
Syntactic Parsing with CFGs
CMSC 723: Computational Linguistics I ― Session #7

Jimmy LinJimmy Lin
The iSchool
University of Maryland

Wednesday, October 14, 2009

Today’s Agenda
Words… structure… meaning…

Last week: formal grammarsast ee o a g a a s
Context-free grammars
Grammars for English
Treebanks
Dependency grammars

Today: parsing with CFGsToday: parsing with CFGs
Top-down and bottom-up parsing
CKY parsing
Earley parsing

Parsing
Problem setup:

Input: string and a CFG
Output: parse tree assigning proper structure to input string

“Proper structure”
Tree that covers all and only words in the input
Tree is rooted at an S
Derivations obey rules of the grammar
Usually, more than one parse tree…
Unfortunately, parsing algorithms don’t help in selecting the correct
tree from among all the possible treest ee o a o g a t e poss b e t ees

Parsing Algorithms
Parsing is (surprise) a search problem

Two basic (= bad) algorithms:o bas c (bad) a go t s
Top-down search
Bottom-up search

Two “real” algorithms:
CKY parsing
Earley parsingEarley parsing

Simplifying assumptions:
Morphological analysis is doneMorphological analysis is done
All the words are known

Top-Down Search
Observation: trees must be rooted with an S node

Parsing strategy:a s g st ategy
Start at top with an S node
Apply rules to build out trees
Work down toward leaves

Top-Down Search

Top-Down Search

Top-Down Search

Bottom-Up Search
Observation: trees must cover all input words

Parsing strategy:a s g st ategy
Start at the bottom with input words
Build structure based on grammar
Work up towards the root S

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Top-Down vs. Bottom-Up
Top-down search

Only searches valid trees
But, considers trees that are not consistent with any of the words

Bottom-up search
Only builds trees consistent with the input
But, considers trees that don’t lead anywhere

Parsing as Search
Search involves controlling choices in the search space:

Which node to focus on in building structure
Which grammar rule to apply

General strategy: backtracking
Make a choice, if it works out then fine
If not, then back up and make a different choice
Remember DFS/BFS for NDFSA recognition?

Backtracking isn’t enough!
Ambiguity

Shared sub-problemsS a ed sub p ob e s

Ambiguity

Or consider: I saw the man on the hill with the telescope.

Shared Sub-Problems
Observation: ambiguous parses still share sub-trees

We don’t want to redo work that’s already been donee do t a t to edo o t at s a eady bee do e

Unfortunately, naïve backtracking leads to duplicate work

Shared Sub-Problems: Example
Example: “A flight from Indianapolis to Houston on TWA”

Assume a top-down parse making choices among the ssu e a top do pa se a g c o ces a o g t e
various nominal rules:

Nominal → Noun
Nominal → Nominal PP

Statically choosing the rules in this order leads to lots of
extra workextra work...

Shared Sub-Problems: Example

Efficient Parsing
Dynamic programming to the rescue!

Intuition: store partial results in tables, thereby:tu t o sto e pa t a esu ts tab es, t e eby
Avoiding repeated work on shared sub-problems
Efficiently storing ambiguous structures with shared sub-parts

Two algorithms:
CKY: roughly, bottom-up
Earley: roughly top downEarley: roughly, top-down

CKY Parsing: CNF
CKY parsing requires that the grammar consist of ε-free,
binary rules = Chomsky Normal Form

All rules of the form:
A → B C
D → w

What does the tree look like?

What if my CFG isn’t in CNF?

CKY Parsing with Arbitrary CFGs
Problem: my grammar has rules like VP → NP PP PP

Can’t apply CKY!

Solution: rewrite grammar into CNF
Introduce new intermediate non-terminals into the grammar

A → B C D A → X D
X → B C

(Where X is a symbol that doesn’t
occur anywhere else in the grammar)

What does this mean?
= weak equivalence
The rewritten grammar accepts (and rejects) the same set of
strings as the original grammar…
But the resulting derivations (trees) are different

Sample L1 Grammar

L1 Grammar: CNF Conversion

CKY Parsing: Intuition
Consider the rule D → w

Terminal (word) forms a constituent
Trivial to apply

Consider the rule A → B C
If there is an A somewhere in the input then there must be a B
followed by a C in the input
First, precisely define span [i, j]
If A spans from i to j in the input then there must be some k such
that i<k<j
Easy to apply: we just need to try different values for k

A
i j

B C
k

CKY Parsing: Table
Any constituent can conceivably span [i, j] for all 0≤i<j≤N,
where N = length of input string

We need an N × N table to keep track of all spans…
But we only need half of the table

Semantics of table: cell [i j] contains A iff A spans i to j inSemantics of table: cell [i, j] contains A iff A spans i to j in
the input string

Of course, must be allowed by the grammar!

CKY Parsing: Table-Filling
So let’s fill this table…

And look at the cell [0, N]: which means?

But how?

CKY Parsing: Table-Filling
In order for A to span [i, j]:

A → B C is a rule in the grammar, and
There must be a B in [i, k] and a C in [k, j] for some i<k<j

Operationally:
To apply rule A → B C, look for a B in [i, k] and a C in [k, j]
In the table: look left in the row and down in the column

CKY Parsing: Rule Application
note: mistake in book (Figure 13.11, p 441), should be [0,n]

CKY Parsing: Cell Ordering
CKY = exercise in filling the table representing spans

Need to establish a systematic order for considering each cell
For each cell [i, j] consider all possible values for k and try
applying each rule

What constraints do we have on the ordering of the cells?What constraints do we have on the ordering of the cells?

CKY Parsing: Canonical Ordering
Standard CKY algorithm:

Fill the table a column at a time, from left to right, bottom to top
Whenever we’re filling a cell, the parts needed are already in the
table (to the left and below)

Nice property: processes input left to right word at a timeNice property: processes input left to right, word at a time

CKY Parsing: Ordering Illustrated

CKY Algorithm

CKY Parsing: Recognize or Parse
Is this really a parser?

Recognizer to parser: add backpointers!ecog e to pa se add bac po te s

CKY: Example

?

?

?

?

?

Filling column 5

?

?Filling column 5

CKY: Example

?

?

?

?

?

?

CKY: Example

?

?

?

?

CKY: Example

??

CKY: Example

CKY: Algorithmic Complexity
What’s the asymptotic complexity of CKY?

CKY: Analysis
Since it’s bottom up, CKY populates the table with a lot of
“phantom constituents”

Spans that are constituents, but cannot really occur in the context
in which they are suggested

Conversion of grammar to CNF adds additional non-Conversion of grammar to CNF adds additional non
terminal nodes

Leads to weak equivalence wrt original grammar
Additional terminal nodes not (linguistically) meaningful: but can be
cleaned up with post processing

Is there a parsing algorithm for arbitrary CFGs thatIs there a parsing algorithm for arbitrary CFGs that
combines dynamic programming and top-down control?

Earley Parsing
Dynamic programming algorithm (surprise)

Allows arbitrary CFGso s a b t a y C Gs

Top-down control
But, compare with naïve top-down searchBut, compare with naïve top down search

Fills a chart in a single sweep over the input
Chart is an array of length N + 1, where N = number of words
Chart entries represent states:

• Completed constituents and their locations
• In-progress constituentsIn progress constituents
• Predicted constituents

Chart Entries: States
Charts are populated with states

Each state contains three items of information:ac state co ta s t ee te s o o at o
A grammar rule
Information about progress made in completing the sub-tree
represented by the rulerepresented by the rule
Span of the sub-tree

Chart Entries: State Examples
S → • VP [0,0]

A VP is predicted at the start of the sentence

NP → Det • Nominal [1,2]
An NP is in progress; the Det goes from 1 to 2

VP → V NP • [0,3]
A VP has been found starting at 0 and ending at 3

Earley in a nutshell
Start by predicting S

Step through chart:Step t oug c a t
New predicted states are created from current states
New incomplete states are created by advancing existing states as
new constituents are discoverednew constituents are discovered
States are completed when rules are satisfied

Termination: look for S → α • [0, N][,]

Earley Algorithm

Earley Algorithm

Earley Example
Input: Book that flight

Desired end state: S → α • [0,3]Desired end state: S → α [0,3]
Meaning: S spanning from 0 to 3, completed rule

Earley: Chart[0]

Note that given a grammar these entries are theNote that given a grammar, these entries are the
same for all inputs; they can be pre-loaded…

Earley: Chart[1]

Earley: Chart[2] and Chart[3]

Earley: Recovering the Parse
As with CKY, add backpointers…

Earley: Efficiency
For such a simple example, there seems to be a lot of
useless stuff…

Why?

Back to Ambiguity
Did we solve it?

No: both CKY and Earley return multiple parse trees…o bot C a d a ey etu u t p e pa se t ees
Plus: compact encoding with shared sub-trees
Plus: work deriving shared sub-trees is reused
Minus: neither algorithm tells us which parse is correct

Ambiguity
Why don’t humans usually encounter ambiguity?

How can we improve our models?o ca e p o e ou ode s

What we covered today..
Parsing is (surprise) a search problem

Two important issues:o po ta t ssues
Ambiguity
Shared sub-problems

Two basic (= bad) algorithms:
Top-down search
Bottom up searchBottom-up search

Two “real” algorithms:
CKY parsingCKY parsing
Earley parsing

