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N-Gram Language Models
What? 

LMs assign probabilities to sequences of tokens

Why?
Statistical machine translation
Speech recognition
Handwriting recognition
Predictive text input

How?
Based on previous word histories
n-gram = consecutive sequences of tokens



Huh?

Noam Chomsky Fred Jelinek

But it must be recognized that the notion 
“probability of a sentence” is an entirely 
useless one, under any known interpretation 
of this term. (1969, p. 57)

Anytime a linguist leaves the group 
the recognition rate goes up. (1988)

Every time I fire a linguistEvery time I fire a linguist…



N-Gram Language Models
N=1 (unigrams)

This is a sentence

Unigrams:Unigrams:
This,
is, 
a, 

sentence

Sentence of length s, how many unigrams?



N-Gram Language Models
N=2 (bigrams)

This is a sentence

Bigrams:
This is,
is a, ,

a sentence

Sentence of length s, how many bigrams?



N-Gram Language Models
N=3 (trigrams)

This is a sentence

Trigrams:
This is a,

i tis a sentence

Sentence of length s, how many trigrams?



Computing Probabilities

[chain rule]

Is this practical?
No! Can’t keep track of all possible histories of all words!p p



Approximating Probabilities

Basic idea: limit history to fixed number of words N
(Markov Assumption)( p )

N=1: Unigram Language Model

Relation to HMMs?



Approximating Probabilities

Basic idea: limit history to fixed number of words N
(Markov Assumption)( p )

N=2: Bigram Language Model

Relation to HMMs?



Approximating Probabilities

Basic idea: limit history to fixed number of words N
(Markov Assumption)( p )

N=3: Trigram Language Model

Relation to HMMs?



Building N-Gram Language Models
Use existing sentences to compute n-gram probability 
estimates (training)

Terminology:
N = total number of words in training data (tokens)
V = vocabulary size or number of unique words (types)
C(w1,...,wk) = frequency of n-gram w1, ..., wk in training data
P(w1, ..., wk) = probability estimate for n-gram w1 ... wk1 k 1 k

P(wk|w1, ..., wk-1) = conditional probability of producing wk given the 
history w1, ... wk-1

What’s the vocabulary size?



Vocabulary Size: Heaps’ Law

bkTM
M is vocabulary size
T is collection size (number of documents)kTM = T is collection size (number of documents)
k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

Heaps’ Law: linear in log-log space

Vocabulary size grows unbounded!



Heaps’ Law for RCV1

k = 44
b = 0.49

First 1,000,020 terms:
Predicted = 38,323
Actual = 38,365

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)



Building N-Gram Models
Start with what’s easiest!

Compute maximum likelihood estimates for individual Co pute a u e ood est ates o d dua
n-gram probabilities

Unigram:

Bigram: 
Why not just substitute P(wi) ?

U l ti f i ti tUses relative frequencies as estimates

Maximizes the likelihood of the data given the model 
P(D|M)P(D|M)



Example: Bigram Language Model

I am Sam<s> </s>
Sam I am
I do not like green eggs and ham

<s>
<s>

</s>
</s>

T i i CTraining Corpus

P( I | <s> ) = 2/3 = 0.67 P( Sam | <s> ) = 1/3 = 0.33
P( am | I ) = 2/3 = 0.67 P( do | I ) = 1/3 = 0.33
P( </s> | Sam )= 1/2 = 0.50  P( Sam | am) = 1/2 = 0.50

Note: We don’t ever cross sentence boundaries

...

Bigram Probability Estimates
Note: We don t ever cross sentence boundaries



Building N-Gram Models
Start with what’s easiest!

Compute maximum likelihood estimates for individual Co pute a u e ood est ates o d dua
n-gram probabilities

Unigram: Let’s revisit this issue…

Bigram: 
Why not just substitute P(wi) ?

U l ti f i ti tUses relative frequencies as estimates

Maximizes the likelihood of the data given the model 
P(D|M)P(D|M)



More Context, More Work
Larger N = more context

Lexical co-occurrences
Local syntactic relations

More context is better?

Larger N = more complex model
For example, assume a vocabulary of 100,000
How many parameters for unigram LM? Bigram? Trigram?How many parameters for unigram LM? Bigram? Trigram?

Larger N has another more serious and familiar problem! 



Data Sparsity

P( I | <s> ) = 2/3 = 0.67 P( Sam | <s> ) = 1/3 = 0.33
P( am | I ) = 2/3 = 0.67 P( do | I ) = 1/3 = 0.33( | ) ( | )
P( </s> | Sam )= 1/2 = 0.50  P( Sam | am) = 1/2 = 0.50
...

Bigram Probability Estimates

P(I like ham)

Bigram Probability Estimates

( )

= P( I | <s> ) P( like | I ) P( ham | like ) P( </s> | ham )

= 0

Why?
Why is this bad?Why is this bad?



Data Sparsity
Serious problem in language modeling!

Becomes more severe as N increaseseco es o e se e e as c eases
What’s the tradeoff?

Solution 1: Use larger training corpora
Can’t always work... Blame Zipf’s Law (Looong tail)

Solution 2: Assign non-zero probability to unseen n-grams
Known as smoothing



Smoothing
Zeros are bad for any statistical estimator

Need better estimators because MLEs give us a lot of zeros
A distribution without zeros is “smoother”

The Robin Hood Philosophy: Take from the rich (seen n-
grams) and give to the poor (unseen n grams)grams) and give to the poor (unseen n-grams)

And thus also called discounting
Critical: make sure you still have a valid probability distribution!

Language modeling: theory vs. practice



Laplace’s Law
Simplest and oldest smoothing technique

Just add 1 to all n-gram counts including the unseen onesJust add to a g a cou ts c ud g t e u see o es

So, what do the revised estimates look like?



Laplace’s Law: Probabilities

Unigrams

Bigrams

Careful, don’t confuse the N’s!

What if we don’t know V?



Laplace’s Law: Frequencies

Expected Frequency Estimatesp q y

Relative Discount



Laplace’s Law
Bayesian estimator with uniform priors

Moves too much mass over to unseen n-gramso es too uc ass o e to u see g a s

What if we added a fraction of 1 instead?



Lidstone’s Law of Succession
Add 0 < γ < 1 to each count instead

The smaller γ is, the lower the mass moved to the unseen e s a e γ s, t e o e t e ass o ed to t e u see
n-grams (0=no smoothing)

The case of γ = 0.5 is known as Jeffery-Perks Law or 
Expected Likelihood Estimation

How to find the right value of γ?



Good-Turing Estimator
Intuition: Use n-grams seen once to estimate n-grams 
never seen and so on

Compute Nr (frequency of frequency r)

N0 is the number of items with count 0
N1 is the number of items with count 11

…



Good-Turing Estimator
For each r, compute an expected frequency estimate 
(smoothed count)

Replace MLE counts of seen bigrams with the expectedReplace MLE counts of seen bigrams with the expected 
frequency estimates and use those for probabilities



Good-Turing Estimator
What about an unseen bigram?

Do we know N0? Can we compute it for bigrams?



Good-Turing Estimator: Example

r Nr

1 138741 (14585)2 - 199252N0 =1 138741
2 25413
3 10531

(14585) 199252

N1 / N0 =  0.00065
N /( N N ) = 1 06 x 10-9

N0  

Cunseen =
P =4 5997

5 3565
6 ...

N1 /( N0 N ) =  1.06 x 10 9Punseen =
Note: Assumes mass is uniformly distributed

6

V = 14585
Seen bigrams =199252

C(person she) = 2
C( ) 223

CGT(person she) = (2+1)(10531/25413) = 1.243
P( h | ) C ( h )/223 0 0056C(person) = 223 P(she|person) =CGT(person she)/223 = 0.0056



Good-Turing Estimator
For each r, compute an expected frequency estimate 
(smoothed count)

Replace MLE counts of seen bigrams with the expectedReplace MLE counts of seen bigrams with the expected 
frequency estimates and use those for probabilities

What if wi isn’t observed?



Good-Turing Estimator
Can’t replace all MLE counts

What about rmax?at about max

Nr+1 = 0 for r = rmax

Solution 1: Only replace counts for r < k (~10)

Solution 2: Fit a curve S through the observed (r, Nr) 
values and use S(r) instead

For both solutions, remember to do what?

Bottom line: the Good-Turing estimator is not used by itself g y
but in combination with other techniques



Combining Estimators
Better models come from:

Combining n-gram probability estimates from different models
Leveraging different sources of information for prediction

Three major combination techniques:
Simple Linear Interpolation of MLEs
Katz Backoff
Kneser-Ney Smoothing



Linear MLE Interpolation
Mix a trigram model with bigram and unigram models to 
offset sparsity

Mix = Weighted Linear Combination



Linear MLE Interpolation
λi are estimated on some held-out data set (not training, 
not test)

Estimation is usually done via an EM variant or other 
numerical algorithms (e.g. Powell)



Backoff Models
Consult different models in order depending on specificity 
(instead of all at the same time)

The most detailed model for current context first and, if 
that doesn’t work, back off to a lower model

Continue backing off until you reach a model that has 
some counts



Backoff Models
Important: need to incorporate discounting as an integral 
part of the algorithm… Why?

MLE estimates are well-formed…

But, if we back off to a lower order model without taking 
something from the higher order MLEs, we are adding 
extra mass!

Katz backoff
Starting point: GT estimator assumes uniform distribution over 
unseen events… can we do better?u see e e ts ca e do bette
Use lower order models!



Katz Backoff

Given a trigram “x y z”



Katz Backoff (from textbook)

Given a trigram “x y z”

Typo?



Katz Backoff
Why use PGT and not PMLE directly ?

If we use PMLE then we are adding extra probability mass when 
backing off!
Another way: Can’t save any probability mass for lower order 
models without discounting

Why the α’s?
To ensure that total mass from all lower order models sums exactly 
to what we got from the discountingto what we got from the discounting



Kneser-Ney Smoothing
Observation:

Average Good-Turing discount for r ≥ 3 is largely constant over r
So, why not simply subtract a fixed discount D (≤1) from non-zero 
counts?

Absolute Discounting: discounted bigram model back offAbsolute Discounting: discounted bigram model, back off 
to MLE unigram model

Kneser-Ney: Interpolate discounted model with a special y p p
“continuation” unigram model



Kneser-Ney Smoothing
Intuition

Lower order model important only when higher order model is 
sparse
Should be optimized to perform in such situations 

ExampleExample
C(Los Angeles) = C(Angeles) = M; M is very large
“Angeles” always and only occurs after “Los”
Unigram MLE for “Angeles” will be high and a normal backoff
algorithm will likely pick it in any context
It shouldn’t, because “Angeles” occurs with only a single context in 
the entire training data



Kneser-Ney Smoothing
Kneser-Ney: Interpolate discounted model with a special 
“continuation” unigram model

Based on appearance of unigrams in different contexts
Excellent performance, state of the art

= number of different contexts w has appeared in

Why interpolation, not backoff?

= number of different contexts wi has appeared in



Explicitly Modeling OOV
Fix vocabulary at some reasonable number of words

During training:u g t a g
Consider any words that don’t occur in this list as unknown or out 
of vocabulary (OOV) words
Replace all OOVs with the special word <UNK>Replace all OOVs with the special word <UNK>
Treat <UNK> as any other word and count and estimate 
probabilities

During testing:
Replace unknown words with <UNK> and use LM
Test set characterized by OOV rate (percentage of OOVs)Test set characterized by OOV rate (percentage of OOVs)



Evaluating Language Models
Information theoretic criteria used

Most common: Perplexity assigned by the trained LM to a ost co o e p e ty ass g ed by t e t a ed to a
test set

Perplexity: How surprised are you on average by what 
comes next ?

If the LM is good at knowing what comes next in a sentence 
Low perplexity (lower is better)Low perplexity (lower is better)
Relation to weighted average branching factor



Computing Perplexity
Given testset W with words w1, ...,wN

Treat entire test set as one word sequenceeat e t e test set as o e o d seque ce

Perplexity is defined as the probability of the entire test set 
normalized by the number of words

Using the probability chain rule and (say) a bigram LM, we 
can write this as 

A lot easer to do with log probs!A lot easer to do with log probs!



Practical Evaluation
Use <s> and </s> both in probability computation

Count </s> but not <s> in NCou t /s but ot s

Typical range of perplexities on English text is 50-1000

Closed vocabulary testing yields much lower perplexitiesClosed vocabulary testing yields much lower perplexities

Testing across genres yields higher perplexities

Can only compare perplexities if the LMs use the same 
vocabulary

Order Unigram Bigram Trigram

PP 962 170 109

Training:  N=38 million, V~20000, open vocabulary, Katz backoff where applicable
Test: 1.5 million words, same genre as training



Typical “State of the Art” LMs
Training

N = 10 billion words, V = 300k words
4-gram model with Kneser-Ney smoothing

Testing
25 million words, OOV rate 3.8%
Perplexity ~50



Take-Away Messages
LMs assign probabilities to sequences of tokens

N-gram language models: consider only limited historiesg a a guage ode s co s de o y ted sto es

Data sparsity is an issue: smoothing to the rescue
Variations on a theme: different techniques for redistributingVariations on a theme: different techniques for redistributing 
probability mass
Important: make sure you still have a valid probability distribution!


