1}, \ldots, w_{k-1}) \]

N=1: Unigram Language Model

\[P(w_k|w_1, \ldots, w_{k-1}) \approx P(w_k) \]

\[\Rightarrow P(w_1, w_2, \ldots, w_T) \approx P(w_1)P(w_2)\ldots P(w_T) \]

Relation to HMMs?
Approximating Probabilities

Basic idea: limit history to fixed number of words N (Markov Assumption)

$$P(w_k|w_1,\ldots,w_{k-1}) \approx P(w_k|w_{k-N+1},\ldots,w_{k-1})$$

N=2: Bigram Language Model

$$P(w_k|w_1,\ldots,w_{k-1}) \approx P(w_k|w_{k-1})$$

$$\Rightarrow P(w_1,w_2,\ldots,w_T) \approx P(w_1|<S>)P(w_2|w_1)\ldots P(w_T|w_{T-1})$$

Relation to HMMs?
Approximating Probabilities

Basic idea: limit history to fixed number of words N (Markov Assumption)

$$P(w_k|w_1, \ldots, w_{k-1}) \approx P(w_k|w_{k-N+1}, \ldots, w_{k-1})$$

$N=3$: Trigram Language Model

$$P(w_k|w_1, \ldots, w_{k-1}) \approx P(w_k|w_{k-2}, w_{k-1})$$

$$\Rightarrow P(w_1, w_2, \ldots, w_T) \approx P(w_1|<S><S>) \ldots P(w_T|w_{T-2}w_{T-1})$$

Relation to HMMs?
Building N-Gram Language Models

- Use existing sentences to compute n-gram probability estimates (training)

- Terminology:
 - \(N \) = total number of words in training data (tokens)
 - \(V \) = vocabulary size or number of unique words (types)
 - \(C(w_1, ..., w_k) \) = frequency of n-gram \(w_1, ..., w_k \) in training data
 - \(P(w_1, ..., w_k) \) = probability estimate for n-gram \(w_1 ... w_k \)
 - \(P(w_k|w_1, ..., w_{k-1}) \) = conditional probability of producing \(w_k \) given the history \(w_1, ..., w_{k-1} \)

What’s the vocabulary size?
Vocabulary Size: Heaps’ Law

\[M = kT^b \]

- \(M \) is vocabulary size
- \(T \) is collection size (number of documents)
- \(k \) and \(b \) are constants

Typically, \(k \) is between 30 and 100, \(b \) is between 0.4 and 0.6

- Heaps’ Law: linear in log-log space
- Vocabulary size grows unbounded!
Heaps’ Law for RCV1

k = 44
b = 0.49

First 1,000,020 terms:
Predicted = 38,323
Actual = 38,365

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)
Building N-Gram Models

- Start with what’s easiest!
- Compute maximum likelihood estimates for individual n-gram probabilities
 - Unigram: \(P(w_i) = \frac{C(w_i)}{N} \)
 - Bigram: \(P(w_i, w_j) = \frac{C(w_i, w_j)}{N} \)
 \[
P(w_j|w_i) = \frac{P(w_i, w_j)}{P(w_i)} - \frac{C(w_i, w_j)}{\sum_w C(w_i, w)} \frac{C(w_i, w_j)}{C(w_i)}
 \]
 - Why not just substitute \(P(w_i) \)?
- Uses relative frequencies as estimates
- Maximizes the likelihood of the data given the model \(P(D|M) \)
Example: Bigram Language Model

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

Training Corpus

\[
\begin{align*}
P(I | <s>) &= 2/3 = 0.67 \\
P(am | I) &= 2/3 = 0.67 \\
P(</s> | Sam) &= 1/2 = 0.50 \\
\end{align*}
\]

\[
\begin{align*}
P(Sam | <s>) &= 1/3 = 0.33 \\
P(do | I) &= 1/3 = 0.33 \\
P(Sam | am) &= 1/2 = 0.50 \\
\end{align*}
\]

Bigram Probability Estimates

Note: We don’t ever cross sentence boundaries
Building N-Gram Models

- Start with what’s easiest!

- Compute maximum likelihood estimates for individual n-gram probabilities
 - Unigram: \(P(w_i) = \frac{C(w_i)}{N} \)
 - Bigram: \(P(w_i, w_j) = \frac{C(w_i, w_j)}{N} \)

 \[
 P(w_j | w_i) = \frac{P(w_i, w_j)}{P(w_i)} - \frac{C(w_i, w_j)}{\sum_w C(w_i, w)} \frac{C(w_i, w)}{C(w_i)}
 \]

- Uses relative frequencies as estimates

- Maximizes the likelihood of the data given the model \(P(D|M) \)
More Context, More Work

- Larger N = more context
 - Lexical co-occurrences
 - Local syntactic relations
- More context is better?
- Larger N = more complex model
 - For example, assume a vocabulary of 100,000
 - How many parameters for unigram LM? Bigram? Trigram?
- Larger N has another more serious and familiar problem!
Data Sparsity

\[
P(I | <s>) = \frac{2}{3} = 0.67 \quad P(\text{Sam} | <s>) = \frac{1}{3} = 0.33 \\
P(\text{am} | I) = \frac{2}{3} = 0.67 \quad P(\text{do} | I) = \frac{1}{3} = 0.33 \\
P(<s> | \text{Sam}) = \frac{1}{2} = 0.50 \quad P(\text{Sam} | \text{am}) = \frac{1}{2} = 0.50 \\
\]

...

Bigram Probability Estimates

\[
P(\text{I like ham}) \\
= P(I | <s>) P(\text{like} | I) P(\text{ham} | \text{like}) P(<s> | \text{ham}) \\
= 0
\]

Why?

Why is this bad?
Data Sparsity

- Serious problem in language modeling!
- Becomes more severe as N increases
 - What’s the tradeoff?
- Solution 1: Use larger training corpora
 - Can’t always work... Blame Zipf’s Law (Looong tail)
- Solution 2: Assign non-zero probability to unseen n-grams
 - Known as smoothing
Smoothing

- Zeros are bad for any statistical estimator
 - Need better estimators because MLEs give us a lot of zeros
 - A distribution without zeros is “smoother”

- The Robin Hood Philosophy: Take from the rich (seen n-grams) and give to the poor (unseen n-grams)
 - And thus also called discounting
 - Critical: make sure you still have a valid probability distribution!

- Language modeling: theory vs. practice
Laplace’s Law

- Simplest and oldest smoothing technique
- Just add 1 to all n-gram counts including the unseen ones
- So, what do the revised estimates look like?
Laplace’s Law: Probabilities

Unigrams

\[P_{MLE}(w_i) = \frac{C(w_i)}{N} \quad \rightarrow \quad P_{LAP}(w_i) = \frac{C(w_i) + 1}{N + V} \]

Bigrams

\[P_{MLE}(w_i, w_j) = \frac{C(w_i, w_j)}{N} \quad \rightarrow \quad P_{LAP}(w_i, w_j) = \frac{C(w_i, w_j) + 1}{N + V^2} \]

Careful, don’t confuse the N’s!

\[P_{LAP}(w_j | w_i) = \frac{P_{LAP}(w_i, w_j)}{P_{LAP}(w_i)} = \frac{C(w_i, w_j) + 1}{C(w_i) + V} \]

What if we don’t know V?
Laplace’s Law: Frequencies

Expected Frequency Estimates

\[C_{LAP}(w_i) = P_{LAP}(w_i)N \]
\[C_{LAP}(w_i, w_j) = P_{LAP}(w_i, w_j)N \]

Relative Discount

\[d_1 = \frac{C_{LAP}(w_i)}{C(w_i)} \]
\[d_2 = \frac{C_{LAP}(w_i, w_j)}{C'(w_i, w_j)} \]
Laplace’s Law

- Bayesian estimator with uniform priors
- Moves too much mass over to unseen n-grams
- What if we added a fraction of 1 instead?
Lidstone’s Law of Succession

- Add $0 < \gamma < 1$ to each count instead
- The smaller γ is, the lower the mass moved to the unseen n-grams ($0=$no smoothing)
- The case of $\gamma = 0.5$ is known as Jeffery-Perks Law or Expected Likelihood Estimation
- How to find the right value of γ?
Good-Turing Estimator

- **Intuition:** Use n-grams seen once to estimate n-grams never seen and so on

- **Compute** N_r (frequency of frequency r)

 $$N_r = \sum_{w_1w_2C(w_1w_2)} 1$$

 - N_0 is the number of items with count 0
 - N_1 is the number of items with count 1
 - \ldots
Good-Turing Estimator

- For each r, compute an expected frequency estimate (smoothed count)
 \[r' = C_{GT}(w_i, w_j) = (r + 1) \frac{N_{r+1}}{N_r} \]

- Replace MLE counts of seen bigrams with the expected frequency estimates and use those for probabilities
 \[P_{GT}(w_i, w_j) = \frac{C_{GT}(w_i, w_j)}{N} \quad P_{GT}(w_j | w_i) = \frac{C_{GT}(w_i, w_j)}{C(w_i)} \]
Good-Turing Estimator

- What about an unseen bigram?

\[r' = C_{GT} = (0 + 1) \frac{N_1}{N_0} = \frac{N_1}{N_0} \]

\[P_{GT} = \frac{C_{GT}}{N} \]

- Do we know \(N_0 \)? Can we compute it for bigrams?

\[N_0 = V^2 - \text{bigrams we have seen} \]
Good-Turing Estimator: Example

<table>
<thead>
<tr>
<th>r</th>
<th>N_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138741</td>
</tr>
<tr>
<td>2</td>
<td>25413</td>
</tr>
<tr>
<td>3</td>
<td>10531</td>
</tr>
<tr>
<td>4</td>
<td>5997</td>
</tr>
<tr>
<td>5</td>
<td>3565</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
</tr>
</tbody>
</table>

\[N_0 = (14585)^2 - 199252 \]
\[C_{\text{unseen}} = \frac{N_1}{N_0} = 0.00065 \]
\[P_{\text{unseen}} = \frac{N_1}{(N_0 \cdot N)} = 1.06 \times 10^{-9} \]

Note: Assumes mass is uniformly distributed

\[V = 14585 \]
\[\text{Seen bigrams} = 199252 \]

\[C(\text{person she}) = 2 \quad C_{GT}(\text{person she}) = (2+1)(10531/25413) = 1.243 \]
\[C(\text{person}) = 223 \quad P(\text{she}|\text{person}) = C_{GT}(\text{person she})/223 = 0.0056 \]
Good-Turing Estimator

For each r, compute an expected frequency estimate (smoothed count)

$$r' = C_{GT}(w_i, w_j) = (r + 1) \frac{N_{r+1}}{N_r}$$

Replace MLE counts of seen bigrams with the expected frequency estimates and use those for probabilities

$$P_{GT}(w_i, w_j) = \frac{C_{GT}(w_i, w_j)}{N}$$

$$P_{GT}(w_j|w_i) = \frac{C_{GT}(w_i, w_j)}{C(w_i)}$$

What if w_i isn’t observed?
Good-Turing Estimator

- Can’t replace all MLE counts
- What about r_{max}?
 - $N_{r+1} = 0$ for $r = r_{\text{max}}$
- Solution 1: Only replace counts for $r < k$ (~10)
- Solution 2: Fit a curve S through the observed (r, N_r) values and use $S(r)$ instead
- For both solutions, remember to do what?
- Bottom line: the Good-Turing estimator is not used by itself but in combination with other techniques
Combining Estimators

- Better models come from:
 - Combining n-gram probability estimates from different models
 - Leveraging different sources of information for prediction

- Three major combination techniques:
 - Simple Linear Interpolation of MLEs
 - Katz Backoff
 - Kneser-Ney Smoothing
Linear MLE Interpolation

- Mix a trigram model with bigram and unigram models to offset sparsity
- Mix = Weighted Linear Combination

\[P(w_k|w_{k-2}w_{k-1}) = \lambda_1 P(w_k|w_{k-2}w_{k-1}) + \lambda_2 P(w_k|w_{k-1}) + \lambda_3 P(w_k) \]

\[0 \leq \lambda_i \leq 1 \quad \sum_i \lambda_i = 1 \]
Linear MLE Interpolation

- λ_i are estimated on some held-out data set (not training, not test)
- Estimation is usually done via an EM variant or other numerical algorithms (e.g. Powell)
Backoff Models

- Consult different models in order depending on specificity (instead of all at the same time)
- The most detailed model for current context first and, if that doesn’t work, back off to a lower model
- Continue backing off until you reach a model that has some counts
Backoff Models

- Important: need to incorporate discounting as an integral part of the algorithm… Why?
- MLE estimates are well-formed…
- But, if we back off to a lower order model without taking something from the higher order MLEs, we are adding extra mass!
- Katz backoff
 - Starting point: GT estimator assumes uniform distribution over unseen events… can we do better?
 - Use lower order models!
Katz Backoff

Given a trigram “x y z”

\[P_{katz}(z|x, y) = \begin{cases}
 P_{GT}(z|x, y), & \text{if } C(x, y, z) > 0 \\
 \alpha(x, y)P_{katz}(z|y), & \text{otherwise}
\end{cases} \]

\[P_{katz}(z|y) = \begin{cases}
 P_{GT}(z|y), & \text{if } C(y, z) > 0 \\
 \alpha(y)P_{GT}(z), & \text{otherwise}
\end{cases} \]
Katz Backoff (from textbook)

Given a trigram “x y z”

\[P_{katz}(z|x, y) = \begin{cases}
 P_{GT}(z|x, y), & \text{if } C(x, y, z) > 0 \\
 \alpha(x, y)P_{katz}(z|y), & \text{else if } C(x, y) > 0 \\
 P_{GT}(z), & \text{otherwise}
\end{cases} \]

\[P_{katz}(z|y) = \begin{cases}
 P_{GT}(z|y), & \text{if } C(y, z) > 0 \\
 \alpha(y)P_{GT}(z), & \text{otherwise}
\end{cases} \]
Katz Backoff

- Why use P_{GT} and not P_{MLE} directly?
 - If we use P_{MLE} then we are adding extra probability mass when backing off!
 - Another way: Can’t save any probability mass for lower order models without discounting

- Why the α’s?
 - To ensure that total mass from all lower order models sums exactly to what we got from the discounting
Kneser-Ney Smoothing

- Observation:
 - Average Good-Turing discount for $r \geq 3$ is largely constant over r
 - So, why not simply subtract a fixed discount $D (\leq 1)$ from non-zero counts?

- Absolute Discounting: discounted bigram model, back off to MLE unigram model

- Kneser-Ney: Interpolate discounted model with a special “continuation” unigram model
Kneser-Ney Smoothing

- **Intuition**
 - Lower order model important only when higher order model is sparse
 - Should be optimized to perform in such situations
- **Example**
 - \(C(\text{Los Angeles}) = C(\text{Angeles}) = M; M \) is very large
 - “Angeles” always and only occurs after “Los”
 - Unigram MLE for “Angeles” will be high and a normal backoff algorithm will likely pick it in any context
 - It shouldn’t, because “Angeles” occurs with only a single context in the entire training data
Kneser-Ney Smoothing

- Kneser-Ney: Interpolate discounted model with a special “continuation” unigram model
 - Based on appearance of unigrams in different contexts
 - Excellent performance, state of the art

\[
P_{KN}(w_k|w_{k-1}) = \frac{C(w_{k-1}w_k) - D}{C(w_{k-1})} + \beta(w_k)P_{CONT}(w_k)
\]

\[
P_{CONT}(w_i) = \frac{N(\bullet w_i)}{\sum_{w'} N(\bullet w')}
\]

\[N(\bullet w_i) = \text{number of different contexts } w_i \text{ has appeared in}\]

- Why interpolation, not backoff?
Explicitly Modeling OOV

- Fix vocabulary at some reasonable number of words

- During training:
 - Consider any words that don’t occur in this list as unknown or out of vocabulary (OOV) words
 - Replace all OOVs with the special word `<UNK>`
 - Treat `<UNK>` as any other word and count and estimate probabilities

- During testing:
 - Replace unknown words with `<UNK>` and use LM
 - Test set characterized by OOV rate (percentage of OOVs)
Evaluating Language Models

- Information theoretic criteria used
- Most common: Perplexity assigned by the trained LM to a test set
- Perplexity: How surprised are you on average by what comes next?
 - If the LM is good at knowing what comes next in a sentence ⇒ Low perplexity (lower is better)
 - Relation to weighted average branching factor
Computing Perplexity

- Given testset W with words w_1, \ldots, w_N
- Treat entire test set as one word sequence
- Perplexity is defined as the probability of the entire test set normalized by the number of words
 \[PP(T) = P(w_1, \ldots, w_N)^{-1/N} \]
- Using the probability chain rule and (say) a bigram LM, we can write this as
 \[PP(T) = \sqrt[\sqrt[N]{N}]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}} \]
- A lot easier to do with log probs!
Practical Evaluation

- Use `<s>` and `</s>` both in probability computation
- Count `</s>` but not `<s>` in N
- Typical range of perplexities on English text is 50-1000
- Closed vocabulary testing yields much lower perplexities
- Testing across genres yields higher perplexities
- Can only compare perplexities if the LMs use the same vocabulary

<table>
<thead>
<tr>
<th>Order</th>
<th>Unigram</th>
<th>Bigram</th>
<th>Trigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>962</td>
<td>170</td>
<td>109</td>
</tr>
</tbody>
</table>

Training: $N=38$ million, $V\sim20000$, open vocabulary, Katz backoff where applicable
Test: 1.5 million words, same genre as training
Typical “State of the Art” LMs

- Training
 - $N = 10$ billion words, $V = 300k$ words
 - 4-gram model with Kneser-Ney smoothing

- Testing
 - 25 million words, OOV rate 3.8%
 - Perplexity ~ 50
Take-Away Messages

- LMs assign probabilities to sequences of tokens
- N-gram language models: consider only limited histories
- Data sparsity is an issue: smoothing to the rescue
 - Variations on a theme: different techniques for redistributing probability mass
 - Important: make sure you still have a valid probability distribution!