
CMSC 723: Computational Linguistics I

Assignment 3: Let's play tag!

Jimmy Lin (Instructor) and Melissa Egan (TA)

Due: October 14, 2009

Introduction

This assignment is about exploring part-of-speech (POS) tagging using n-
gram taggers, tagger combination, and hidden Markov models (HMMs).

There are a total of three problems; the �rst requires no programming. This

assignment requires the Python modules below:

1. Matplotlib: This provides advanced plotting and visualization capa-

bilities that we will need to use for Problem 2.

2. Numpy: This provides the e�cient multi-dimensional array structure

that we will need to use for Problem 3.

A link to installation instructions can be found on the course website under

�Software�.

Background

In this section, we provide some background on building POS taggers. NLTK

ships with a factory of POS taggers that can be easily trained on the included

pre-tagged corpora.

There are two main POS taggers that we will use:

1. DefaultTagger: This tagger tags every word with a default tag. For

example, a very good baseline for English POS-tagging is to just tag

every word as a noun. Listing 1 shows how to build such a tagger.

2. NgramTagger: N -grams over any given sequence can be informally

de�ned as overlapping subsequences each of length N. We will formally

de�ne n-grams later in the course. For the purposes of this assignment,

the informal de�nition should su�ce. As an example, the sentence My
name is Nitin Madnani will yield the following n-grams for various

values of N:

1

Listing 1: Building and using a DefaultTagger� �
>>> import nltk

>>> t = nltk.DefaultTagger('NN')

>>> sentence = 'This is a sentence'

>>> words = sentence.split()

>>> print t.tag(words)

[('This', 'NN'), ('is', 'NN'), ('a', 'NN'), ('sentence', 'NN')]
� �
• N = 1 (1-grams or Unigrams): My, name, is, Nitin, Madnani

• N = 2 (2-grams or Bigrams): My name, name is, is Nitin, Nitin
Madnani

• N = 3 (3-grams or Trigrams): My name is, name is Nitin, is
Nitin Madnani

• N = 4 (4-grams): My name is Nitin, name is Nitin Madnani

• N = 5 (5-grams): My name is Nitin Madnani

So, how do we use n-grams for POS-tagging? Figure 1 shows the

basic idea behind this strategy. Instead of just looking at the word

being tagged, we also look at the POS tags of the previous n words.

Therefore, using n-grams allows us to be able to take context into

consideration when performing POS-tagging. In the �gure, we are

using the text of the word itself plus two previous tags, so N=3.

Looking at the �gure, it should be easy to see how a UnigramTagger

(N=1) would work. It would use just the text of the word itself as the

only context for predicting its POS tag. For example, it might learn

that the word promise is more likely to be tagged as a verb (I promise
you ...) than a noun (It is a promise ...). Therefore, it would always

tag promise as a verb even though that's not always correct! However,

if we were to use the previous tag as additional context, our tagger

might also learn that if promise were preceded by an article (a), it
should be tagged as a noun instead. Therefore, using larger context is

usually a good strategy when building n-gram based POS taggers.

The important thing to realize is that when using an NgramTagger, you need

to train it on some sentences for which you already know the POS tags. This

is needed because an NgramTagger needs to count and build tables of how

many times a particular word is tagged as a verb (when N=1) or how many

2

Figure 1: How does an NgramTagger work? In this �gure, N = 3 (original

image from NLTK documentation).

Listing 2: Building and using an NgramTagger� �
>>> import nltk

>>> from nltk.corpus import brown

>>> traindata = brown.tagged_sents(categories='reviews')

>>> t = nltk.NgramTagger(n=2, train=traindata)

>>> sentence = 'This is a sentence'

>>> words = sentence.split()

>>> print t.tag(words)

[('This', 'DT'), ('is', 'BEZ'), ('a', 'AT'), ('sentence', None)]
� �
times a particular word preceded by a noun is tagged as a verb (when N=2)
and so on. In order to build these tables, it requires sentences with the cor-

rect tags already assigned to each word.

It's usually a little complicated to build and train an NgramTagger. However,

NLTK makes it extremely easy. Listing 2 shows how to build and train a

bigram tagger (N=2) on the reviews category of the Brown corpus.1 If

the tagger cannot make a prediction about a particular word, it assigns that

word a null tag indicated by None.

1The Brown corpus tagset is shown in Figure 5.7 on page 134 of your textbook.

3

Listing 3: Using the cutoff parameter during training� �
>>> import nltk

>>> from nltk.corpus import brown

>>> traindata = brown.tagged_sents(categories='reviews')

Treat everything as evidence (very noisy)
>>> t = nltk.NgramTagger(n=2, train=traindata, cutoff=0)
� �
Restricting Training Evidence

As explained above, training an NgramTagger basically entails keeping track

of the tag that was assigned to each word for every context that it was seen

in and then using that as evidence for making predictions on test data. Now,

it's reasonable to think that not all evidence should be considered reliable.

For example, if a particular piece of evidence occurs only once in the training

data, we may not want to rely on it lest it was just an artifact of noise. NLTK

allows us to achieve this with the cutoff parameter as shown in Listing 3.

By default, the value of the cutoff parameter is 1, i.e., during training,

NLTK will ignore any evidence unless it occurs in the training data at least

twice (one higher than the cuto� value). Note that the default cuto� of 1
should be su�cient for this assignment. The point of this section is just to

provide information that may be worth having.

Measuring tagger accuracy

Assuming that you have the correct POS tags for the sentences that you

wish to test your tagger on, NLTK also provides a simple way to compute

how accurate your tagger is in its predictions. Of course, these test sentences

should be completely separate from the sentences that are used to train the

tagger. Listing 4 shows how to compute the accuracy of a DefaultTagger

on the editorial category of the Brown corpus. On this particular test set,

tagging everything as a noun is successful only about 12.5% of the time.

Combining taggers

It's possible to combine two taggers such that if the primary tagger was

unable to assign the tag to a particular word, it backs o� to the second

tagger for the prediction. This is known as Backo�. Listing 5 shows how

to do this in NLTK.

4

Listing 4: Measuring the accuracy of a DefaultTagger� �
>>> import nltk

>>> from nltk.corpus import brown

>>> testdata = brown.tagged_sents(categories='editorial')

>>> t = nltk.DefaultTagger('NN')

>>> print t.evaluate(testdata)

0.12458606583988052
� �
Listing 5: Combining taggers in NLTK� �

>>> import nltk

>>> from nltk.corpus import brown

>>> traindata = brown.tagged_sents(categories='reviews')

>>> t1 = nltk.NgramTagger(n=1, train=traindata)

>>> t2 = nltk.NgramTagger(n=2, train= traindata, backoff=t1)

>>> sentence = 'This is a sentence'

>>> words = sentence.split()

>>> print t2.tag(words)

[('This', 'DT'), ('is', 'BEZ'), ('a', 'AT'), ('sentence', 'NN')]
� �
Plotting using Matplotlib

As we have seen in class, the plotting capabilities of NLTK are quite prim-

itive. The Python package Matplotlib provides more advanced plotting

functions that generate nicer-looking plots. For this assignment, we will

only need to know how to make line plots and save them as image �les. List-

ing 6 shows how to create and save a plot. Figure 2 shows the �le plot.png.

5

Listing 6: Create and save a simple line plot� �
from pylab import xlabel, ylabel, plot, savefig

x = range(1, 11)

y = [i∗∗3+3 for i in x]

xlabel('x')

ylabel('x^3 + 3')

plot(x, y)

savefig('plot.png')
� �

Figure 2: The �le plot.png as produced by Listing 6.

6

Problem 1 (10 points)

Recall the constraints used in the EngCG rule-based tagger that we looked

at in class. The system is described in more detail in Section 5.4 of your

textbook. Say we have the following constraint in our tagger grammar:

if

(-1 has only DT tag)

then remove verb tags

Can you think of two di�erent counter-examples where applying this con-

straint could lead to a possibly incorrect tagging?

Problem 2 (40 points)

(a) In Listing 2 above, why do you think the bigram tagger could not

assign a tag to the word sentence? However, in Listing 5, a bigram

tagger combined with a unigram tagger was able to correctly predict

the tag for the same word. Why do you think that strategy worked?

(b) Create di�erent combinations using a DefaultTagger and 3 di�erent

n-gram taggers (N = 1, 2 and 3). Use the �rst 500 sentences of the

news category of the Brown corpus as the training data. Test each

combination on the religion category of the Brown corpus. Which

combination yields the highest accuracy? Plot the accuracy of the

winning combination as the number of sentences used for training in-

creases (by 500 sentences at each step). You need only go up to 4500

sentences.

(c) Let the coverage of a test set be de�ned as the percentage of words

that are not assigned a null tag (None) by a tagger. Train 6 di�erent

n-gram taggers (N= 1 . . . 6) on the news category of the Brown cor-

pus. Compute the coverage and accuracy of each individual tagger (no

combinations) on the religion category of the Brown corpus. Explain

what happens to the two numbers as N increases.

(d) Note that the contextual information used both by a bigram tagger and

a �rst-order HMM tagger pertains only to the previous word. Does that

mean that a trigram tagger will always prove to be a better tagger than
a �rst-order HMM? Put another way, does a �rst-order HMM have any

advantages over an n-gram tagger with a much larger N (>= 3)? If

so, what are they?

7

Notes:

• A combination should have at least two taggers. Listing 5 shows you

how to combine two taggers. You have to �gure out how you would

use this method to create a combination of 3 or more taggers.

• Even though there are a large number of possible combinations, you

should be able to rule out many of them by thinking about how the

individual taggers work and how they can complement each other.

• Your code should not enumerate all possible combinations to �nd the

best one. The point of the problem is to ensure that you understand

the pros and cons of each tagger enough to come up with combinations

that are reasonably good.

• Since POS tagging is sentence oriented, we need to make sure that

an NgramTagger does not consider context that goes beyond sentence

boundaries. The NLTK implementation takes care of this for you.

Problem 3 (50 points)

You are provided with the �le hmm.py that de�nes a class called hmm. As soon

as you instantiate this class, the various parameters of the HMM (transition

probabilities, emission probabilities etc.) are automatically computed by us-

ing the �rst 1000 sentences of the news category of the Brown corpus as the

training data (using functions de�ned in the supporting �le hmmtrainer.py).

The following �ve parameters are available to each instance of the hmm class:

• transitions: The probabilities of transitioning from one state to an-

other. To get the probability of going to state s2 from state s1, use

self.transitions[s1].prob(s2).

• emissions: The probability of emitting a particular output symbol

from a particular state. To get the probability of emitting output

symbol sym in state s, use self.emissions[s].prob(sym).

• priors: The probability of starting in a particular state. To get the

probability that the HMM starts in state s, use self.priors.prob(s).

• states: The states (tags) in the trained HMM.

• symbols: The output symbols (words) in the trained HMM.

8

Listing 7: Using multi-dimensional arrays� �
>>> from numpy import zeros, random, max, argmax, float32

Create a 10x10 two−dimensional array initialized to zeros
Must use �oat32 to indicate 32−bit �oating point precision
>>> a = zeros((10, 10), float32)

add 0.5 to all elements
>>> a += 0.5

element at row 1 and column 1 (zero−indexed)
>>> a[0,0]

0.5

add 1.0 to each element in the 6th column
>>> a[:,5] += 1.0

create a 5x5 two−dimensional array with each element x
randomly generated such that 0 <= x < 10
>>> b = random.randint(0, 10, (5, 5))

�nd the largest element in the 5th column
>>> max(a[:,4])

9

�nd the row number in which this maximum occurred
>>> argmax(a[:,4])

3
� �

9

For this problem, implement the following:

(a) Add a decode() method to the class that performs Viterbi decoding

to �nd the most likely tag sequence for a given word sequence.

(b) Add a tag() method that takes a sentence string as input and tags

the words in that sentence using Viterbi decoding. It should have an

output of the form: This/DT is/BEZ a/AT sentence/NN.

(c) Tag each of the six sentences in the provided �le given.sentences.

Do you see any errors in the tags assigned to each sentence? If so,

mention them.

Turn in the �le hmm.py that implements the items above. Your program

should accept sentences from stdin and print the tagged results to stdout.

We will test your program with the following command-line invocation:

python hmm.py < given.sentences

Make sure your solution behaves exactly in this manner.

Notes:

1. The Viterbi decoding algorithm requires a two-dimensional trellis or

chart. It is extremely tedious to use Python lists to implement such a

chart. This is where the e�cient and versatile array datatype provided

by Numpy comes in. Listing 7 should tell you how to create, initialize

and use a two-dimensional array. You should use such an array to

implement the chart you need for decoding.

2. The probability values that are calculated by the trainer are going

to be extremely small in scale. Multiplying two very small num-

bers can lead to loss of precision. Therefore, we strongly recommend

that you use the log of the probabilities (logprobs) instead. To com-

pute the log of the transition probability of going from s1 to s2, use

self.transitions[s1].logprob(s2) instead, and so on.

3. You do not need to lowercase the training data. Use the words as they

occur in the data.

4. You do not need to worry about any words that are not seen in the

training data. The probability distributions that the hmmtrainer mod-

ule computes are all smoothed, which means that it assigns some non-

zero probability mass to every event whether or not it was observed

10

in the data. In general, assigning a zero probability to any event is

not a good idea when building statistical models. This has an intu-

itive reason: just because you don't observe an event in your limited

view of the world (as represented by the training data) doesn't mean

that it never happens in the real world (which is what assigning it zero

probability says). We will delve deeper into the technical details of

smoothing later in the semester. For this problem, just know that you

don't have to do anything special about unseen words.

11

