
CMSC 723: Computational Linguistics I

Assignment 4: Is all smoothing good smoothing?

Jimmy Lin (Instructor) and Melissa Egan (TA)

Due: November 4, 2009

Problem 1 (10 points)

Show that using ELE (Expected Likelihood Estimator) for unigrams, as
explained in class, yields a well-formed probability distribution, i.e.,∑

wi

PELE(wi) = 1

Problem 2 (30 points)

Assume that we have the following scenario: 100 samples have been seen
from a potential vocabulary of 1000 items, and in that sample, 9 items were
seen 10 times, 2 items were seen 5 times and the remaining 989 items were
unseen. Work out the expected frequency estimates for each of the three
kinds of items according to Laplace’s Law. Also calculate the total proba-
bility mass that will be assigned to the unseen items by this law.

Note: It is obvious that this is not a language modeling problem. However,
it has been to designed to show you that smoothing probability distributions
using Laplace’s law moves an unacceptable amount of mass to the unseen
events.

Problem 3 (60 points)

(a) Write a Python program using NLTK that computes the expected fre-
quency estimates for bigrams of rank† 0 through 10, according to the fol-
lowing discounting techniques:

1. Laplace’s Law
†A bigram is of rank r if it occurs exactly r times in the training data. Bigrams with

rank 0 are obviously the unseen bigrams.

1



2. Lidstone’s Law of Succession (γ = 0.5)

3. Good-Turing Discounting

Use Jane Austen’s Persuasion, Sense & Sensibility and Emma together as
the training corpus. These corpora come bundled with NLTK as different
files in the Gutenberg corpus collection‡. Your program should output a
table with the rank as the first column and the three expected frequency
estimates as the subsequent columns.

(b) For each of the discounting techniques, calculate:

• The total probability mass that is assigned to unseen bigrams.

• The probability assigned to an unseen bigram assuming that the mass
is uniformly distributed among them.

Notes:

1. The expected frequency estimate for n-grams of rank r is defined in
the lecture notes.

2. Lowercase each word in the training corpus before counting it.

3. Do not filter any punctuation. Just treat it as a regular word.

4. You do not need to add the <s> and </s> markers to the sentences
for this problem.

5. Do not count any n-grams across sentence boundaries. Remember that
for n-gram language modeling, we always work sentence by sentence.

6. You may find NLTK’s built-in FreqDist class to be useful for this
problem.

7. The reason we are not using the method gutenberg.words(’...’) is
because this method tokenizes the sentences differently. It’s better to
stick to the sents() method as suggested.

‡Use the fileids parameter with the sents() method and note that this parameter
can take a list.

2


