
MapReduce and Data Intensive NLP
CMSC 723: Computational Linguistics I ― Session #12

Jimmy Lin and Nitin MadnaniJimmy Lin and Nitin Madnani
University of Maryland

Wednesday, November 18, 2009

Three Pillars of Statistical NLP
Algorithms and models

Featureseatu es

Data

Why big data?
Fundamental fact of the real world

Systems improve with more dataSyste s p o e t o e data

How much data?
Google processes 20 PB a day (2008)

Wayback Machine has 3 PB + 100 TB/month (3/2009)aybac ac e as 3 00 / o t (3/ 009)

Facebook has 2.5 PB of user data + 15 TB/day (4/2009)

eBay has 6 5 PB of user data + 50 TB/day (5/2009)eBay has 6.5 PB of user data + 50 TB/day (5/2009)

CERN’s LHC will generate 15 PB a year (??)

640K ought to be
enough for anybody.

No data like more data!
/k l d /d t /s/knowledge/data/g;

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

How do we get here if we’re not Google?

How do we scale up?

Divide and Conquer

“Work” PartitionPartition

w1 w2 w3

“worker” “worker” “worker”

r1 r2 r3

“Result” Combine

It’s a bit more complex…

Message Passing Shared Memory

Different programming models
Fundamental issues

scheduling, data distribution, synchronization,
inter-process communication, robustness, fault
t l

M
em

or
y

tolerance, …

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Different programming constructs

Architectural issues
Flynn’s taxonomy (SIMD, MIMD, etc.),
network typology, bisection bandwidth Different programming constructs

mutexes, conditional variables, barriers, …
masters/slaves, producers/consumers, work queues, …

Common problems
livelock, deadlock, data starvation, priority inversion…
di i hil h l i b b i tt k

UMA vs. NUMA, cache coherence

dining philosophers, sleeping barbers, cigarette smokers, …

The reality: programmer shoulders the burden y p g
of managing concurrency…

Source: Ricardo Guimarães Herrmann

Source: MIT Open Courseware

Source: MIT Open Courseware

Source: Harper’s (Feb, 2008)

MapReduce

Typical Large-Data Problem
Iterate over a large number of records

Extract something of interest from eacht act so et g o te est o eac

Shuffle and sort intermediate results

Aggregate intermediate resultsAggregate intermediate results

Generate final output

Key idea: provide a functional abstraction for
these two operations

(Dean and Ghemawat, OSDI 2004)

Roots in Functional Programming

f f f f fMap

g g g g gFold

MapReduce
Programmers specify two functions:
map (k, v) → <k’, v’>*

d (k’ ’) k’ ’ *reduce (k’, v’) → <k’, v’>*
All values with the same key are reduced together

The execution framework handles everything else…y g

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

mapmap map map

Shuffle and Sort: aggregate values by keys

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

reduce reduce reduce

r1 s1 r2 s2 r3 s31 1 2 2 3 3

MapReduce
Programmers specify two functions:
map (k, v) → <k’, v’>*

d (k’ ’) k’ ’ *reduce (k’, v’) → <k’, v’>*
All values with the same key are reduced together

The execution framework handles everything else…y g

Not quite…usually, programmers also specify:
partition (k’, number of partitions) → partition for k’

Often a simple hash of the key, e.g., hash(k’) mod n
Divides up key space for parallel reduce operations

combine (k’, v’) → <k’, v’>*
Mini-reducers that run in memory after the map phase
Used as an optimization to reduce network traffic

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

mapmap map map

combinecombine combine combine

ba 1 2 c c3 6 a c5 2 b c7 8

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partitionpartition partition partition partition

Shuffle and Sort: aggregate values by keys
a 1 5 b 2 7 c 2 3 6 8

reduce reduce reduce

r1 s1 r2 s2 r3 s3

MapReduce “Runtime”
Handles scheduling

Assigns workers to map and reduce tasks

Handles “data distribution”
Moves processes to data

Handles synchronizationHandles synchronization
Gathers, sorts, and shuffles intermediate data

Handles errors and faultsa d es e o s a d au s
Detects worker failures and restarts

Everything happens on top of a distributed FS (later)

“Hello World”: Word Count

Map(String docid, String text):
for each word w in text:

Emit(w, 1);

Reduce(String term, Iterator<Int> values):
int sum = 0;
for each v in values:

sum += v;
Emit(term, value);

MapReduce can refer to…
The programming model

The execution framework (aka “runtime”)e e ecut o a e o (a a u t e)

The specific implementation

Usage is usually clear from context!

MapReduce Implementations
Google has a proprietary implementation in C++

Bindings in Java, Python

Hadoop is an open-source implementation in Java
Project led by Yahoo, used in production
Rapidly expanding software ecosystem

Lots of custom research implementations
For GPUs cell processors etcFor GPUs, cell processors, etc.

User
Program

(1) fork (1) fork (1) fork

Master

(1) fork () (1) fork

(2) assign map
(2) assign reduce

split 0
split 1
split 2

worker

worker output
file 0

(2) assign reduce

(3) read
(4) local write

(5) remote read
(6) write

split 2
split 3
split 4

worker

worker

worker output
file 1

(4) local write

worker

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Redrawn from (Dean and Ghemawat, OSDI 2004)

How do we get data to the workers?

NAS

SAN

Compute Nodes

What’s the problem here?What s the problem here?

Distributed File System
Don’t move data to workers… move workers to the data!

Store data on the local disks of nodes in the cluster
Start up the workers on the node that has the data local

Why?
Not enough RAM to hold all the data in memory
Disk access is slow, but disk throughput is reasonable

A distributed file system is the answerA distributed file system is the answer
GFS (Google File System)
HDFS for Hadoop (= GFS clone)

GFS: Assumptions
Commodity hardware over “exotic” hardware

Scale out, not up

High component failure rates
Inexpensive commodity components fail all the time

“Modest” number of huge files

Files are write-once, mostly appended to
Perhaps concurrently

Large streaming reads over random access

High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

GFS: Design Decisions
Files stored as chunks

Fixed size (64MB)

Reliability through replication
Each chunk replicated across 3+ chunkservers

Single master to coordinate access, keep metadata
Simple centralized management

No data caching
Little benefit due to large datasets, streaming reads

Si lif th APISimplify the API
Push some of the issues onto the client

HDFS = GFS clone (same basic ideas)

HDFS Architecture

HDFS namenode

(file name, block id)

(block id, block location)

HDFS namenode

File namespace
/foo/bar

block 3df2

Application

HDFS Client

instructions to datanode

datanode state
(block id, byte range)

block data
HDFS datanode

Linux file system

HDFS datanode

Linux file system

… …

Adapted from (Ghemawat et al., SOSP 2003)

Master’s Responsibilities
Metadata storage

Namespace management/lockinga espace a age e t/ oc g

Periodic communication with the datanodes

Chunk creation re replication rebalancingChunk creation, re-replication, rebalancing

Garbage collection

MapReduce Algorithm Design

Managing Dependencies
Remember: Mappers run in isolation

You have no idea in what order the mappers run
You have no idea on what node the mappers run
You have no idea when each mapper finishes

Tools for synchronization:Tools for synchronization:
Ability to hold state in reducer across multiple key-value pairs
Sorting function for keys
Partitioner
Cleverly-constructed data structures

Slides in this section adapted from work reported in (Lin, EMNLP 2008)

Motivating Example
Term co-occurrence matrix for a text collection

M = N x N matrix (N = vocabulary size)
Mij: number of times i and j co-occur in some context
(for concreteness, let’s say context = sentence)

Why?Why?
Distributional profiles as a way of measuring semantic distance
Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems
Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

A large event space (number of terms)
A large number of observations (the collection itself)
Goal: keep track of interesting statistics about the eventsGoal: keep track of interesting statistics about the events

Basic approach
Mappers generate partial counts
Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: “Pairs”
Each mapper takes a sentence:

Generate all co-occurring term pairs
For all pairs, emit (a, b) → count

Reducers sums up counts associated with these pairs

Use combiners!

“Pairs” Analysis
Advantages

Easy to implement, easy to understand

Disadvantages
Lots of pairs to sort and shuffle around (upper bound?)

Another Try: “Stripes”
Idea: group together pairs into an associative array

(a, b) → 1
() 2(a, c) → 2
(a, d) → 5
(a, e) → 3
(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

Each mapper takes a sentence:
Generate all co-occurring term pairs

(a,)

For each term, emit a → { b: countb, c: countc, d: countd … }

Reducers perform element-wise sum of associative arrays

a → { b: 1, d: 5, e: 3 }
a → { b: 1, c: 2, d: 2, f: 2 }
a → { b: 2, c: 2, d: 7, e: 3, f: 2 }

+

“Stripes” Analysis
Advantages

Far less sorting and shuffling of key-value pairs
Can make better use of combiners

Disadvantages
More difficult to implement
Underlying object is more heavyweight
Fundamental limitation in terms of size of event space

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Conditional Probabilities
How do we estimate conditional probabilities from counts?

∑
==

'
)',(count

),(count
)(count
),(count)|(

B
BA

BA
A
BAABP

Why do we want to do this?

How do we do this with MapReduce?

P(B|A): “Stripes”

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

Easy!
One pass to compute (a, *)One pass to compute (a,)
Another pass to directly compute P(B|A)

P(B|A): “Pairs”

(a b1) → 3

(a, *) → 32

(a b1) → 3 / 32

Reducer holds this value in memory

(a, b1) → 3
(a, b2) → 12
(a, b3) → 7
(a, b4) → 1

(a, b1) → 3 / 32
(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32(, 4)

…
(, 4)
…

For this to work:
Must emit extra (a, *) for every bn in mapper
Must make sure all a’s get sent to same reducer (use partitioner)Must make sure all a s get sent to same reducer (use partitioner)
Must make sure (a, *) comes first (define sort order)
Must hold state in reducer across different key-value pairs

Synchronization in Hadoop
Approach 1: turn synchronization into an ordering problem

Sort keys into correct order of computation
Partition key space so that each reducer gets the appropriate set
of partial results
Hold state in reducer across multiple key-value pairs to perform
computation
Illustrated by the “pairs” approach

Approach 2: construct data structures that “bring theApproach 2: construct data structures that bring the
pieces together”

Each reducer receives all the data it needs to complete the
computation
Illustrated by the “stripes” approach

Issues and Tradeoffs
Number of key-value pairs

Object creation overhead
Time for sorting and shuffling pairs across the network

Size of each key-value pair
De/serialization overhead

Combiners make a big difference!
RAM vs disk vs networkRAM vs. disk vs. network
Arrange data to maximize opportunities to aggregate partial results

Case Study: LMs with MR

Language Modeling Recap
Interpolation: Consult all models at the same time to
compute an interpolated probability estimate.

Backoff: Consult the highest order model first and backoff
to lower order model only if there are no higher order
counts.

Interpolated Kneser Ney (state-of-the-art)
Use absolute discounting to save some probability mass for lower

d d lorder models.
Use a novel form of lower order models (count unique single word
contexts instead of occurrences)
Combine models into a true probability model using interpolationCombine models into a true probability model using interpolation

Questions for today

Can we efficiently train an IKN LM with terabytes of data?

Does it really matter?

Using MapReduce to Train IKN
Step 0: Count words [MR]

Step 0 5: Assign IDs to words [vocabulary generation]Step 0.5: Assign IDs to words [vocabulary generation]
(more frequent → smaller IDs)

Step 1: Compute n gram counts [MR]Step 1: Compute n-gram counts [MR]

Step 2: Compute lower order context counts [MR]

Step 3: Compute unsmoothed probabilities and
interpolation weights [MR]p g []

Step 4: Compute interpolated probabilities [MR]

[MR] = MapReduce job

Steps 0 & 0.5

Step 0

Step 0.5

Steps 1-4
Step 1 Step 2 Step 3 Step 4

Input Key DocID n-grams
“a b c” “a b c” “a b”r I

np
ut

a b c

Input Value Document Ctotal(“a b c”) CKN(“a b c”) _Step 3 Output_M
ap

pe
ut ut Intermediate

Key
n-grams
“a b c” “a b c” “a b” (history) “c b a”

Intermediate
Value Cdoc(“a b c”) C’KN(“a b c”) (“c”, CKN(“a b c”)) (P’(“a b c”), λ(“a b”))

M
ap

pe
r O

ut
pu

R
ed

uc
er

 In
pu

Partitioning “a b c” “a b c” “a b” “c b”

M R

Output Value Ctotal(“a b c”) CKN(“a b c”) (“c”, P’(“a b c”),
λ(“a b”))

(PKN(“a b c”),
λ(“a b”))

Count
n-grams

Count
contexts

Compute unsmoothed
probs AND interp weights

Compute
Interp probs

R
ed

uc
er

O

ut
pu

t

n-grams

All output keys are always the same as the intermediate keys
I only show trigrams here but the steps operate on bigrams and unigrams as well

contexts probs AND interp. weights Interp. probs

Steps 1-4
Step 1 Step 2 Step 3 Step 4

Input Key DocID n-grams
“a b c” “a b c” “a b”r I

np
ut

a b c

Input Value Document Ctotal(“a b c”) CKN(“a b c”) _Step 3 Output_M
ap

pe
ut ut

Details are not important!

Intermediate
Key

n-grams
“a b c” “a b c” “a b” (history) “c b a”

Intermediate
Value Cdoc(“a b c”) C’KN(“a b c”) (“c”, CKN(“a b c”)) (P’(“a b c”), λ(“a b”))

M
ap

pe
r O

ut
pu

R
ed

uc
er

 In
pu 5 MR jobs to train IKN (expensive)!

IKN LMs are big!
(interpolation weights are context dependent)

Partitioning “a b c” “a b c” “a b” “c b”

M R (interpolation weights are context dependent)

Can we do something that has better
behavior at scale in terms of time and space?

Output Value Ctotal(“a b c”) CKN(“a b c”) (“c”, P’(“a b c”),
λ(“a b”))

(PKN(“a b c”),
λ(“a b”))

Count
n-grams

Count
contexts

Compute unsmoothed
probs AND interp weights

Compute
Interp probs

R
ed

uc
er

O

ut
pu

t

n-grams

All output keys are always the same as the intermediate keys
I only show trigrams here but the steps operate on bigrams and unigrams as well

contexts probs AND interp. weights Interp. probs

Let’s try something stupid!
Simplify backoff as much as possible!

Forget about trying to make the LM be a true probability o get about t y g to a e t e be a t ue p obab ty
distribution!

Don’t do any discounting of higher order models!

Have a single backoff weight independent of context!
[α(•) = α]

“Stupid Backoff (SB)”

Using MapReduce to Train SB
Step 0: Count words [MR]

Step 0.5: Assign IDs to words [vocabulary generation]
(more frequent → smaller IDs)

Step 1: Compute n-gram counts [MR]

Step 2: Generate final LM “scores” [MR]

[MR] = MapReduce job

Steps 0 & 0.5

Step 0

Step 0.5

Steps 1 & 2
Step 1 Step 2

Input Key DocID n-grams
“a b c”pe

r I
np

ut

Input Value Document Ctotal(“a b c”)

Intermediate n-grams

M
ap

p
pu

t
pu

t

Intermediate
Key

n-grams
“a b c” “a b c”

Intermediate
Value Cdoc(“a b c”) S(“a b c”)

M
ap

pe
r O

ut
p

R
ed

uc
er

 In
p

Partitioning first two words
“a b”

last two words
“b c”

r t

Output Value Ctotal(“a b c”) S(“a b c”) [write to disk]

Count
n-grams

Compute
LM scores

R
ed

uc
e

O
ut

pu
t

n-grams LM scores

The clever partitioning in Step 2 is the key to efficient use at runtime!

Which one wins?

Which one wins?

Can’t compute perplexity for SB. Why?

Wh d b t 5 f t t t?Why do we care about 5-gram coverage for a test set?

Which one wins?

SB overtakes IKN

BLEU is a measure of MT performance.

Not as stupid as you thought, huh?

Take away
The MapReduce paradigm and infrastructure make it
simple to scale algorithms to web scale data

At Terabyte scale, efficiency becomes really important!

When you have a lot of data, a more scalable technique
(in terms of speed and memory consumption) can do
better than the state-of-the-art even if it’s stupider!

“The difference between genius and stupidity is that genius has its limits.”
Oscar Wilde- Oscar Wilde

“The dumb shall inherit the cluster”
- Nitin Madnani

Back to the Beginning…
Algorithms and models

Featureseatu es

Data

