CMSC 723: Computational Linguistics | — Session #12

MapReduce and Data Intensive NLP

et Jimmy Lin and Nitin Madnani
N / University of Maryland
.__\.,1' Vi /

o~

;\\? ."__’4/ /
ARy

|18

Wednesday, November 18, 2009

Three Pillars of Statistical NLP

o Algorithms and models
o Features

o Data

Why big data?

o Fundamental fact of the real world

o Systems improve with more data

How much data?

o Google processes 20 PB a day (2008)

o Wayback Machine has 3 PB + 100 TB/month (3/2009)
o Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
o eBay has 6.5 PB of user data + 50 TB/day (5/2009)

o CERN'’s LHC will generate 15 PB a year (??)

% 640K ought to be
"~ enough for anybody.

No data like more data!
s/knowledge/datal/g;

.00

.95

.30

.85

.80

.75

.70

Test data BLEU

10
Millions of

0.44

0.42

0.4

0.38

-+0.62BP/x2 .
Ve target KN ——
+Hdehews KN ———<—

Vs
I /'/ e

-

e +0.15BP/x2

o

4 * +0.39BP/x2

+0.51 BPJF).(%g ORI

+D.5GBP{§J2H#’:'
x’;:"'/

:ﬁ'o.TUBPfxz

0.36 +webnews KN - Heooos .

target SB --—-5—
7/ +0.66BP/x2 +ldcnews SB ——=—-

034 L +webnews SB -y

o swepseen TV
10 100 1000 10000 10000 1e+06 ‘
LM training data size in million tokens \
- - -
Words =

How do we get here if we’re not Google?

How do we scale up?

Divide and Conquer

Wy

/

“worker”

\

Iy

.

“Work”

|

Wy

“worker”

\

Iy

|

“Result”

N

“worker”

/

Wj3

v

I's

Partition

|
|

Combine

It’s a bit more complex...

Fundamental issues

scheduling, data distribution, synchronization,
inter-process communication, robustness, fault

Different programming models

tolerance, ... TR |
T | >
| I =
|- ﬁ 11— E
— S > |- ' =
\4 vy vvyyy _
Architectural issues 3

Flynn’s taxonomy (SIMD, MIMD, etc.),

network typology, bisection bandwidth . .
UMA vs. NUMA. cache coherence Different programming constructs

mutexes, conditional variables, barriers, ...
masters/slaves, producers/consumers, work queues, ...

Common problems

livelock, deadlock, data starvation, priority inversion...
dining philosophers, sleeping barbers, cigarette smokers, ...

The reality: programmer shoulders the burden
of managing concurrency...

(=
C
®
IS
=
o
()
E

Source: Ricardo Guimaraes

ILL
XAdr OF T

VL voyv |

PCSEL-—¥%__ 3 2 1 of

B PC |oo]

s]a Instruction
Memory

74 D

Ra: <20:16> Rb: <15:11> Re: <25:21>
J \0 1 /<~RA2SEL

RA1 Register "2

A

WA File e
> RD1 RD2 WE [<— WERF

— JT

C: SXT(<15:0>)

PC+4+4*SXT(C)

IRQ Z
v v * ASEL o/ 10 /< BSEL

Control Logic

N—> PCSEL
N— RA2SEL A \/ B \

ASEL ALUFN —> ALU WD R —Wr

~—> BSEL
> WDSEL Data Memory

N—> ALUFN > o
N Wr
N— WERF
> WASEL

RD

PC+4

Ml

\0 1 2 /& \WDSEL

Source: MIT Open Courseware

Ty anzie e e e i | T e
Py fey o ey T | ey
0 3 0 B9 ster
e o Register e |pe e
wrie [wrie [T = T = L st
w0z w0z w0z w0z =z
PR - PR - IR B Tl ey e P math T
Gantral Logic Gantral Logic Gantral Logic Gantral Logic Gontrol Logic
ja— j—— j—— |
= s R ey
{ e { ey W e { W e { - W g
E Cota ey Cota ey Dt Wemary
[P s S

1 1 anzre
“ © s wricy
= z = z ooz

PR
Control Logic
| -pcsm

’ e
et barmary

|mpese
1= e

|mpese
s

fa- W Lo S
[[e i
| = | e E=m
L “\RE 221> | “\RE 221> “\RE <221 | e "R <2821
T T T oa oa T N =
@ ok -k . Register *
o j— | — LR
Fra Fra Fr
P omny o vil - Tl ey e
Cn!ﬂwl Logic Cn!ﬂwl Logic Control Logic

| -pcsm

et ermory

e

e ! - 1 T
Register ¢
= L —
[i —

e oz e oz = z

P P = -
Gontrol Logic Gontrol Logic

Source: MIT Open Courseware

UTILITY CONNECTIONS:

BUILDING =~ SPRINKLER DOMESTIC PLANT = SANITARY
SYSTEM WATER WATER SEWER

[o CATCH BASIN

our
e e EXISTING WATER LINE

BUILDING 1 8"% 6" s (2)-4" 6”& 4"

BUILDING 2 8”& g" i (2)-4" 6"& 4"

BUILDING 3 8"% 6" 5 (2)-4" 6" 4"
ADMIN. BUILDING 6" a1 B 6"
HOUSING BUILDING 6" 1" - 6"

— . —— i —— g — UNDERGROUND ELECTRIC POWER LIME
- EXSTING POWER POLE
N as e x—— DMCTING FENET LNC

T8 = TELEPHONE RISER
GM = GAS METER
EM - ELECTRICAL BOX
OV = ELECTHICAL VAULF
WM = WATER METER
STREET LIGHT
STREET 16N
EXISTING CONTOUR UNE

{ ML OTHERS AS KOTED ON PLAN

APPROXIMATE LOW WATER
UNE OF COLUMBLA RIVER

i '&'é%‘»:tw'
b

e
S

G

o

R

o

A

{11
TIHTT

1
PROPOSEDLPARING (88)

Cj LD)
y WIFITHTHET

e

BT

N

'_'li o4

22 i

z T It

H.!l PARCEL 1. CHINOWETH CREEK REPLAT

= PARCIL 1, MIP §Z31-0%

8!"— PORT OF TME DALLES INDUSTRIAL PARK
tes

i

B TNC W1/2. SECTION 78, TWR. 2 N, RANGE 13 £ wak|
THE DALLES, WASCO COLTY, OREGoM

Tenneson Enciveervg Cone.
CONSULTING ENGINEERS

A |

{8k 1

THE DALLES

THE DALLES, ORKGON 57058
1 Ed 1 Sar-396-$177 FAX Ge1=208-Ee5T
v 4 5 B =2
; i : HRu
FARY — SUSUECT TO EXEMPTION OF 5 US.C. §iss2(tis) | SOH. |11 it i L1630 .2 of 3
e T R e o =

 RAACADY1 000100 090, 4 . SHEET 2. BVR006 121 T P K, Cuntom 2:36 % 24.5 . ancacace)

Source: Harper’s (Feb, 2008)

MapReduce

Typical Large-Data Problem

o lterate over a large number of records
Mﬂﬁxtract something of interest from each

o Shuffle and sort intermediate results

o Aggregate intermediate resﬂtéduce

o Generate final output

Key idea: provide a functional abstraction for
these two operations

(Dean and Ghemawat, OSDI 2004)

Roots In Functional Programming
v
Map f
|
Fold \lj/,

MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v’>*
reduce (k’, V') — <k’, v’>*
e All values with the same key are reduced together

o The execution framework handles everything else...

Shuffle and Sort: aggregate values by keys

2 [HIE b IFK < IHHE

I

reduce reduce reduce

! ! !

MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v’>*
reduce (k’, V') — <k’, v’>*
e All values with the same key are reduced together

o The execution framework handles everything else...

o Not quite...usually, programmers also specify:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic

combine

-l - B

partition

Shuffle and Sort: aggregate values by keys

combine

)
B

partition

1

5

|

reduce

!
- B

|

reduce

!

combine

-H - B

partition

>

combine

[

partition

2|7

2

3

6|8

|

!

A A

reduce

MapReduce “Runtime”

o Handles scheduling
e Assigns workers to map and reduce tasks

o Handles “data distribution”
e Moves processes to data

o Handles synchronization
e (Gathers, sorts, and shuffles intermediate data

o Handles errors and faults
e Detects worker failures and restarts

o Everything happens on top of a distributed FS (later)

“Hello World”: Word Count

Map(String docid, String text):
for each word w in text:
Emit(w, 1);

Reduce(String term, Iterator<Int> values):
int sum = 0;
for each v in values:
sum +=v;
Emit(term, value);

MapReduce can refer to...

o The programming model
o The execution framework (aka “runtime”)

o The specific implementation

Usage is usually clear from context!

MapReduce Implementations

o Google has a proprietary implementation in C++
e Bindings in Java, Python
o Hadoop is an open-source implementation in Java

e Project led by Yahoo, used in production
e Rapidly expanding software ecosystem

o Lots of custom research implementations

e For GPUs, cell processors, etc.

User
Program

/" (2)a8Sign map \\ \
e (2) assign reduces,
A~ AN \\
worker >
split 0
split 1 output
P . (3) read . file 0
split 2 (4) local write
- worker >
split 3
split 4 worker R ogtput
file 1
worker >
Input Map Intermediate files Reduce Output
files phase (on local disk) phase files

Redrawn from (Dean and Ghemawat, OSDI 2004)

How do we get data to the workers?

Compute Nodes

I

1
1
1
)
T=—=—=——————
)
1

What’s the problem here?

Distributed File System

o Don’t move data to workers... move workers to the data!

e Store data on the local disks of nodes in the cluster
e Start up the workers on the node that has the data local

o Why?

e Not enough RAM to hold all the data in memory
e Disk access is slow, but disk throughput is reasonable

o A distributed file system is the answer

e GFS (Google File System)
e HDFS for Hadoop (= GFS clone)

GFS: Assumptions

o Commodity hardware over “exotic” hardware

e Scale out, not up

o High component failure rates

e Inexpensive commodity components fail all the time

o “Modest” number of huge files

o Files are write-once, mostly appended to

e Perhaps concurrently

o Large streaming reads over random access

o High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

GFS: Design Decisions

o Files stored as chunks
e Fixed size (64MB)

o Reliability through replication

e Each chunk replicated across 3+ chunkservers

o Single master to coordinate access, keep metadata

e Simple centralized management

o No data caching

e Little benefit due to large datasets, streaming reads
o Simplify the API

e Push some of the issues onto the client

HDFS = GFS clone (same basic ideas)

HDFS Architecture

HDFS namenode

Application [foo/bar

HDES Client - File namespace block 3df2

A

A 4

HDFS datanode HDFS datanode

Linux file system Linux file system

=8 . OO

Adapted from (Ghemawat et al., SOSP 2003)

Master’'s Responsibilities

Metadata storage

Namespace management/locking

o
o

o Periodic communication with the datanodes
o Chunk creation, re-replication, rebalancing
o

Garbage collection

MapReduce Algorithm Design

Managing Dependencies

o Remember: Mappers run in isolation

e You have no idea in what order the mappers run
e You have no idea on what node the mappers run
e You have no idea when each mapper finishes

o Tools for synchronization:

e Ability to hold state in reducer across multiple key-value pairs
e Sorting function for keys

e Partitioner
e Cleverly-constructed data structures

Slides in this section adapted from work reported in (Lin, EMNLP 2008)

Motivating Example

o Term co-occurrence matrix for a text collection

e M =N x N matrix (N = vocabulary size)

e M;: number of times i and j co-occur in some context
(for concreteness, let’'s say context = sentence)

o Why?

e Distributional profiles as a way of measuring semantic distance
e Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems

o Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

e A large event space (number of terms)
e A large number of observations (the collection itself)
e Goal: keep track of interesting statistics about the events

o Basic approach

e Mappers generate partial counts
e Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: “Pairs”

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For all pairs, emit (a, b) — count

o Reducers sums up counts associated with these pairs

o Use combiners!

“Pairs” Analysis

o Advantages

e Easy to implement, easy to understand

o Disadvantages

e Lots of pairs to sort and shuffle around (upper bound?)

Another Try: “Stripes”

o ldea: group together pairs into an associative array

(a, b) —» 1
(a,c) — 2
(a,d)— 5 a—{b:1,c:2,d:5e:3,f:2}

(a,e) > 3
(a,f) —» 2

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For each term, emit a — { b: count,, c: count, d: count, ... }

o Reducers perform element-wise sum of associative arrays

a—{b:1 d:5,e:3}
+ a—{b:1,c2d: 2 f.2}
a—>{b:2,c:2,d:7,e:3,f.2}

“Stripes” Analysis

o Advantages

e Far less sorting and shuffling of key-value pairs
e Can make better use of combiners

o Disadvantages

e More difficult to implement
e Underlying object is more heavyweight
e Fundamental limitation in terms of size of event space

Efficiency comparison of approaches to computing word co-occurrence matrices

4000

T
"stripes" approach
"pairs" approach

3500 -
3000 -
2500 -
2000 -

1500 |-

running time (seconds)

1000 |-

500 |-

] |

0 20

40

&0

80

percentage of the APW sub-corpora of the English Gigaword

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

100

Conditional Probabilities

o How do we estimate conditional probabilities from counts?

count(A,B) count(A,B)
count(A) > count(A,B')
-

P(B|A) =

o Why do we want to do this?

o How do we do this with MapReduce?

P(B|A): “Stripes”
a— {b;:3,b,:12,b;:7,b,:1, ...}

o Easy!

e One pass to compute (a, *)
e Another pass to directly compute P(B|A)

P(B|A): “Pairs”

*) — 32 Reducer holds this value in memory

(a,

(a, by) — (a,by) > 3/32
(a, b2)—>12 (a, by,) > 12732
(a, by) — (a,bs) — 71732
(a, b,) — (a, b,) — 1/32

o For this to work:

e Must emit extra (a, *) for every b, in mapper

e Must make sure all a’s get sent to same reducer (use partitioner)
e Must make sure (a, *) comes first (define sort order)

e Must hold state in reducer across different key-value pairs

Synchronization in Hadoop

o Approach 1: turn synchronization into an ordering problem

e Sort keys into correct order of computation

e Partition key space so that each reducer gets the appropriate set
of partial results

e Hold state in reducer across multiple key-value pairs to perform
computation

e lllustrated by the “pairs” approach

o Approach 2: construct data structures that “bring the
pieces together”

e Each reducer receives all the data it needs to complete the
computation

e lllustrated by the “stripes” approach

Issues and Tradeoffs

o Number of key-value pairs

e Object creation overhead
e Time for sorting and shuffling pairs across the network

o Size of each key-value pair
e De/serialization overhead
o Combiners make a big difference!

e RAM vs. disk vs. network
e Arrange data to maximize opportunities to aggregate partial results

Case Study: LMs with MR

Language Modeling Recap

o Interpolation: Consult all models at the same time to
compute an interpolated probability estimate.

o Backoff: Consult the highest order model first and backoff
to lower order model only if there are no higher order
counts.

o Interpolated Kneser Ney (state-of-the-art)

e Use absolute discounting to save some probability mass for lower
order models.

e Use a novel form of lower order models (count unique single word
contexts instead of occurrences)

e Combine models into a true probability model using interpolation

Cxn(unwaws) — D
CKN(’wl’wz)

P v (ws|wy,we) = + AMwywe) Py n (ws|wo)

Questions for today

Can we efficiently train an IKN LM with terabytes of data?

Does it really matter?

Using MapReduce to Train IKN

o

O

Step 0: Count words [MR]

Step 0.5: Assign IDs to words [vocabulary generation]
(more frequent — smaller IDs)

Step 1. Compute n-gram counts [MR]
Step 2: Compute lower order context counts [MR]

Step 3: Compute unsmoothed probabilities and
iInterpolation weights [MR]

Step 4: Compute interpolated probabilities [MR]

[MR] = MapReduce job

Steps 0 & 0.5

Training Corpus

e

g - | ey

in any town in any
state in the land

will land on time will be in town

be: 1
an: 1
state: 1
will: 1 will: 1 the: 1

Step 0

Counting in the map phase is
a minor apfimization; see text.

the:
will:

L .| Vocabulary

.

1
1
state: 1
1
2

w

Step 0.5

Steps 1-4

- Step 1 Step 2 Step 3 Step 4

=

Q -

= Input Key DoclD n“agrt.)argls “abc’ “ab”

Qo

o

Q.

= Input Value Document Cita(‘@bc’) Cun(“abc’) _Step 3 Output_
§- §. Intermediate n-grams “qp " “a b’ (history) “ba”
8= Key “abc” Y
w O
o O :
& -g Intermedlate Cdoc(“a b C”) C!KN(“a b C”) (“C”, CKN(“a b CH)) (P’(“a b C”), A(“a b”))
© O Value
s

Partitioning “abc’ “abc” “‘ab” “‘cb”
3 E 13 ” LN A1 ” 13 ”
OQ. “ ” “ ” (C,P(abC), (PKN(abC),
§ g Output Value Cita(@abc’) Cin(fabc?) A(“a b)) A(“a b))
(14
Count Count Compute unsmoothed Compute
n-grams contexts probs AND interp. weights Interp. probs

All output keys are always the same as the intermediate keys
| only show trigrams here but the steps operate on bigrams and unigrams as well

Steps 1-4

Details are not important!
5 MR jobs to train IKN (expensive)!

IKN LMs are big!
(interpolation weights are context dependent)

Can we do something that has better
behavior at scale in terms of time and space?

Let’s try something stupid!

o Simplify backoff as much as possible!

o Forget about trying to make the LM be a true probability
distribution!

o Don’t do any discounting of higher order models!

o Have a single backoff weight independent of context!
[a(*) = a]
c(wiwows)

c(wiws)

S(ws|we, w1) = if c(wrwowsz) > 0

= aS(wsz|wy) otherwise

S(wg) = 6(1153) (recursion ends at unigrams)

“Stupid Backoff (SB)”

Using MapReduce to Train SB
o Step 0: Count words [MR]

o Step 0.5: Assign IDs to words [vocabulary generation]
(more frequent — smaller IDs)

o Step 1: Compute n-gram counts [MR]

o Step 2: Generate final LM “scores” [MR]

[MR] = MapReduce job

Steps 0 & 0.5

Training Corpus

e

g - | ey

in any town in any
state in the land

will land on time will be in town

be: 1
an: 1
state: 1
will: 1 will: 1 the: 1

Step 0

Counting in the map phase is
a minor apfimization; see text.

the:
will:

L .| Vocabulary

.

1
1
state: 1
1
2

w

Step 0.5

Steps 1 & 2

§_ Step 1 Step 2
£ n-grams
"‘;’_ Input Key DocID “3b "
Q
§ Input Value Document Cita(@abc’)
§. 2 Intermediate n-grams “abc”
8 :f, Key “a b C”
g O Intermediate
[o X €« ” “ ”
a3 Value Cyoc(‘@abc’) S(‘abc’)
s X
o first two words last two words
Partitioning “3 b “b ¢
¢ 5
[5)
3 § Output Value Cia(@b ©’) S(“a b ¢”) [write to disk]
(14
Count Compute
n-grams LM scores

The clever partitioning in Step 2 is the key to efficient use at runtime!

Which one wins?

target webnews | web
tokens 237TM 31G 1.8T
vocab size 200k SM 16M
n-grams 25T™M 21G 300G
LM size (SB) | 2G 89G 1.8T
time (SB) 20 min 8 hours 1 day
time (KN) 2.5 hours | 2 days —
machines 100 400 1500

Table 2: Sizes and approximate training times for
3 language models with Stupid Backoff (SB) and
Kneser-Ney Smoothing (KN).

Which one wins?

350 f MR] 06
SDD “.‘\ +ﬂ25hi2_ 05 "
b, ku - E
TN X a %
250 | \,\N 0.4
g ", o +.038/x2 B
%200 R =
g ol 0.3 3
L14] - *
& +.035/x2 = S
i ,r target KN PP —— | 2
” Idcnews KN PP - <9
100 [+.022/x2 = webnews KN PP -« 3
A target C5 —# E
o +ldcnews C5 ---=-- | 0.1
50 e +webnews C5 -~ --
¥ ¥ ¥ +welbl C5 ..,II D
10 100 1000 10000 100000 1e+06

LM training data size in million tokens

Can’t compute perplexity for SB. Why?

Why do we care about 5-gram coverage for a test set?

Which one wins?

Test data BLEU

0.44

0.42

0.4

0.38

0.36

0.34

-
o

W2 +0.15BP/x2

10.568PN2, +0.39BP/x2

| x-:;i;d..T'ﬂEP;"KE \

-+0.62BP/x2 .
= target KN ——

- +ldcnews KN
/ o " +webnews KN -
@ targetSB =
+0.66BP/x2 +ldcnews SB ---—=--
- +webnews SB -2 - |
| : . +we|? SE .,I
10 100 1000 10000 100000 1e+06

LM training data size in million tokens

BLEU is a measure of MT performance.

Not as stupid as you thought, huh?

SB overtakes IKN

Take away

o The MapReduce paradigm and infrastructure make it
simple to scale algorithms to web scale data

o At Terabyte scale, efficiency becomes really important!

o When you have a lot of data, a more scalable technique
(in terms of speed and memory consumption) can do
better than the state-of-the-art even if it's stupider!

“The difference between genius and stupidity is that genius has its limits.”
- Oscar Wilde

“The dumb shall inherit the cluster”
- Nitin Madnani

Back to the Beginning...

o Algorithms and models
o Features

o Data

