CMSC 723: Computational Linguistics | — Session #5

Hidden Markov Models

Jimmy Lin
The iSchool
University of Maryland

Wednesday, September 30, 2009

Today’s Agenda

o The great leap forward in NLP
o Hidden Markov models (HMMs)

e Forward algorithm

e Viterbi decoding

e Supervised training

e Unsupervised training teaser

o HMMs for POS tagging

Deterministic to Stochastic

o The single biggest leap forward in NLP:

e From deterministic to stochastic models

e What? A stochastic process is one whose behavior is non-
deterministic in that a system’s subsequent state is determined
both by the process’s predictable actions and by a random
element.

o What's the biggest challenge of NLP?
o Why are deterministic models poorly adapted?
o What's the underlying mathematical tool?

o Why can’t you do this by hand?

FSM: Formal Specification

o Q: afinite set of N states

e Q={90: 91, 92 q3 ---}
e The start state: q,

e The set of final states: g,

o 2: a finite input alphabet of symbols

o 0(q,i): transition function

e Given state g and input symbol j, transition to new state g’

OROBOMO

Finite number of states

Transitions

Input alphabet

Start state

€

Final state(s)

The problem with FSMs...

o All state transitions are equally likely
o But what if we know that isn’t true?

o How might we know?

Weighted FSMs

o What if we know more about state transitions?

e ‘a’is twice as likely to be seen in state 1 as ‘b’ or ‘c’
e ‘C'is three times as likely to be seen in state 2 as ‘a’

o FSM — Weighted FSM
o What do we get of it?

e score(‘ab’) =2 (?)
e score('bc’) =3 (?)

Introducing Probabilities

o What's the problem with adding weights to transitions?

o What if we replace weights with probabilities?

e Probabilities provide a theoretically-sound way to model
uncertainly (ambiguity in language)
e But how do we assign probabilities?

Probabilistic FSMs

o What if we know more about state transitions?

e ‘a’is twice as likely to be seen in state 1 as ‘b’ or ‘c’
e ‘C'is three times as likely to be seen in state 2 as ‘a’

o What do we get of it? What's the interpretation?

o P(ab’)=0.5
o P(bc’)=0.1875

o This is a Markov chain

Markov Chain: Formal Specification

o Q: afinite set of N states

e Q={q90 91,92 Qq3, ...}
o The start state

e An explicit start state: q,

e Alternatively, a probability distribution over start states:
{rr,, my, M5, ..}, 211, =1

o The set of final states: g,

o N x N Transition probability matrix A = [a;]
°® g;= P(qj|q,-), > a; = 1 Vi

Let’'s model the stock market...

Each state corresponds to a
physical state in the world

What's missing? Add “priors”

o What's special about this FSM?

e Present state only depends on the previous state!
o The (1st order) Markov assumption
* P(qilqo---9:1) = P(qiq;4)

Are states always observable ?

Day:1 2 3 4 56

Not observable ! Bull: Bull Market

(Bull Bear S BearS Bu||) Bear: Bear Market

S: Static Market

Here’'s what you actually observe: _
Market is up

i Market is down
T l — T ‘L A . Market Ihasn\’l’:/changed

Hidden Markov Models

o Markov chains aren’t enough!

e What if you can'’t directly observe the states?

e We need to model problems where observations don't directly
correspond to states...

o Solution: A Hidden Markov Model (HMM)

e Assume two probabilistic processes
e Underlying process (state transition) is hidden
e Second process generates sequence of observed events

HMM: Formal Specification

o Q: a finite set of N states
e Q={90: 91, 92 q3 ---}
o N x N Transition probability matrix A = [a;]
e a;=P(qlq), 2 a;=1 Vi
o Sequence of observations O = 0., 0,, ... O
e Each drawn from a given set of symbols (vocabulary V)
o N x |V]| Emission probability matrix, B = [b;]
° b =bfo) = P(0odq), 2 by=1 Vi
o Start and end states

e An explicit start state q, or alternatively,
a prior distribution over start states: {rr,, m,, 75, ...}, Z M, =1

e The set of final states: g,

Stock Market HMM

States?
Transitions?
Vocabulary?
Emissions?

Priors?

v

Stock Market HMM

States? v
Transitions? v
Vocabulary?
Emissions?

Priors?

Stock Market HMM

States? v
Transitions? v
Vocabulary? v
Emissions?

Priors?

V= {TILIH}

Stock Market HMM

States? v
Transitions? v
Vocabulary? v
Emissions? v
Priors?

P({| | Bear) = 0.6 P{| |Buil) =0.1 F| |Static) = 0.3

P{f | Bear) =0.1 P(t |Bull) = D.7 P{{ | Static) = 0.3
[P(~ |Bear) = 0.3] [P(|Bull) = 0.2] [P(~ |Static) = 0.4]

V= {TILIH}

Stock Market HMM

P({| | Bear) = 0.6 P{| |Buil) =0.1

P(T | Bear) = 0.1 P(t |Bull} = 0.7
[P{s |Bear) = 0.3] [P{s |Buil) = D.2

| |

V= {TILIH}

F{T | Static) = 0.3
F| |Static) = 0.3
Pl |Sladic) =04

|

States?
Transitions?
Vocabulary?
Emissions?

Priors?

A SUANEE N NN

Properties of HMMs

o The (first-order) Markov assumption holds

o The probability of an output symbol depends only on the
state generating it
P("tlQl: g2;::,gN;01,025..., OT) = P(Oth‘i)

o The number of states (N) does not have to equal the
number of observations (T)

HMMs: Three Problems

o Likelihood: Given an HMM A = (A, B, []), and a sequence
of observed events O, find P(O|A)

o Decoding: Given an HMM A = (A, B, []), and an
observation sequence O, find the most likely (hidden)
state sequence

o Learning: Given a set of observation sequences and the
set of states Q in A, compute the parameters A and B

Okay, but where did the structure of the HMM come from?

HMM Problem #1: Likelihood

Computing Likelihood

123456
O:}\l(—)Tl(—)

P(l |Bear) = 0.1 P(t |Bull) = 0.7 P(T |Static) = D3
[P(] |Bear) = 0.8] [P(l |Bull) = 0.1] [P(] |Static) = 0.3]
P{~s |Bear) = D.3 P{= |Bull) = 0.2 P |Slalic) =04
Astock

Assuming A, models the stock market, how likely are we to
observe the sequence of outputs?

Computing Likelihood
o Easy, right?

e Sum over all possible ways in which we could generate O from A

P(O|)) = ZP(O QA) = ZP (01Q, N P(Q|))

#1,42...97

=[Z T bql. (al)aqlqu .. 'a'q'r—:.?.rbﬁ' (OT)]

e What's the problem? Takes O(N') time to compute!

o Right idea, wrong algorithm!

Computing Likelihood

o What are we doing wrong?

e State sequences may have a lot of overlap...

e We're recomputing the shared subsequences every time
e Let's store intermediate results and reuse them!

e Can we do this?

o Sounds like a job for dynamic programming!

Forward Algorithm

o Use an N x T trellis or chart [a,]

o Forward probabilities: a or ay))
e = P(being in state j after seeing t observations)
e =P(0,, 0,, ... 0,)

o Each cell =) extensions of all paths from other cells
adf) = 2;a.4(i) a; bfoy)

e a,,(/): forward path probability until (t-7)
e g, transition probability of going from state i to j
® bj(o,): probability of emitting symbol o, in state j

o P(OW) = ¥ ax(i

o What's the running time of this algorithm?

Forward Algorithm: Formal Definition

o Initialization

ai(f) =mibi(e1), 1 <F<N

o Recursion

N
a(9) =) ar1(Daibi(0); 1 <F < N,2<t<T

i=1
o Termination

N
P(OIN) = 3 ax (i)

Forward Algorithm

O=111
find P(O|Ag0ck)

Forward Algorithm

/ \
Static [!
\ 1
~S_.7
(7)) _
3 // \\
g Bear | !
whd \ /I
T S~
TN
/ \
Bull [!
\ /
~__7

Forward Algorithm: Initialization
a1(j) =mbi(01), 1 <Fj< N

. . 0.3x0.3
Static a1(Stat|c)
0.5x0.1
Bear a1(Bear)
0.2x0.7=
Bull a1(BuII)

T l T

t=1 t=2 t=3

states

time

Forward Algorithm: Recursion

N
o (f) = Z%—L(i)ﬂijbj(ot)i 1<j<N,2ZtLT

Static
"))
9and so on
v Bear
e
w ~N

0.0025
0.2x0.7=
Bu" @0.14x0.6x0.1=0.0084 @

a,(Bull)xagguixbgui(l)

T l T

t=1 t=2 t=3

time

Forward Algorithm: Recursion

Work through the rest of these numbers...

O
l T

t=1 t=2 t=3

states

time
What’s the asymptotic complexity of this algorithm?

Forward Algorithm: Recursion

. 0.3x0.3
Static

states

Bear

Bull

0.5x0.1
=0.05
0.2x0.7=
0.14

0.0249

0.006477

0.001475

Forward Algorithm: Termination

i=
Static 0.006477
0.5x0.1
Bear

states

0.2x0.7=
Bull 0.14

HMM Problem #2: Decoding

Decoding

123456
O:}\l(—)Tl(—)

P(l |Bear) = 0.1 P(t |Bull) = 0.7 P(T |Static) = D3
[P(] |Bear) = 0.8] [P(l |Bull) = 0.1] [P(] |Static) = 0.3]
P{~s |Bear) = D.3 P{= |Bull) = 0.2 P |Slalic) =04
Astock

Given A, .. a@s our model and O as our observations, what are
the most likely states the market went through to produce O?

Decoding

o “Decoding” because states are hidden

o First try:

e Compute P(O) for all possible state sequences, then choose
sequence with highest probability

e What's the problem here?

o Second try:

e For each possible hidden state sequence, compute P(O) using the
forward algorithm

e What's the problem here?

Viterbi Algorithm

o “Decoding” = computing most likely state sequence

e Another dynamic programming algorithm
e Efficient: polynomial vs. exponential (brute force)

o Same idea as the forward algorithm

e Store intermediate computation results in a trellis
e Build new cells from existing cells

Viterbi Algorithm

o Use an N x T trellis [v,]

e Just like in forward algorithm
O Vv Or Vi)

e = P(in state j after seeing t observations and passing through the
most likely state sequence so far)

® =P(q1, Q2 - Q15 Qt=p 01, Oz .- Oy)
o Each cell = extension of most likely path from other cells
v{j) = max; v 4(i) a; b(0)
e v, ,(f): Viterbi probability until (t-7)
e g, transition probability of going from state /i to j
e bjo,) : probability of emitting symbol o in state j

o P = max; v{(i)

Viterbi vs. Forward

o Maximization instead of summation over previous paths

o This algorithm is still missing something!

e In forward algorithm, we only care about the probabilities
e What's different here?

o We need to store the most likely path (transition):

e Use “backpointers” to keep track of most likely transition

e At the end, follow the chain of backpointers to recover the most
likely state sequence

Viterbi Algorithm: Formal Definition

o Initialization

n(f) = mblo1);1<i<N
BTy(§) = 0

o Recursion

w(f) = mexfe1(Daylby (o)1 <SISN,2<E<T Buthere?

. N .
BTy(i) = MET:f‘[”t—l(i)ﬂij] Why no b(o,) here?

o Termination
N

P* = maxer(s)
¢ = argmaxvr(s)

1) t
o130l Wit

Viterbi Algorithm

O=111

find most likely state sequence given Astock

Viterbi Algorithm

”~ ~
/ \
Static [)
\
~__"7
m TN
9 AR
[\
‘g Bear \)
m \~ //
TN
/ \
Bull l)
\
~__"7

Viterbi Algorithm: Initialization

states

.) 0.3x0.3
Static a1(Stat|c)
0.5x0.1
Bear a1(Bear)
0.2x0.7=
Bull a1(BuII)

I

t=1

n(j) = mbk{o1);1<i<N
l T
t=2 t=3

time

Viterbi Algorithm: Recursion

. i ‘ .
ve(f) = mex[u_i()ay]bi(o);1<i<N,2<t<T
N .
= argmex(vi—1(i)ay]
Static
N
2
g Bear
e
w ~N
2905
0.2x0.7=
Bull @0.14x0.6><0.1=0.0084 .

a,(Bull)xagguixbgui(l)

t=1 t=2 t=3

time

Viterbi Algorithm: Recursion

w(f) = maxfu-i(f)aylb(a)il SISN2<t<T

. N .
"o\ BN = ergmax(u-i(i)ay]
Static =0X09
foarand so on
=0.05

store backpointer

T l

t=1 t=2 t=3

states

Viterbi Algorithm: Recursion
Work through the rest of the algorithm...

B @
T l T

t=1 t=2 t=3

states

Viterbi Algorithm: Recursion

- 0.3x0.3

7))
2

G Bear 0501 0.000504
b

(7))

t=1 t=2 t=3

time

Viterbi Algorithm: Termination

states

Static

Bear

Bull

0.3x0.3
=0.09

0.5x0.1
=0.05

0.00202

t=3

Viterbi Algorithm: Termination

. 0.3x0.3
Static 20.09

o
o
S
)
o
¥

Bear

states

Bull
T l T

t=1 t=2 t=3

Most likely state sequence:
[Bull, Bear, Bull], P =0.00588

POS Tagging with HMMs

Modeling the problem

o What's the problem?

e The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT
number/NN of/IN other/JJ topics/NNS ./.

o What should the HMM look like ?
e States: part-of-speech tags (t,, t,, ..., ty)
e Output symbols: words (w,, w,, ..., w),)

o Given HMM A (A, B, []), POS tagging = reconstructing the
best state sequence given input

e Use Viterbi decoding (best = most likely)
o But wait...

HMM Training

o What are appropriate values for A, B, []?

o Before HMMs can decode, they must be trained...

e A: transition probabilities
e B: emission probabilities

e []: prior
o Two training methods:

e Supervised training: start with tagged corpus, count stuff to
estimate parameters

e Unsupervised training: start with untagged corpus, bootstrap
parameter estimates and improve estimates iteratively

HMMs: Three Problems

o Likelihood: Given an HMM A = (A, B, []), and a sequence
of observed events O, find P(O|A)

o Decoding: Given an HMM A = (A, B, []), and an
observation sequence O, find the most likely (hidden)
state sequence

o Learning: Given a set of observation sequences and the
set of states Q in A, compute the parameters A and B

Supervised Training

o A tagged corpus tells us the hidden states!

o We can compute Maximum Likelihood Estimates (MLESs)
for the various parameters

e MLE = fancy way of saying “count and divide”

o These parameter estimates maximize the likelihood of the
data being generated by the model

Supervised Training

o Transition Probabilities

e Any P(t; | t_,) = C(t_4 t) ! C(t_,), from the tagged data
e Example: for P(NN|VB), count how many times a noun follows a
verb and divide by the total number of times you see a verb

o Emission Probabilities

e Any P(w; | t)= C(w, t)/ C(t), from the tagged data
e For P(bank|NN), count how many times bank is tagged as a noun
and divide by how many times anything is tagged as a noun

o Priors

e Any P(q,=1t)=m = C(t)/N, from the tagged data
e For m,, , count the number of times NN occurs and divide by the
total number of tags (states)

e A better way?

Unsupervised Training

o No labeled/tagged training data
o No way to compute MLEs directly

o How do we deal?

e Make an initial guess for parameter values
e Use this guess to get a better estimate

e |teratively improve the estimate until some convergence criterion is
met

Expectation Maximization (EM)

Expectation Maximization

o A fundamental tool for unsupervised machine learning
techniques

o Forms basis of state-of-the-art systems in MT, parsing,
WSD, speech recognition and more

Motivating Example

o Let observed events be the grades given out in, say,
CMSC723

o Assume grades are generated by a probabilistic model
described by single parameter p
o P(A)=1/2,P(B)=p,P(C)=2p,P(D)=1/2-3
e Number of ‘A’s observed = ‘a’, ‘b’ number of ‘B’s, etc.

1 J 1) €)

o Compute MLE of u given ‘a’, ‘b’, ‘’c’ and ‘d’

Motivating Example

o Recall the definition of MLE:
“.... maximizes likelihood of data given the model.”

o Okay, so what's the likelihood of data given the model?

e P(Data|Model) = P(a,b,c,d|u) = (1/2)2(u)?(2u)¢(1/2-3u)d
e L =log-likelihood = log P(a,b,c,d|u)
=alog(1/2) + blog y + clog 2u + d log(1/2-3)

o How to maximize L w.r.t y ? [Think Calculus]

e OL/Ou = 0; (b/p) + (2c/2) - (3d/(1/2-3u)) =0
e U= (b+c)/6(b+c+d)

o We got our answer without EM. Boring!

Motivating Example

o Now suppose:

e PA)=1/2,PB)=u,P(C)=2u,P(D)=1/2-3 p
e Number of ‘A'sand ‘B’'s=h,c ‘C's,and d ‘D’s

o Part of the observable information is hidden
o Can we compute the MLE for y now?

o Chicken and egg:

e |f we knew ‘b’ (and hence ‘a’), we could compute the MLE for p
e But we need u to know how the model generates ‘a’ and ‘b’

o Circular enough for you?

The EM Algorithm

o Start with an initial guess for y (Y,)

o t=1; Repeat:
o by = penh/(172 + Yiyy)
[E-step: Compute expected value of b given y]
o Y= (b +c)6(b;+c+d)
[M-step: Compute MLE of y given b]
o t=t+1

o Until some convergence criterion is met

The EM Algorithm

o Algorithm to compute MLEs for model parameters when
information is hidden

o lterate between Expectation (E-step) and Maximization
(M-step)

o Each iteration is guaranteed to increase the log-likelihood
of the data (improve the estimate)

o Good news: It will always converge to a maximum

o Bad news: It will always converge to a maximum

Applying EM to HMMs
o Just the intuition... gory details in CMSC 773

o The problem:

e State sequence is unknown
e Estimate model parameters: A, B &[]

o Introduce two new observation statistics:

e Number of transitions from g; to q; (¢)
e Number of times in state q; (Y)

o The EM algorithm can now be applied

Applying EM to HMMs

o Start with initial guesses for A, B and []

o t=1; Repeat:

e E-step: Compute expected values of ¢, Y using A, By, []
e M-step: Compute MLE of A, B and [] using g, Y;
o t=t+1

o Until some convergence criterion is met

What we covered today...

o The great leap forward in NLP
o Hidden Markov models (HMMs)

e Forward algorithm

e Viterbi decoding

e Supervised training

e Unsupervised training teaser

o HMMs for POS tagging

