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Three Pillars of Statistical NLP

o Algorithms and models
o Features

o Data



Why big data?

o Fundamental fact of the real world

o Systems improve with more data



How much data?

o Google processes 20 PB a day (2008)

o Wayback Machine has 3 PB + 100 TB/month (3/2009)
o Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
o eBay has 6.5 PB of user data + 50 TB/day (5/2009)

o CERN'’s LHC will generate 15 PB a year (??)

% 640K ought to be
"~ enough for anybody.




No data like more data!
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How do we get here if we’re not Google?



How do we scale up?



Divide and Conquer
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It’s a bit more complex...

Fundamental issues

scheduling, data distribution, synchronization,
inter-process communication, robustness, fault

Different programming models

tolerance, ... TR |
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Architectural issues 3

Flynn’s taxonomy (SIMD, MIMD, etc.),

network typology, bisection bandwidth . .
UMA vs. NUMA. cache coherence Different programming constructs

mutexes, conditional variables, barriers, ...
masters/slaves, producers/consumers, work queues, ...

Common problems

livelock, deadlock, data starvation, priority inversion...
dining philosophers, sleeping barbers, cigarette smokers, ...

The reality: programmer shoulders the burden
of managing concurrency...
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UTILITY CONNECTIONS:
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MapReduce



Typical Large-Data Problem

o lterate over a large number of records
Mﬂﬁxtract something of interest from each

o Shuffle and sort intermediate results

o Aggregate intermediate resﬂtéduce

o Generate final output

Key idea: provide a functional abstraction for
these two operations

(Dean and Ghemawat, OSDI 2004)



Roots In Functional Programming
v
Map f
|
Fold \lj/,




MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v’>*
reduce (k’, V') — <k’, v’>*
e All values with the same key are reduced together

o The execution framework handles everything else...



Shuffle and Sort: aggregate values by keys
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MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v’>*
reduce (k’, V') — <k’, v’>*
e All values with the same key are reduced together

o The execution framework handles everything else...

o Not quite...usually, programmers also specify:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic
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MapReduce “Runtime”

o Handles scheduling
e Assigns workers to map and reduce tasks

o Handles “data distribution”
e Moves processes to data

o Handles synchronization
e (Gathers, sorts, and shuffles intermediate data

o Handles errors and faults
e Detects worker failures and restarts

o Everything happens on top of a distributed FS (later)



“Hello World”: Word Count

Map(String docid, String text):
for each word w in text:
Emit(w, 1);

Reduce(String term, Iterator<Int> values):
int sum = 0;
for each v in values:
sum +=v;
Emit(term, value);



MapReduce can refer to...

o The programming model
o The execution framework (aka “runtime”)

o The specific implementation

Usage is usually clear from context!



MapReduce Implementations

o Google has a proprietary implementation in C++
e Bindings in Java, Python
o Hadoop is an open-source implementation in Java

e Project led by Yahoo, used in production
e Rapidly expanding software ecosystem

o Lots of custom research implementations

e For GPUs, cell processors, etc.



User
Program
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Redrawn from (Dean and Ghemawat, OSDI 2004)



How do we get data to the workers?
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What’s the problem here?



Distributed File System

o Don’t move data to workers... move workers to the data!

e Store data on the local disks of nodes in the cluster
e Start up the workers on the node that has the data local

o Why?

e Not enough RAM to hold all the data in memory
e Disk access is slow, but disk throughput is reasonable

o A distributed file system is the answer

e GFS (Google File System)
e HDFS for Hadoop (= GFS clone)



GFS: Assumptions

o Commodity hardware over “exotic” hardware

e Scale out, not up

o High component failure rates

e Inexpensive commodity components fail all the time

o “Modest” number of huge files

o Files are write-once, mostly appended to

e Perhaps concurrently

o Large streaming reads over random access

o High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)



GFS: Design Decisions

o Files stored as chunks
e Fixed size (64MB)

o Reliability through replication

e Each chunk replicated across 3+ chunkservers

o Single master to coordinate access, keep metadata

e Simple centralized management

o No data caching

e Little benefit due to large datasets, streaming reads
o Simplify the API

e Push some of the issues onto the client

HDFS = GFS clone (same basic ideas)



HDFS Architecture

HDFS namenode

Application [foo/bar

HDES Client - File namespace block 3df2

A

A 4

HDFS datanode HDFS datanode

Linux file system Linux file system
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Adapted from (Ghemawat et al., SOSP 2003)



Master’'s Responsibilities

Metadata storage

Namespace management/locking

o
o

o Periodic communication with the datanodes
o Chunk creation, re-replication, rebalancing
o

Garbage collection



MapReduce Algorithm Design



Managing Dependencies

o Remember: Mappers run in isolation

e You have no idea in what order the mappers run
e You have no idea on what node the mappers run
e You have no idea when each mapper finishes

o Tools for synchronization:

e Ability to hold state in reducer across multiple key-value pairs
e Sorting function for keys

e Partitioner
e Cleverly-constructed data structures

Slides in this section adapted from work reported in (Lin, EMNLP 2008)



Motivating Example

o Term co-occurrence matrix for a text collection

e M =N x N matrix (N = vocabulary size)

e M;: number of times i and j co-occur in some context
(for concreteness, let’'s say context = sentence)

o Why?

e Distributional profiles as a way of measuring semantic distance
e Semantic distance useful for many language processing tasks



MapReduce: Large Counting Problems

o Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

e A large event space (number of terms)
e A large number of observations (the collection itself)
e Goal: keep track of interesting statistics about the events

o Basic approach

e Mappers generate partial counts
e Reducers aggregate partial counts

How do we aggregate partial counts efficiently?



First Try: “Pairs”

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For all pairs, emit (a, b) — count

o Reducers sums up counts associated with these pairs

o Use combiners!



“Pairs” Analysis

o Advantages

e Easy to implement, easy to understand

o Disadvantages

e Lots of pairs to sort and shuffle around (upper bound?)



Another Try: “Stripes”

o ldea: group together pairs into an associative array

(a, b) —» 1
(a,c) — 2
(a,d)— 5 a—{b:1,c:2,d:5e:3,f:2}

(a,e) > 3
(a,f) —» 2

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For each term, emit a — { b: count,, c: count, d: count, ... }

o Reducers perform element-wise sum of associative arrays

a—{b:1 d:5,e:3}
+ a—{b:1,c2d: 2 f.2}
a—>{b:2,c:2,d:7,e:3,f.2}



“Stripes” Analysis

o Advantages

e Far less sorting and shuffling of key-value pairs
e Can make better use of combiners

o Disadvantages

e More difficult to implement
e Underlying object is more heavyweight
e Fundamental limitation in terms of size of event space



Efficiency comparison of approaches to computing word co-occurrence matrices
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Conditional Probabilities

o How do we estimate conditional probabilities from counts?

count(A,B)  count(A,B)
count(A) > count(A,B')
-

P(B|A) =

o Why do we want to do this?

o How do we do this with MapReduce?



P(B|A): “Stripes”
a— {b;:3,b,:12,b;:7,b,:1, ...}

o Easy!

e One pass to compute (a, *)
e Another pass to directly compute P(B|A)



P(B|A): “Pairs”

*) — 32 Reducer holds this value in memory

(a,

(a, by) — (a,by) > 3/32
(a, b2)—>12 (a, by,) > 12732
(a, by) — (a,bs) — 71732
(a, b,) — (a, b,) — 1/32

o For this to work:

e Must emit extra (a, *) for every b, in mapper

e Must make sure all a’s get sent to same reducer (use partitioner)
e Must make sure (a, *) comes first (define sort order)

e Must hold state in reducer across different key-value pairs



Synchronization in Hadoop

o Approach 1: turn synchronization into an ordering problem

e Sort keys into correct order of computation

e Partition key space so that each reducer gets the appropriate set
of partial results

e Hold state in reducer across multiple key-value pairs to perform
computation

e lllustrated by the “pairs” approach

o Approach 2: construct data structures that “bring the
pieces together”

e Each reducer receives all the data it needs to complete the
computation

e lllustrated by the “stripes” approach



Issues and Tradeoffs

o Number of key-value pairs

e Object creation overhead
e Time for sorting and shuffling pairs across the network

o Size of each key-value pair
e De/serialization overhead
o Combiners make a big difference!

e RAM vs. disk vs. network
e Arrange data to maximize opportunities to aggregate partial results



Case Study: LMs with MR



Language Modeling Recap

o Interpolation: Consult all models at the same time to
compute an interpolated probability estimate.

o Backoff: Consult the highest order model first and backoff
to lower order model only if there are no higher order
counts.

o Interpolated Kneser Ney (state-of-the-art)

e Use absolute discounting to save some probability mass for lower
order models.

e Use a novel form of lower order models (count unique single word
contexts instead of occurrences)

e Combine models into a true probability model using interpolation

Cxn(unwaws) — D
CKN(’wl’wz)

P v (ws|wy,we) = + AMwywe) Py n (ws|wo)



Questions for today

Can we efficiently train an IKN LM with terabytes of data?

Does it really matter?



Using MapReduce to Train IKN

o

O

Step 0: Count words [MR]

Step 0.5: Assign IDs to words [vocabulary generation]
(more frequent — smaller IDs)

Step 1. Compute n-gram counts [MR]
Step 2: Compute lower order context counts [MR]

Step 3: Compute unsmoothed probabilities and
iInterpolation weights [MR]

Step 4: Compute interpolated probabilities [MR]

[MR] = MapReduce job



Steps 0 & 0.5
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Steps 1-4

- Step 1 Step 2 Step 3 Step 4
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All output keys are always the same as the intermediate keys
| only show trigrams here but the steps operate on bigrams and unigrams as well



Steps 1-4

Details are not important!
5 MR jobs to train IKN (expensive)!

IKN LMs are big!
(interpolation weights are context dependent)

Can we do something that has better
behavior at scale in terms of time and space?




Let’s try something stupid!

o Simplify backoff as much as possible!

o Forget about trying to make the LM be a true probability
distribution!

o Don’t do any discounting of higher order models!

o Have a single backoff weight independent of context!
[a(*) = a]
c(wiwows)

c(wiws)

S(ws|we, w1) = if c(wrwowsz) > 0

= aS(wsz|wy) otherwise

S(wg) = 6(1153) (recursion ends at unigrams)

“Stupid Backoff (SB)”



Using MapReduce to Train SB
o Step 0: Count words [MR]

o Step 0.5: Assign IDs to words [vocabulary generation]
(more frequent — smaller IDs)

o Step 1: Compute n-gram counts [MR]

o Step 2: Generate final LM “scores” [MR]

[MR] = MapReduce job



Steps 0 & 0.5

Training Corpus
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Steps 1 & 2

§_ Step 1 Step 2
£ n-grams
"‘;’_ Input Key DocID “3b "
Q
§ Input Value Document Cita(@abc’)
§. 2 Intermediate n-grams “abc”
8 :f, Key “a b C”
g O Intermediate
[o X €« ” “ ”
a3 Value Cyoc(‘@abc’) S(‘abc’)
s X
o first two words last two words
Partitioning “3 b “b ¢
¢ 5
[5)
3 § Output Value Cia(@b ©’) S(“a b ¢”) [write to disk]
(14
Count Compute
n-grams LM scores

The clever partitioning in Step 2 is the key to efficient use at runtime!



Which one wins?

target webnews | web
# tokens 237TM 31G 1.8T
vocab size 200k SM 16M
# n-grams 25T™M 21G 300G
LM size (SB) | 2G 89G 1.8T
time (SB) 20 min 8 hours 1 day
time (KN) 2.5 hours | 2 days —
# machines 100 400 1500

Table 2: Sizes and approximate training times for
3 language models with Stupid Backoff (SB) and
Kneser-Ney Smoothing (KN).



Which one wins?
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Why do we care about 5-gram coverage for a test set?



Which one wins?

Test data BLEU
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Not as stupid as you thought, huh?

SB overtakes IKN



Take away

o The MapReduce paradigm and infrastructure make it
simple to scale algorithms to web scale data

o At Terabyte scale, efficiency becomes really important!

o When you have a lot of data, a more scalable technique
(in terms of speed and memory consumption) can do
better than the state-of-the-art even if it's stupider!

“The difference between genius and stupidity is that genius has its limits.”
- Oscar Wilde

“The dumb shall inherit the cluster”
- Nitin Madnani



Back to the Beginning...

o Algorithms and models
o Features

o Data



