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Deterministic to Stochastic
The single biggest leap forward in NLP:

From deterministic to stochastic models
What? A stochastic process is one whose behavior is non-
deterministic in that a system’s subsequent state is determined 
both by the process’s predictable actions and by a random 
element. 

What’s the biggest challenge of NLP?

Why are deterministic models poorly adapted?

What’s the underlying mathematical tool?

Why can’t you do this by hand?



FSM: Formal Specification
Q: a finite set of N states 

Q = {q0, q1, q2, q3, …}
The start state: q0

The set of final states: qF

Σ: a finite input alphabet of symbolsΣ: a finite input alphabet of symbols

δ(q,i): transition function 
Given state q and input symbol i transition to new state q'Given state q and input symbol i, transition to new state q'



Fi it b f t tFinite number of states



T itiTransitions



I t l h b tInput alphabet



St t t tStart state



Fi l t t ( )Final state(s)



The problem with FSMs…
All state transitions are equally likely

But what if we know that isn’t true?ut at e o t at s t t ue

How might we know? 



Weighted FSMs
What if we know more about state transitions?

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’
‘c’ is three times as likely to be seen in state 2 as ‘a’
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FSM → Weighted FSM

Wh t d t f it?What do we get of it?
score(‘ab’) = 2 (?)
score(‘bc’) = 3 (?)( ) ( )



Introducing Probabilities
What’s the problem with adding weights to transitions?

What if we replace weights with probabilities?at e ep ace e g ts t p obab t es
Probabilities provide a theoretically-sound way to model 
uncertainly (ambiguity in language)
But how do we assign probabilities?But how do we assign probabilities?



Probabilistic FSMs
What if we know more about state transitions?

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’
‘c’ is three times as likely to be seen in state 2 as ‘a’
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What do we get of it? What’s the interpretation?
P(‘ab’) = 0 5P( ab ) = 0.5
P(‘bc’) = 0.1875

This is a Markov chain



Markov Chain: Formal Specification
Q: a finite set of N states 

Q = {q0, q1, q2, q3, …}

The start state
An explicit start state: q0

Alternatively, a probability distribution over start states:
{π1, π2, π3, …}, Σ πi = 1

The set of final states: qFqF

N × N Transition probability matrix A = [aij]
aij = P(qj|qi), Σ aij = 1  ∀iaij (qj|qi), aij
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Let’s model the stock market…

0.2

Each state corresponds to a 
physical state in the world 

What’s missing? Add “priors”

0.5 0.3

What’s special about this FSM?
Present state only depends on the previous state!

The (1st order) Markov assumption
P( | ) P( | )P(qi|q0…qi-1) = P(qi|qi-1)



Are states always observable ?

1  2  3  4  5  6Day:

BullBearSBear BullS
Bull: Bull Market
Bear:  Bear Market

Not observable !

↑:  Market is up

ull ear ear ull
S:  Static Market

Here’s what you actually observe:

↑ ↓  ↔ ↑ ↓ ↔
↑ p
↓:  Market is down
↔: Market hasn’t changed



Hidden Markov Models
Markov chains aren’t enough!

What if you can’t directly observe the states? 
We need to model problems where observations don’t directly 
correspond to states…

Solution: A Hidden Markov Model (HMM)Solution: A Hidden Markov Model (HMM)
Assume two probabilistic processes
Underlying process (state transition) is hidden
Second process generates sequence of observed events



HMM: Formal Specification
Q: a finite set of N states 

Q = {q0, q1, q2, q3, …}

N × N Transition probability matrix A = [aij]
aij = P(qj|qi), Σ aij = 1  ∀i

Sequence of observations O = o1, o2, ... oT

Each drawn from a given set of symbols (vocabulary V)

N × |V| Emission probability matrix, B = [bit]
bit = bi(ot) = P(ot|qi), Σ bit = 1  ∀i

St t d d t tStart and end states
An explicit start state q0 or alternatively,
a prior distribution over start states: {π1, π2, π3, …}, Σ πi = 1
The set of final states: qF



Stock Market HMM
States? ✓

Transitions?

Vocabulary?

Emissions?
Priors?
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Stock Market HMM
States? ✓

Transitions? ✓

Vocabulary? ✓

Emissions? ✓

π1=0.5 π2=0.2 π3=0.3
Priors? ✓



Properties of HMMs
The (first-order) Markov assumption holds

The probability of an output symbol depends only on the e p obab ty o a output sy bo depe ds o y o t e
state generating it

The number of states (N) does not have to equal the 
number of observations (T)



HMMs: Three Problems
Likelihood: Given an HMM λ = (A, B, ∏), and a sequence 
of observed events O, find P(O|λ)

Decoding: Given an HMM λ = (A, B, ∏), and an 
observation sequence O, find the most likely (hidden) 
state sequencestate sequence

Learning: Given a set of observation sequences and the 
set of states Q in λ compute the parameters A and Bset of states Q in λ, compute the parameters A and B

Okay, but where did the structure of the HMM come from?



HMM Problem #1: Likelihood



Computing Likelihood

1  2  3  4  5  6t:
π1=0.5 π2=0.2 π3=0.3

↑  ↓ ↔  ↑  ↓ ↔O:

λλstock

Assuming λstock models the stock market, how likely are we to 
observe the sequence of outputs?



Computing Likelihood
Easy, right?

Sum over all possible ways in which we could generate O from λ

What’s the problem?

Right idea, wrong algorithm!
Takes O(NT) time to compute!



Computing Likelihood
What are we doing wrong?

State sequences may have a lot of overlap…
We’re recomputing the shared subsequences every time
Let’s store intermediate results and reuse them!
Can we do this?Can we do this?

Sounds like a job for dynamic programming!



Forward Algorithm
Use an N × T trellis or chart [αtj]

Forward probabilities: αtj or αt(j) o a d p obab t es αtj o αt(j)
= P(being in state j after seeing t observations) 
= P(o1, o2, ... ot, qt=j)

Each cell = ∑ extensions of all paths from other cells
αt(j) = ∑i αt-1(i) aij bj(ot)

α (i): forward path probability until (t 1)αt-1(i): forward path probability until (t-1)
aij: transition probability of going from state i to j
bj(ot): probability of emitting symbol ot in state j

P(O|λ) = ∑i αT(i)

What’s the running time of this algorithm?



Forward Algorithm: Formal Definition
Initialization

Recursion

TerminationTermination



Forward Algorithm

↑ ↓ ↑O =
find P(O|λstock)



Forward Algorithm

StaticStatic

es

Bear

st
at

e

Bull

↑ ↓ ↑
t=1 t=2 t=3

time



Forward Algorithm: Initialization

α1(Static) 0.3×0.3
0 09Static α1(Static) =0.09Static

es

α1(Bear) 0.5×0.1
=0.05Bear

st
at

e

α1(Bull) 0.2×0.7=
0.14Bull

↑ ↓ ↑
t=1 t=2 t=3

time



Forward Algorithm: Recursion

0.3×0.3
0 09Static

and so on

=0.09Static

es

∑

.... and so on0.5×0.1
=0.05Bear

st
at

e

0.14×0.6×0.1=0.0084

α1(Bull)×aBullBull×bBull(↓)

0.2×0.7=
0.14 0.0145Bull

↑ ↓ ↑
t=1 t=2 t=3

time



Forward Algorithm: Recursion

0.3×0.3
0 09 ? ?Static

Work through the rest of these numbers…

=0.09Static

es

0.5×0.1
=0.05 ? ?Bear

st
at

e

0.2×0.7=
0.14 0.0145 ?Bull

↑ ↓ ↑
t=1 t=2 t=3

time
What’s the asymptotic complexity of this algorithm?



Forward Algorithm: Recursion

0.3×0.3
0 09 0.0249 0.006477Static =0.09Static

es

0.5×0.1
=0.05 0.0312 0.001475Bear

st
at

e

0.2×0.7=
0.14 0.0145 0.024Bull

↑ ↓ ↑
t=1 t=2 t=3

time



Forward Algorithm: Termination

0.3×0.3
0 09 0.0249 0.006477Static =0.09Static

es

0.5×0.1
=0.05 0.0312 0.001475Bear

st
at

e

0.2×0.7=
0.14 0.0145 0.024

P(O) = 0 03195

Bull

↑ ↓ ↑
t=1 t=2 t=3

P(O) = 0.03195

time



HMM Problem #2: Decoding



Decoding

1  2  3  4  5  6t:
π1=0.5 π2=0.2 π3=0.3

↑  ↓ ↔  ↑  ↓ ↔O:

λ

Given λstock as our model and O as our observations, what are 

λstock

stock
the most likely states the market went through to produce O?



Decoding
“Decoding” because states are hidden

First try:st t y
Compute P(O) for all possible state sequences, then choose 
sequence with highest probability
What’s the problem here?What’s the problem here?

Second try:
For each possible hidden state sequence compute P(O) using theFor each possible hidden state sequence, compute P(O) using the 
forward algorithm
What’s the problem here?



Viterbi Algorithm
“Decoding” = computing most likely state sequence

Another dynamic programming algorithm
Efficient: polynomial vs. exponential (brute force)

Same idea as the forward algorithm
Store intermediate computation results in a trellis
Build new cells from existing cells



Viterbi Algorithm
Use an N × T trellis [vtj]

Just like in forward algorithm

vtj or vt(j) 
= P(in state j after seeing t observations and passing through the 
most likely state sequence so far)most likely state sequence so far)
= P(q1, q2, ... qt-1, qt=j, o1, o2, ... ot)

Each cell = extension of most likely path from other cellsy p
vt(j) = maxi vt-1(i) aij bj(ot)

vt-1(i): Viterbi probability until (t-1)
f faij: transition probability of going from state i to j

bj(ot) : probability of emitting symbol ot in state j

P = maxi vT(i)P  maxi vT(i)



Viterbi vs. Forward
Maximization instead of summation over previous paths

This algorithm is still missing something!s a go t s st ss g so et g
In forward algorithm, we only care about the probabilities
What’s different here?

We need to store the most likely path (transition):
Use “backpointers” to keep track of most likely transition
At the end follow the chain of backpointers to recover the mostAt the end, follow the chain of backpointers to recover the most 
likely state sequence



Viterbi Algorithm: Formal Definition
Initialization

Recursion

Why no bj(ot) here?

But here?

Termination

y j( t)

Why no b() ?



Viterbi Algorithm

↑ ↓ ↑O =
find most likely state sequence given λstock



Viterbi Algorithm

StaticStatic

es

Bear

st
at

e

Bull

↑ ↓ ↑
t=1 t=2 t=3

time



Viterbi Algorithm: Initialization

α1(Static) 0.3×0.3
0 09Static α1(Static) =0.09Static

es

α1(Bear) 0.5×0.1
=0.05Bear

st
at

e

α1(Bull) 0.2×0.7=
0.14Bull

↑ ↓ ↑
t=1 t=2 t=3

time



Viterbi Algorithm: Recursion

0.3×0.3
0 09Static =0.09Static

es

Max

0.5×0.1
=0.05Bear

st
at

e

0.14×0.6×0.1=0.0084

α1(Bull)×aBullBull×bBull(↓)

0.2×0.7=
0.14 0.0084Bull

↑ ↓ ↑
t=1 t=2 t=3

time



Viterbi Algorithm: Recursion

0.3×0.3
0 09Static

and so on

=0.09Static

es .... and so on0.5×0.1
=0.05Bear

st
at

e

store backpointer
0.2×0.7=

0.14 0.0084Bull

p

↑ ↓ ↑
t=1 t=2 t=3

time



Viterbi Algorithm: Recursion

Static 0.3×0.3
0 09 ? ?

Work through the rest of the algorithm…

Static

es

=0.09

Bear

st
at

e

0.5×0.1
=0.05 ? ?

Bull 0.2×0.7=
0.14 0.0084 ?

↑ ↓ ↑
t=1 t=2 t=3

time



Viterbi Algorithm: Recursion

Static 0.3×0.3
0 09 0.0135 0.00202Static

es

=0.09

Bear

st
at

e

0.5×0.1
=0.05 0.0168 0.000504

Bull 0.2×0.7=
0.14 0.0084 0.00588

↑ ↓ ↑
t=1 t=2 t=3

time



Viterbi Algorithm: Termination

Static 0.3×0.3
0 09 0.0135 0.00202Static

es

=0.09

Bear

st
at

e

0.5×0.1
=0.05 0.0168 0.000504

Bull 0.2×0.7=
0.14 0.0084 0.00588

↑ ↓ ↑
t=1 t=2 t=3

time



Viterbi Algorithm: Termination

Static 0.3×0.3
0 09 0.0135 0.00202Static

es

=0.09

Bear

st
at

e

0.5×0.1
=0.05 0.0168 0.000504

Bull 0.2×0.7=
0.14 0.0084 0.00588

↑ ↓ ↑
t=1 t=2 t=3

timeMost likely state sequence:
[ Bull, Bear, Bull ], P = 0.00588



POS Tagging with HMMs



Modeling the problem
What’s the problem?

The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT 
number/NN of/IN other/JJ topics/NNS ./.

What should the HMM look like ?
States: part of speech tags (t t t )States: part-of-speech tags (t1, t2, ..., tN)
Output symbols: words (w1, w2, ..., w|V|)

Given HMM λ (A, B, ∏), POS tagging = reconstructing the ( , , ∏), gg g g
best state sequence given input

Use Viterbi decoding (best = most likely)

But wait…



HMM Training
What are appropriate values for A, B, ∏?

Before HMMs can decode, they must be trained…e o e s ca decode, t ey ust be t a ed
A: transition probabilities
B: emission probabilities
∏: prior

Two training methods:
Supervised training: start with tagged corpus count stuff toSupervised training: start with tagged corpus, count stuff to 
estimate parameters
Unsupervised training: start with untagged corpus, bootstrap 
parameter estimates and improve estimates iterativelyparameter estimates and improve estimates iteratively 



HMMs: Three Problems
Likelihood: Given an HMM λ = (A, B, ∏), and a sequence 
of observed events O, find P(O|λ)

Decoding: Given an HMM λ = (A, B, ∏), and an 
observation sequence O, find the most likely (hidden) 
state sequencestate sequence

Learning: Given a set of observation sequences and the 
set of states Q in λ compute the parameters A and Bset of states Q in λ, compute the parameters A and B



Supervised Training
A tagged corpus tells us the hidden states!

We can compute Maximum Likelihood Estimates (MLEs) e ca co pute a u e ood st ates ( s)
for the various parameters

MLE = fancy way of saying “count and divide”

These parameter estimates maximize the likelihood of the 
data being generated by the model



Supervised Training
Transition Probabilities

Any P(ti | ti-1) = C(ti-1, ti) / C(ti-1), from the tagged data
Example: for P(NN|VB), count how many times a noun follows a 
verb and divide by the total number of times you see a verb

Emission ProbabilitiesEmission Probabilities
Any P(wi | ti) = C(wi, ti) / C(ti), from the tagged data
For P(bank|NN), count how many times bank is tagged as a noun 
and divide by how many times anything is tagged as a noun

Priors
Any P(q = t ) = π = C(t )/N from the tagged dataAny P(q1 = ti) = πi = C(ti)/N, from the tagged data
For πNN , count the number of times NN occurs and divide by the 
total number of tags (states)
A b ?A better way?



Unsupervised Training
No labeled/tagged training data

No way to compute MLEs directlyo ay to co pute s d ect y

How do we deal?
Make an initial guess for parameter valuesMake an initial guess for parameter values
Use this guess to get a better estimate
Iteratively improve the estimate until some convergence criterion is 
metmet

Expectation Maximization (EM)Expectation Maximization (EM)



Expectation Maximization
A fundamental tool for unsupervised machine learning 
techniques

Forms basis of state-of-the-art systems in MT, parsing, 
WSD,  speech recognition and more 



Motivating Example
Let observed events be the grades given out in, say, 
CMSC723

Assume grades are generated by a probabilistic model 
described by single parameter μ

P(A) = 1/2, P(B) = μ, P(C) = 2 μ, P(D) = 1/2 - 3 μ
Number of ‘A’s observed = ‘a’, ‘b’ number of ‘B’s, etc.

Compute MLE of μ given ‘a’ ‘b’ ‘c’ and ‘d’Compute MLE of μ given a , b , c  and d

Adapted from Andrew Moore’s Slides
http://www.autonlab.org/tutorials/gmm.html



Motivating Example
Recall the definition of MLE:
“.... maximizes likelihood of data given the model.”

Okay, so what’s the likelihood of data given the model?
P(Data|Model) = P(a,b,c,d|μ) = (1/2)a(μ)b(2μ)c(1/2-3μ)d

L = log-likelihood = log P(a,b,c,d|μ)
= a log(1/2) + b log μ + c log 2μ + d log(1/2-3μ) 

How to maximize L w.r.t μ ? [Think Calculus]μ [ ]
δL/δμ = 0; (b/μ) + (2c/2μ) - (3d/(1/2-3μ)) = 0
μ = (b+c)/6(b+c+d)

We got our answer without EM. Boring!



Motivating Example
Now suppose:

P(A) = 1/2, P(B) = μ, P(C) = 2 μ, P(D) = 1/2 - 3 μ
Number of ‘A’s and ‘B’s = h, c ‘C’s, and d ‘D’s

Part of the observable information is hidden

Can we compute the MLE for μ now?

Chicken and egg:
If we knew ‘b’ (and hence ‘a’), we could compute the MLE for μ 
But we need μ to know how the model generates ‘a’ and ‘b’

Ci l h f ?Circular enough for you?



The EM Algorithm
Start with an initial guess for μ (μ0)

t = 1; Repeat:t ; epeat
bt = μ(t-1)h/(1/2 + μ(t-1))
[E-step: Compute expected value of b given μ]
μ (b + c)/6(b + c + d)μt = (bt + c)/6(bt + c + d) 
[M-step: Compute MLE of μ given b]
t = t + 1

Until some convergence criterion is met



The EM Algorithm
Algorithm to compute MLEs for model parameters when 
information is hidden

Iterate between Expectation (E-step) and Maximization 
(M-step)

Each iteration is guaranteed to increase the log-likelihood 
of the data (improve the estimate)

Good news: It will always converge to a maximum

Bad news: It will always converge to a maximum



Applying EM to HMMs
Just the intuition… gory details in CMSC 773

The problem:e p ob e
State sequence is unknown
Estimate model parameters: A, B & ∏

Introduce two new observation statistics:
Number of transitions from qi to qj (ξ)
Number of times in state q ( )Number of times in state qi ( )

The EM algorithm can now be applied



Applying EM to HMMs
Start with initial guesses for A, B and ∏

t = 1; Repeat:t ; epeat
E-step: Compute expected values of ξ, using At, Bt, ∏t

M-step: Compute MLE of A, B and ∏ using ξt, t

t = t + 1

Until some convergence criterion is met



What we covered today…
The great leap forward in NLP

Hidden Markov models (HMMs)dde a o ode s ( s)
Forward algorithm
Viterbi decoding
Supervised training
Unsupervised training teaser

HMMs for POS taggingHMMs for POS tagging


