

About You (pre-requisites)

- o Must be interested in NLP
- o Must have strong computational background
- o Must be a competent programmer
- o Do not need to have a background in linguistics

Administrivia

- o Text:
 - Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics, second edition, Daniel Jurafsky and James H. Martin (2008)
- o Course webpage:
 - http://www.umiacs.umd.edu/~jimmylin/CMSC723-2009-Fall/
- o Class:
 - Wednesdays, 4 to 6:30pm (CSI 2107)
 - Two blocks, 5-10 min break in between

Course Grade

- o Exams: 50%
- o Class Assignments: 45%
 - Assignment 1 "warm up": 5%
 - Assignments 2-5: 10% each
- o Class participation: 5%
 - Showing up for class, demonstrating preparedness, and contributing to class discussions
- o Policy for late and incomplete work, etc.

Out-of-Class Support

- o Office hours: by appointment
- Course mailing list: umd-cmsc723-fall-2009@googlegroups.com

What is Computational Linguistics?

- o Study of computer processing of natural languages
- o Interdisciplinary field
 - Roots in linguistics and computer science (specifically, AI)
 Influenced by electrical engineering, cognitive science,
 - psychology, and other fields
 - Dominated today by machine learning and statistics
- o Goes by various names
 - Computational linguistics
 - Natural language processing
 - Speech/language/text processing
 - Human language technology/technologies

Science vs. Engineering

- What is the goal of this endeavor?
 - Understanding the phenomenon of human language
 - Building a better applications
- Goals (usually) in tensionAnalogy: flight

Rationalism vs. Empiricism

- o Where does the source of knowledge reside?
- o Chomsky's poverty of stimulus argument
- o It's an endless pendulum?

Success Stories

- o "If it works, it's not AI"
- o Speech recognition and synthesis
- o Information extraction
- o Automatic essay grading
- o Grammar checking
- o Machine translation

Speech Recognition

- o Conversion from raw waveforms into text
- o Involves lots of signal processing
- o "It's hard to wreck a nice beach"

Optical Character Recognition

- o Conversion from raw pixels into text
- o Involves a lot of image processing
- What if the image is distorted, or the original text is in poor condition?

What's a word?

o Break up by spaces, right?

Ebay | Sells | Most | of | Skype | to | Private | Investors Swine | flu | isn't | something | to | be | feared

o What about these?

达敏朝藩在高雄为灾民祈福 لیبا تحین نکری ومول الڈائی ایی السلطة 百貨店、8月も不振 大手5社の売り上げ8~11%減 टाटा ने कहा, घाटा पूरा करो

Morphological Analysis

o Morpheme = smallest linguistic unit that has meaning

o Inflectional

- duck + s = [_N duck] + [_{plural} s]
- duck + s = [V duck] + [3rd person singular s]
- o Derivational
 - organize, organization
 - happy, happiness

Complex Morphology

o Turkish is an example of agglutinative language

From the root	"uyu-" (sleep), the following can be derived…
uyuyorum uyuyorsun uyuyorsun uyuyorsunuz uyuyorsunuz uyuyorlar uyuyorlar uyuyorlar uyuduk uyuduk uyuduk uyumadan uyumadan uyumadan uyumadan uyurkan uyuturmak uyuturturmak 	am sleeping hedsheft is sleeping we are sleeping hey are sleeping they are sleeping they are sleeping we sleep without sleeping withe (somebody) sleeps without sleeping your sleeping while (somebody) is sleeping while (somebody) is sleeping to cause somebody to cause (another) to sleep to cause (somebody) to cause (some other) to sleep to cause (somebody) to cause (some other) to cause (yet another) to sleep

From Hakkani-Tür, Oflazer, Tür (2

What's a phrase?

- o Coherent group of words that serve some function
 - Organized around a central "head"
 - The head specifies the type of phrase
- o Examples:
 - Noun phrase (NP): the happy camper
 - Verb phrase (VP): shot the bird
 - Prepositional phrase (PP): on the deck

Syntactic Analysis

o Parsing: the process of assigning syntactic structure

Semantics

- o Different structures, same* meaning:
 - I saw the man.
 - The man was seen by me.
 - The man was who I saw.
 - ...
- o Semantic representations attempt to abstract "meaning"
 - First-order predicate logic:
 - ∃ x, MAN(x) ∧ SEE(x, I) ∧ TENSE(past)
 - Semantic frames and roles:
 - (PREDICATE = See, EXPERIENCER = I, PATIENT = man)

Semantics: More Complexities

o Scoping issues:

- Everyone on the island speaks two languages.
- Two languages are spoken by everyone on the island.
- o Ultimately, what is meaning?
 - Simply pushing the problem onto different sets of SYMBOLS?

Lexical Semantics

- Any verb can add "able" to form an adjective.
 - I taught the class. The class is teachable.
 - I loved that bear. The bear is loveable.
 - I rejected the idea. The idea is rejectable.
- o Association of words with specific semantic forms
 - John: noun, masculine, proper
 - the boys: noun, masculine, plural, human
 - · load/smear verbs: specific restrictions on subjects and objects

Pragmatics and World Knowledge

- Interpretation of sentences requires context, world knowledge, speaker intention/goals, etc.
- o Example 1:
 - Could you turn in your assignments now? (command)
 - Could you finish the assignment? (question, command)
- o Example 2:
 - I couldn't decide how to catch the crook. Then I decided to spy on the crook with binoculars.
 - To my surprise, I found out he had them too. Then I knew to just follow the crook with binoculars. [the crook [with binoculars]] vs. [the crook] [with binoculars]

Discourse Analysis

- o Discourse: how multiple sentences fit together
- o Pronoun reference:
 - The professor told the student to finish the exam. He was pretty aggravated at how long it was taking him to complete it.
- o Multiple reference to same entity:
 - George Bush, Clinton
- o Inference and other relations between sentences:
 - The bomb exploded in front of the hotel. The fountain was destroyed, but the lobby was largely intact.

Why is NLP hard?

So easy

At the word level

o Part of speech

- [V Duck]!
 - [N Duck] is delicious for dinner.
- o Word sense
 - I went to the bank to deposit my check.
 - I went to the bank to look out at the river.
 - I went to the bank of windows and chose the one for "complaints".

Ambiguity

At the syntactic level

o PP Attachment ambiguity

- I saw the man on the hill with the telescope
- o Structural ambiguity
 - I cooked her duck.
 - Visiting relatives can be annoying.
 - Time flies like an arrow.

Difficult cases...

o Requires world knowledge:

- The city council denied the demonstrators the permit because they advocated violence
- The city council denied the demonstrators the permit because they feared violence
- o Requires context:
 - John hit the man. He had stolen his bicycle.

So how do humans cope?

Okay, so how does NLP work?

Goals for Practical Applications

- o Accurate; minimize errors (false positives/negatives)
- o Maximize coverage
- o Robust, degrades gracefully
- o Fast, scalable

Rule-Based Approaches

- o Prevalent through the 80's
 - Rationalism as the dominant approach
- o Manually-encoded rules for various aspects of NLP
 - E.g., swallow is a verb of ingestion, taking an animate subject and a physical object that is edible, ...

What's the problem?

- Rule engineering is time-consuming and error-prone
 Natural language is full of exceptions
- o Rule engineering requires knowledge
 - Is this a bad thing?
- o Rule engineering is expensive
 - Experts cost a lot of money
- o Coverage is limited
 - Knowledge often limited to specific domains

More problems...

- Systems became overly complex and difficult to debug
 Unexpected interaction between rules
- o Systems were brittle
 - Often broke on unexpected input (e.g., "The machine swallowed my change." or "She swallowed my story.")
- Systems were uninformed by prevalence of phenomena
 Why WordNet thinks congress is a donkey...

Problem isn't with rule-based approaches per se, it's with manual knowledge engineering...

The alternative?

- Empirical approach: learn by observing language as it's used, "in the wild"
- This approach goes by different names:
 - Statistical NLP
 - Data-driven NLP
 - Empirical NLP
 - Corpus linguistics...

o Central tool: statistics

• Fancy way of saying "counting things"

Advantages

- o Generalize patterns as they exist in actual language use
- o Little need for knowledge (just count!)
- o Systems more robust and adaptable
- o Systems degrade more gracefully

It's all about the corpus!

- Corpus (pl. corpora): a collection of natural language text systematically gathered and organized in some manner
 Brown Corpus, Wall Street journal, SwitchBoard, ...
- Can we learn how language works from corpora?
 - Look for patterns in the corpus

Features of a corpus

- o Size
- o Balanced or domain-specific
- o Written or spoken
- o Raw or annotated
- o Free or pay
- o Other special characteristics (e.g., bitext)

Getting our hands dirty... (Example of simple things that you can do with a corpus)

How many words are there?

- o Size: ~0.5 MB
- o Tokens: 71,370
- o Types: 8,018
- Average frequency of a word: # tokens / # types = 8.9
 But averages lie....

What are the most frequent words?

word	Freq.	USe
the	3332	determiner (article)
and	2972	conjunction
а	1775	determiner
to	1725	preposition, verbal infinitive marker
of	1440	preposition
was	1161	auxiliary verb
it	1027	(personal/expletive) pronoun
in	906	preposition

Zipf's Law

o George Kingsley Zipf (1902-1950) observed the following relation between frequency and rank

$$f \cdot r = c$$
 or $f = \frac{c}{r}$ $f = \frac{r}{r}$ ferequency
r = rank
c = constant

• Example: the 50th most common word should occur three times more often than the 150th most common word

o In other words:

- A few elements occur very frequently
- Many elements occur very infrequently
- o Zipfian distributions are linear in log-log plots

Raw Bigram collocations						
Frequency	Word 1	Word 2				
80871	of	the				
58841	in	the				
26430	to	the				
21842	on	the				
21839	for	the				
18568	and	the				
16121	that	the				
15630	at	the				
15494	to	be				
13899	in	а				
13689	of	а				
13361	by	the				
13183	with	the				
12622	from	the				
11428	New	York				
Most frequent bigrams collocations in the New York Times, from Mar	ning and Shütze					

Frequency	Word 1	Word 2	POS
11487	New	York	AN
7261	United	States	AN
5412	Los	Angeles	ΝN
3301	last	year	AN
3191	Saudi	Arabia	ΝN
2699	last	week	AN
2514	vice	president	AN
2378	Persian	Gulf	AN
2161	San	Francisco	ΝN
2106	President	Bush	ΝN
2001	Middle	East	AN
1942	Saddam	Hussein	ΝN
1867	Soviet	Union	AN
1850	White	House	AN
1633	United	Nations	AN

How is this different?

- o No need to think of examples, exceptions, etc.
- ${\bf o}\,$ Generalizations are guided by prevalence of phenomena
- o Resulting systems better capture real language use

Three Pillars of Statistical NLP

- o Corpora
- o Representations
- o Models and algorithms

Aye, but there's the rub...

- o What if there's no corpus available for your application?
- o What if the necessary annotations are not present?
- o What if your system is applied to text different from the text on which it's trained?

Key Points

- o Different "layers" of NLP: morphology, syntax, semantics
- o Ambiguity makes NLP difficult
- o Rationalist vs. Empiricist approaches